JPS645204Y2 - - Google Patents

Info

Publication number
JPS645204Y2
JPS645204Y2 JP1981158241U JP15824181U JPS645204Y2 JP S645204 Y2 JPS645204 Y2 JP S645204Y2 JP 1981158241 U JP1981158241 U JP 1981158241U JP 15824181 U JP15824181 U JP 15824181U JP S645204 Y2 JPS645204 Y2 JP S645204Y2
Authority
JP
Japan
Prior art keywords
pole pair
primary
coil
poles
secondary coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981158241U
Other languages
Japanese (ja)
Other versions
JPS5863510U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15824181U priority Critical patent/JPS5863510U/en
Publication of JPS5863510U publication Critical patent/JPS5863510U/en
Application granted granted Critical
Publication of JPS645204Y2 publication Critical patent/JPS645204Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【考案の詳細な説明】 この考案は可変磁気抵抗型位置検出装置の出力
誤差補正装置に関する。
[Detailed Description of the Invention] This invention relates to an output error correction device for a variable magnetic resistance type position detection device.

可変磁気抵抗型の位置検出装置は例えば第1図
に示すように、ステータ1に複数の極A,B,
C,Dを具え、各極A〜Dに1次コイル2A〜2
Dと2次コイル3A〜3Dとを巻設し、ロータ
(一例として偏心ロータ)4の回転角度θに応じ
て各極A〜Dのリラクタンスを変化させるように
している。1次コイル2A〜2Dと2次コイル3
A〜3Dの回路構成を示せば例えば第2図のよう
であり、差動的なリラクタンス変化をもたらすよ
うに対を成した極A及びC並びにB及びDを夫々
正弦波と余弦波で個別にかつ逆相に励磁し、各々
の2次コイル3A〜3Dに誘起される電圧eA〜eD
を加算合成して2次出力信号Eを得る。第1図に
示すように極Dに偏心ロータ4が最接近している
ときの回転角度θを0度とすると、回転角度θの
変化に対する各極A〜Dのパーミアンスは夫々
sinθ、−cosθ、cosθで示すことができる。従つて、
2次出力信号Eは理想的には E=eA+eC−eB−eD =Ksin(ωt−θ) ……(1) なる回転角度θに対応する位相ずれを含むもの
となる。この詳細な解析は特願昭55−147425号明
細書において示されている。しかしながら、実際
には、機械角(回転角度)と電気角(出力信号E
の位相ずれ分)とは簡単には同一とならず、誤差
が生じる。このとき、誤差の大部分は、差動的な
リラクタンス変化をもたらすように設定された極
対内の各極間で次のように生じる。
For example, as shown in FIG. 1, a variable magnetic resistance type position detection device has a stator 1 with a plurality of poles A, B,
C, D, and primary coils 2A to 2 for each pole A to D.
D and secondary coils 3A to 3D are wound around the poles A to D, and the reluctance of each pole A to D is changed according to the rotation angle θ of a rotor (for example, an eccentric rotor) 4. Primary coils 2A to 2D and secondary coil 3
The circuit configuration of A to 3D is as shown in Figure 2, for example, where the paired poles A and C and B and D are individually connected to sine waves and cosine waves to bring about differential reluctance changes. And the voltages e A to e D induced in each of the secondary coils 3A to 3D by being excited in the opposite phase.
are added and synthesized to obtain a secondary output signal E. As shown in FIG. 1, if the rotation angle θ when the eccentric rotor 4 is closest to the pole D is 0 degrees, the permeance of each pole A to D with respect to a change in the rotation angle θ is
It can be expressed as sinθ, -cosθ, and cosθ. Therefore,
The secondary output signal E ideally includes a phase shift corresponding to the rotation angle θ as follows: E=e A +e C −e B −e D =Ksin(ωt−θ) (1). This detailed analysis is shown in Japanese Patent Application No. 147425/1982. However, in reality, mechanical angle (rotation angle) and electrical angle (output signal E
(phase shift) is not easily the same, and an error occurs. At this time, most of the error occurs between each pole in the pole pair set to bring about a differential reluctance change as follows.

{eA+eC=−Kcosωtsinθ+ΔeAC −eB−eD=Ksinωtcosθ+ΔeBD} ……(2) ここで、ΔeACは一方の極対A,Cにおいて生
じる誤差電圧、ΔeBDは他方の極対B,Dにおい
て生じる誤差電圧である。従つて2次出力信号E
は次のように誤差を含むものとなる。
{e A +e C = −Kcosωtsinθ+Δe AC −e B −e D =Ksinωtcosθ+Δe BD } ...(2) Here, Δe AC is the error voltage generated at one pole pair A, C, and Δe BD is the other pole pair B , D. Therefore, the secondary output signal E
contains errors as follows.

