JPS645030B2 - - Google Patents

Info

Publication number
JPS645030B2
JPS645030B2 JP15810979A JP15810979A JPS645030B2 JP S645030 B2 JPS645030 B2 JP S645030B2 JP 15810979 A JP15810979 A JP 15810979A JP 15810979 A JP15810979 A JP 15810979A JP S645030 B2 JPS645030 B2 JP S645030B2
Authority
JP
Japan
Prior art keywords
reaction
theic
solvent
reaction solution
recrystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15810979A
Other languages
Japanese (ja)
Other versions
JPS5681571A (en
Inventor
Morio Muto
Ryoichi Tomizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisso Petrochemical Ind Co Ltd
Original Assignee
Nisso Petrochemical Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisso Petrochemical Ind Co Ltd filed Critical Nisso Petrochemical Ind Co Ltd
Priority to JP15810979A priority Critical patent/JPS5681571A/en
Publication of JPS5681571A publication Critical patent/JPS5681571A/en
Publication of JPS645030B2 publication Critical patent/JPS645030B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐熱性高分子原料として有用なトリス
(2―ヒドロキシエチル)イソシアヌレート(以
下THEICと略称する)の改良された製造方法に
関し、更に詳しくは、シアヌール酸(以下CAと
いう)とエチレンオキシド(以下EOという)か
ら安定して高純度のTHEICを高収率で得て、し
かも廃棄物を出さない改良された製造方法に関す
る。 周知のようにCAは殆んどの有機溶媒に不溶乃
至僅かに可溶なために反応の円滑な進行を意図し
て種々の反応媒体が提案されている。例を挙げれ
ばジメチルホルムアミド、ジメチルアセトアミ
ド、N―メチル―2―ピロリドン、脂肪族ニトリ
ル、モルホリン、ジメチルスルホキシド、水、ア
ルコール、グリコール、グリコールエーテル、エ
ーテル、テトラヒドロフラン、アルキレンハロヒ
ドリン、ジアルキルカーボネートなどである。 又上記反応媒体中CAにEOを反応せしめて
THEICを製造するとき、反応途中或いは反応終
点付近で徐々に或いは急激に分解反応が生起する
こともよく知られている。 特にジメチルホルムアミドを始めとする窒素含
有媒体並びにジメチルスルホキシド等の如き極性
の強い媒体ではCAの溶解度が比較的大きく、反
応速度も大きい反面、小山ら(日化誌、1975(3)
477〜)或いはR.W.Cummins(J.Org.Chem.,28
85 1963)が詳細に検討しているように或いは
これに近似して分解物が反応途中及び反応終点で
多量に生成し、THEICの純度、収率を低下せし
め、又反応液からTHEICを分離した後の残留物
はアメ状の高粘稠物質であつて分解物の他に
THEICを多量に溶存しているものの最早や、こ
れからTHEICを二次結晶として得ることもでき
ないし、ましてEO付加による収率向上は望むべ
くもなく、収率は高々80%前後でしかも多量の廃
棄物を出すという結果を招くものであつた。 このような欠点の少い反応媒体としてはアルコ
ール、グリコール、グリコールエーテル、ケト
ン、エーテル或いは水などが提案されているが、
これらは前記の如く溶媒自身が、オニウム塩を形
成しCAのEO付加体を接触的に分解するような心
配はないが、矢張り化学量論量のEOを反応させ
ようとしたり、熱履歴が長いと多量の循環使用の
できない分解物が生成し、往々にして安定操業が
困難でしかも低純度、低収率の結果をもたらすも
のであつた。 CAとEOからTHEICを高収率に得ようとする
他の試みは過酸化水素で再結晶残渣を処理すると
か、(特開昭53―73573)アルキレンハロヒドリン
を溶媒とする方法(特公昭44―22497)があるが