E=Ksin(ωt−θ)+ΔeAC+ΔeBD ……(3) このような誤差が生じる理由は、各極A〜Dの
誘起電圧eA〜eDのバイアス電圧が一様でなく、ど
うしても幾分異なるものとなることに起因し、そ
れらのバイアス電圧の差分が誤差電圧となつて現
われる。
E = Ksin (ωt - θ) + Δe AC + Δe BD ... (3) The reason why such an error occurs is that the bias voltages of the induced voltages e A to e D of each pole A to D are not uniform, and it is inevitable that As a result, the difference between these bias voltages appears as an error voltage.

この考案は可変磁気抵抗型位置検出装置におい
て上述のような出力信号の誤差を補正し得る装置
を提供することを目的とする。
The object of this invention is to provide a device capable of correcting the above-mentioned error in the output signal in a variable magnetoresistive position detection device.

以下添付図面を参照してこの考案の一実施例に
つき説明する。
An embodiment of this invention will be described below with reference to the accompanying drawings.

第3図は、第2図と同様に、第1図に示すよう
な可変磁気抵抗型位置検出装置のステータ各極A
〜Dの1次コイル2A〜2Dと2次コイル3A〜
3Dの回路構成を示すもので、極対A,C及び
B,Dに夫々対応する2次コイル3A,3C及び
3B,3Dに並列に設けられたバランス式可変抵
抗器BVR1及びBVR2がこの考案に係る誤差補
正装置に相当する。この構成により、各2次コイ
ル3A〜3Dに調整可能な負荷抵抗が夫々設けら
れたことになり、この負荷抵抗の値に応じて各極
A〜Dの2次側のインピーダンスが変化し、これ
に伴ない各極A〜Dの1次側のインピーダンスが
変化する。従つて、正弦波によつて励磁される一
方の極対A,Cに関しては、抵抗器BVR1を調
整することにより1次コイル2A,2Cのインピ
ーダンスをバランス調整することができ、これに
より各1次コイル2A,2Cに印加される電圧
(バイアス電圧)を夫々変化させることができる。
同様に、余弦波によつて励磁される他方の極対
B,Dに関しては、抵抗器BVR2の調整によつ
て1次コイル2B,2Dのバイアス電圧を夫々可
変調整することができる。すなわち、前記の誤差
電圧ΔeAC,ΔeBDがなくなるように各抵抗器BVR
1,BVR2を調整すればよい。
Similarly to FIG. 2, FIG.
~D primary coil 2A~2D and secondary coil 3A~
This figure shows a 3D circuit configuration, and this idea includes balanced variable resistors BVR1 and BVR2 installed in parallel with secondary coils 3A, 3C and 3B, 3D corresponding to pole pairs A, C and B, D, respectively. This corresponds to such an error correction device. With this configuration, each of the secondary coils 3A to 3D is provided with an adjustable load resistance, and the impedance on the secondary side of each pole A to D changes according to the value of this load resistance. The impedance on the primary side of each pole A to D changes accordingly. Therefore, for one pole pair A, C which is excited by a sine wave, the impedance of the primary coils 2A, 2C can be balanced by adjusting the resistor BVR1. The voltages (bias voltages) applied to the coils 2A and 2C can be changed.
Similarly, regarding the other pole pair B and D excited by the cosine wave, the bias voltages of the primary coils 2B and 2D can be variably adjusted by adjusting the resistor BVR2. In other words, each resistor BVR is adjusted so that the error voltages Δe AC and Δe BD are eliminated.
1. Just adjust BVR2.

調整例を示すと、まず、ロータ4(第1図)を
回転角度θ=0度に位置させる。この位置では、
正弦波励磁される極対A,Cの両極のリラクタン
スは等しくかつ逆相励磁であることによつて両極
の誘起電圧eA,eCは相殺され、「eA+eC=0」と
なるはずである。また、出力信号Eは余弦波励磁
される極対B,Dの誘起電圧eB,eD分のみとな
り、前記(2)式でcosθ=1(θ=0゜)であることに
より出力信号Eはsinωtとなり、電気角の位相ず
れは生じないはずである。このときの出力信号E
の位相ずれを測定し(測定回路は図示せず)、位
相ずれが0でなければ、0となるように極対A,
Cに対応する抵抗器BVR1を調整する。こうす
ることにより極対A,Cに関する誤差を補正する
ことができる。
To show an example of adjustment, first, the rotor 4 (FIG. 1) is positioned at a rotation angle θ=0 degree. In this position,
Since the reluctances of both poles of the pole pair A and C that are excited by a sine wave are equal and are in opposite phase excitation, the induced voltages e A and e C of both poles are canceled out, and "e A + e C = 0" should be obtained. It is. In addition, the output signal E is only the induced voltages e B and e D of the pole pair B and D excited by the cosine wave, and since cos θ = 1 (θ = 0°) in the above equation (2), the output signal E becomes sinωt, and there should be no electrical angle phase shift. Output signal E at this time
(the measurement circuit is not shown), and if the phase shift is not 0, then the pole pair A,
Adjust resistor BVR1 corresponding to C. By doing so, errors regarding the pole pair A and C can be corrected.

次に、ロータ4を回転角度θ=90度に位置させ
る。この位置では、上記とは逆に、極対B,Dの
誘起電圧eB,eDが相殺され、「eB+eD=0」とな
るはずである。また、出力信号Eは「eA+eC」分
のみとなり、前記(2)式でsinθ=1(θ=90゜)であ
ることにより該信号Eは−cosωtすなわちsin(ωt
−π/2)となり、電気角の位相ずれθはπ/2(90 度)となるはずである。このときの出力信号Eの
位相ずれを測定し、θ=π/2となるように極対B, Dの抵抗器BVR2を調整する。こうして極対B,
Dに関する誤差を補正することができる。
Next, the rotor 4 is positioned at a rotation angle θ=90 degrees. At this position, contrary to the above, the induced voltages e B and e D of the pole pair B and D should cancel each other out, so that "e B +e D = 0". In addition, the output signal E is only for "e A + e C ", and since sin θ = 1 (θ = 90°) in the above equation (2), the signal E becomes -cos ωt, that is, sin(ωt
-π/2), and the electrical angle phase shift θ should be π/2 (90 degrees). Measure the phase shift of the output signal E at this time, and adjust the resistor BVR2 of the pole pair B and D so that θ=π/2. Thus, polar pair B,
Errors related to D can be corrected.

尚、可変磁気抵抗型位置検出装置は第1図のよ
うな回転型のものに限らず、直線型のものであつ
てもよい。また、回転型検出装置の構造も第1図
に示すものに限らず種々存在する。また、出力誤
差調整用抵抗はバランス型のものに限らず、各2
次コイル3A〜3Dに個別に設けた可変抵抗であ
つてもよい。
Note that the variable magnetic resistance type position detection device is not limited to the rotary type as shown in FIG. 1, but may be a linear type. Further, the structure of the rotary detection device is not limited to the one shown in FIG. 1, and there are various structures. In addition, the output error adjustment resistor is not limited to the balanced type;
It may be a variable resistor provided individually in the secondary coils 3A to 3D.

以上説明したようにこの考案によれば、可変磁
気抵抗型位置検出装置の出力誤差を確実に修正す
ることができ、正確な位置検出に寄与するように
なる、という優れた効果がある。
As explained above, this invention has the excellent effect of being able to reliably correct the output error of the variable magnetic resistance type position detection device and contributing to accurate position detection.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は可変磁気抵抗型位置検出装置の一例と
して偏心ロータを用いた回転角度検出器の一例を
示す径方向断面図、第2図は第1図における1次
コイル及び2次コイルの一般的な回路構成を示す
回路図、第3図はこの考案に係る出力誤差補正装
置の一実施例を示す回路図で、第2図の回路に適
用した例を示すもの、である。 1……ステータ、A〜D……極、2A〜2D…
…1次コイル、3A〜3D……2次コイル、4…
…ロータ、BVR1,BVR2……バランス式可変
抵抗器。
Fig. 1 is a radial cross-sectional view showing an example of a rotation angle detector using an eccentric rotor as an example of a variable magnetic resistance type position detection device, and Fig. 2 is a general view of the primary coil and secondary coil in Fig. 1. FIG. 3 is a circuit diagram showing an embodiment of the output error correction device according to the invention, and shows an example applied to the circuit of FIG. 2. 1...Stator, A~D...Pole, 2A~2D...
...Primary coil, 3A~3D...Secondary coil, 4...
...Rotor, BVR1, BVR2... Balanced variable resistor.