工程が複雑になるか、強毒性物質の取扱いなどで
好ましいものではなかつた。これまでみてきたよ
うに不安定なCAとEOの反応を工業的に行なうに
際しては高純度、高収率、安定操業、廃棄物を出
さないという面ではいづれかの犠性を余儀なくさ
れていた。 本発明者らはこれらの問題点を同時に解決する
ために詳細なる分解反応の研究を始めとして種々
検討を重ねた結果、アルコール系、ケトン形、エ
ーテル系の如き反応媒体存在下にCAに対し厳密
に限定された量のEOを付加せしめた反応物から
は、高純度のTHEICが得られ、しかも再結晶残
渣は再びEOと反応可能でありしかも再結晶によ
り高純度のTHEICが得られることを見出し本発
明に到達したものである。 即ち本発明は、不活性媒体存在下CAとEOを反
応せしめてTHEICを製造するに際しCAに対し限
定された量のEOを反応させ、該反応液より分離
した反応副生物を循環使用することを特徴とする
方法であり本発明によれば安定した反応が可能で
あり反応混合物より得られる再結晶残渣は実質的
にCA,CAの1モル及び2モルの付加体及び
THEICから成り、実質的に分解物を含有せず、
上記残渣は繰り返しEO付加反応工程に戻すこと
ができその結果、安定して高純度のTHEICが高
収率で得られ、実質的に廃棄物を殆んど出すこと
がない。 本発明を実施に際して反応終点でのEO量の管
理は中和価を用いて行うものであり、こゝに中和
価とは反応液を直接中和するに要した水酸化カリ
ウムの重量(ミリグラム)を反応物(反応媒体を
除く)1グラム当りに換算した値を表わす。 従来高収率を得るためにPHにより反応系を管理
するという考え方もあつたが(特公昭43―6216)、
該方法では使用する触媒及びごく微量のトリアジ
ン環からのアミン系分解物などの解離度はそれぞ
れ異つており、従つてTHEICの分解を触発する
成分となる塩基性化合物などの定量は不完全なも
のであつた。 本発明者らは中和価と分解状況に関して液体ク
ロマトグラフイー、赤外分光器等を用いて詳細に
検討し次のような傾向を見出している。即ち、中
和価が0になると反応中に既に多量の分解が生
じ、0〜1の範囲では中和価の増大に供い分解量
は減少傾向にはあるが依然生じ、しかも加熱反応
液は分解が徐々に進行する。ところが中和価が1
の前後でこの現象は不連続的に消失するという特
異な傾向を示し、1以上では反応中はもとより反
応後の連続的な加熱(90℃×1週間)によつても
実質的には全く分解が生じないものである。 従つて、本発明のCAに対するEOの反応量を中
和価で表わせば、1以上であれば上限値は特に限
定されるものではないが、中和価が30以上のよう
に非常に大きな段階でEO付加反応を停止するこ
とは分解物の発生抑止に対しては有効であるが、
CAの反応転化率を低くし又、THEIC純度を低下
するのみで得策ではない。従つて中和価は1〜20
が好ましく、特に1〜10が好ましい。中和価が1
〜10は具体的にはCA1モルに対しEO3モルの理論
量に対して99〜99.8重量%に対応する。かように
厳密なEO量の制御は簡便な中和価測定方式の導
入により始めて可能になるものであり、このこと
によつて実質的に分解物の発生を抑止し得て、本
発明の目的が達成されることは極めて驚くべきこ
とである。 本発明の不活性媒体はCAとEOの反応時に媒体
自身又はそのゼクメントが分解を誘発しないもの
であれば特別に限定されるものではなく従来公知
のアルコール類、ケトン類、エーテル類、水など
を適用することができる。又、本発明の媒体は熱
時THEICを溶解するものであり冷時は可溶、不
溶のいづれであつてもよく、THEICの着色、着
臭のないものが好ましい。好ましい代表例として
は、公知媒体の中でも低級アルコール、モノ、ジ
又はトリアルキレングリコールのモノアルキル又
はフエニルエーテル、モノ又はジアルキレングリ
コール、芳香族置換低級アルコールなどのアルコ
ール類、アセトン、メチルエチルケトン、n―プ
ロピルケトン、ジエチルケトン、シクロヘキサノ
ンなどのケトン類、モノ、ジ又はトリグライム、
ラトラヒドロフラン、ジオキサンなどのエーテル
類が挙げられる。これらの反応媒体の使用量は
CAに対し1〜5重量倍が好ましい。 EOの反応に際しては、通常触媒が使用され、
好ましくはそのままの状態で反応媒体或いは再結
晶溶媒に一部でも可溶か、或いは反応混合物から
蒸留除去の出来るものである。又、反応終了後の
中和等の不活性化処理後に反応媒体或いは再結晶
溶媒に可溶となるか、或いは反応混合物から蒸留
除去可能となるものも好ましい触媒として使用出
来る。これらの例として、水酸化ナトリウム、水
酸化カリウムなどの水酸化アルカリ及び1級,2
級,3級アミン又は4級アンモニウム塩などの公
知触媒を採用することができ、これら触媒の使用
量はCA当り0.05―5重量%が好ましい。又、触
媒を加えることなく水を添加して実質的に反応系