Claims (1)

【実用新案登録請求の範囲】 複数の1次コイルと各1次コイルに対応する2
次コイルとを含むステータ部と、 このステータ部に対して相対的に変位し、前記
1次コイルを通る磁路のリラクタンスを前記変位
に応じて変化させる可動部と を具える可変磁気抵抗型位置検出装置において、 前記ステータ部は、半径方向で対向する1対の
極を円周方向に所定間隔で複数対具え、前記1次
コイル及び2次コイルは前記各極に夫々巻かれて
おり、前記各極対における2つの前記1次コイル
は夫々逆相励磁されるものであり、かつ、各極対
間では1次コイルの励磁信号の位相をずらすこと
により、ステータ部に対する前記可動部の回転位
置に応じて電気的位相ずれを持つ交流信号が2次
コイル側に得られるようにし、 前記各極対に夫々対応する2つの前記2次コイ
ルのインピーダンスをバランス調整するためのバ
ランス式可変抵抗器を前記各極対毎に夫々設け、
この可変抵抗器によつて各2次コイル出力のバイ
アス電圧を調整することにより出力誤差を補正す
るようにした可変磁気抵抗型位置検出装置の出力
誤差補正装置。
[Claims for Utility Model Registration] A plurality of primary coils and two corresponding to each primary coil.
a stator section including a secondary coil; and a movable section that is displaced relative to the stator section and changes the reluctance of the magnetic path passing through the primary coil in accordance with the displacement. In the detection device, the stator section includes a plurality of pairs of poles facing each other in the radial direction at predetermined intervals in the circumferential direction, the primary coil and the secondary coil are wound around each of the poles, and The two primary coils in each pole pair are excited in opposite phases, and by shifting the phase of the excitation signal of the primary coil between each pole pair, the rotational position of the movable part with respect to the stator part is controlled. a balanced variable resistor for adjusting the impedance of the two secondary coils corresponding to each pole pair so that an alternating current signal having an electrical phase shift is obtained on the secondary coil side according to the pole pair; provided for each pair of poles,
An output error correction device for a variable magnetoresistive position detection device, which corrects output errors by adjusting the bias voltage of each secondary coil output using this variable resistor.
JP15824181U 1981-10-26 1981-10-26 Output error correction device for variable magnetic resistance type position detection device Granted JPS5863510U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15824181U JPS5863510U (en) 1981-10-26 1981-10-26 Output error correction device for variable magnetic resistance type position detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15824181U JPS5863510U (en) 1981-10-26 1981-10-26 Output error correction device for variable magnetic resistance type position detection device

Publications (2)

Publication Number Publication Date
JPS5863510U JPS5863510U (en) 1983-04-28
JPS645204Y2 true JPS645204Y2 (en) 1989-02-09

Family

ID=29950741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15824181U Granted JPS5863510U (en) 1981-10-26 1981-10-26 Output error correction device for variable magnetic resistance type position detection device

Country Status (1)

Country Link
JP (1) JPS5863510U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794511A (en) * 1988-01-11 1988-12-27 The Superior Electric Company Apparatus and method for generating two-phase signals for use with a resolver to digital converter
WO2022230032A1 (en) * 2021-04-26 2022-11-03 株式会社ニレコ Coil set

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474769A (en) * 1977-11-02 1979-06-15 Pneumo Corp Moved amount and phase converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474769A (en) * 1977-11-02 1979-06-15 Pneumo Corp Moved amount and phase converter

Also Published As

Publication number Publication date
JPS5863510U (en) 1983-04-28

Similar Documents

Publication Publication Date Title
US7986139B2 (en) Position sensor having stacked flat coils
US6239571B1 (en) Resolver
US4829247A (en) Angle sensor with inductive coil coupling
US20020190709A1 (en) Methods and apparatus for sensing angular position and speed of a rotatable shaft utilizing linearized annular magnet and commutated ratiometric hall sensors
US4962331A (en) Rotatable control signal generator
US7030532B2 (en) Variable reluctance resolver
JP2001235307A (en) Rotary type position detecting apparatus
JP5522845B2 (en) Rotary position detector
JP4642987B2 (en) Relative rotational position detector
US5939878A (en) Angular displacement transducer having flux-directing target and multi-sectored pole piece
JPS645204Y2 (en)
EP1821089B1 (en) Relative rotational position detector
WO2020209252A1 (en) Resolver
JPS6337591B2 (en)
US7331247B2 (en) Relative rotational position detection apparatus having magnetic coupling boundary sections that form varying magnetic couplings
EP3896399B1 (en) Sensor device and sensor assembly for measuring the rotational position of an element
JP4471471B2 (en) Relative rotational position detector
JP4217423B2 (en) Rotation position detector for bearings
JP2003042805A (en) Magnetic induction type rotary position detector
JP2000258186A (en) Self-correction angle detector and method for correcting detection accuracy
JPH0421067Y2 (en)
CN114864271B (en) Coil winding method of rotary transformer
JPH045337B2 (en)
US20230344327A1 (en) Resolver
JPH05196478A (en) Position detection apparatus