にトリアジン環の分解により触媒成分を生ぜしめ
る方法も採用できる。 本発明を実施するに際して第1図の反応器R―
1でのEO付加反応は、温度は70〜200℃、圧力は
10Kg/cm2以下の如き公知条件下で行なうことがで
きる。又R―4での固液分離につながる晶出器R
―3での晶析工程について説明すれば、ここで
は、冷時THEIC不溶溶媒を用いたときの反応媒
体の単なる分離或いは再結晶精製が行なわれる。
再結晶について説明すれば適用しうる溶媒として
は公知のTHEIC再結晶溶媒を採用することがで
き、反応媒体と再結晶溶媒が同一又は異つていて
もよいが、重要なことは分離された反応副生物に
ついてTHEIC残存量が多いときは製品THEICは
高純度で得られるが再結晶効率を低下せしめ、少
いときは逆の効果となるために本発明の分離され
るべき反応副生物はTHEIC残存量が10〜90重量
%になるように調節することが特に好ましい。好
ましい溶媒としては、低級アルコール、エチレン
グリコールのモノ低級アルキルエーテル、テトラ
ヒドロフラン、ジオキサンなどが挙げられ、特に
低級アルコールが推奨される。又溶媒の使用量は
粗THEICに対し0.5〜10重量倍、特に好ましくは
1〜3重量倍であり、晶出温度は5〜15℃が特に
好ましく、冷却速度は1分当り3℃〜0.1℃が好
ましく特に0.5〜0.3℃が好ましい。 このようにして得られたTHEICスラリーは、
回分式又は連続式の加圧過器、遠心分離又は沈
降器のいづれかの方法で精製された湿THEIC結
晶部と濾液部に分離せしめ、湿THEICは減圧又
は常圧下加熱乾燥して高純度THEICを得るもの
である。このようにして得られたTHEICは融点
134℃以上、高速液体クロマトグラフイーによる
純度は98%以上である。 本発明の反応液からのTHEICの分離、反応副
生物の分離並びにその循環法を第1図で説明すれ
ば、反応器R―1で反応媒体、CA及び触媒を混
合し良好なスラリー状下で加熱し、EOを中和価
が1〜10に入るように反応せしめて得た反応液は (A) 冷時THEIC可溶性媒体を使用したときはパ
イプ6を経由して濃縮器R―2に送り、こゝで
大部分の反応媒体を常圧乃至減圧加熱下に14
より留去し、釜残の液状粗THEICは7を経由
して晶出器R―3に送る。R―3では新しく再
結晶溶媒を15から送入し、撹拌下、加熱溶解
し、次いで冷却して微粉状THEICを晶出せし
め、このスラリーは8を経て分離器R―4に移
送する。こゝで分離された湿THEIC結晶部は
12を経て乾燥器に送り湿THEICに含まれる
少量の再結晶溶媒を乾燥除去して製品とする。
一方分離された液部は10を経由して溶剤回
収器R―5で常圧乃至減圧加熱下、大部分の溶
剤を16より蒸発留去し、釜残として濃縮され
たTHEICを含む反応副生物は11を経由して
反応器R―1に循環する。又場合によつては、
即ち、反応媒体になり得る再結晶溶媒を用いた
ときは9を経由して直接反応器R―1へ循環す
ることができる。 (B) 一方冷時THEIC不溶性媒体を使用したとき
は、そのまゝ5を経由して直接の晶出器R―3
に送液し、そのまゝ冷却し微粉状のTHEICを
晶出せしめ8を経由し分離器R―4で湿
THEIC結晶部と液部に分離する。得られた
液部は溶媒回収器R―5で溶媒回収すること
もできるが、そのまゝ反応副生物を溶存する反
応媒体として直接反応器R―1に循環すること
が好ましい。湿THEIC結晶部はそのまゝ12
を経由して乾燥器へ送り製品とすることもでき
るが、場合によつては13を経由して晶出器R
―3へ送り、再結晶操作以降を(A)に準じて行な
うことができる。 (C) 又場合により冷時THEIC不溶性媒体を用い
たときでも反応媒体を除去して再結晶操作を行
なうことが好ましい場合は濃縮器R―2での濃
縮工程以降を(A)に準じて行なうことができるも
のである。 以上の各方法のいづれにおいても反応副生物の
循環回数は5〜15回にも及ぶことができ、しかも
THEICの純度及び収率は殆んど低下することは
ない。 本発明の方法によれば分解物を実質的に含有し
ない反応副生物を効果的に循環できるために、最
終的には高純度のTHEICの収率はEO及びCAに
対して95%以上に及ぶものであり、従来の同じ反
応媒体を用いた反応並びに同じ精製処理を行なつ
た方法、或いは他の反応媒体、精製処理を行なつ
た方法におけるより高純度のTHEICが10〜15%
以上も増量し、しかも実質的に廃棄物を殆んど出
すことなく安定操業が可能となるものである。 以下、実施例並びに比較例を挙げて本発明を説
明する。 なお、中和価測定方法は以下の通り。 反応液10gを正確に採取し、95%(水5%)ア
ルコール100mlに溶解する。ついでフエノールフ
タレイン指示薬を用いて1/10N水酸化カリウム溶
液で滴定する。要した水酸化カリウム溶液量から
反応溶媒を除いた反応物1グラム当りの水酸化カ
リウムのミリグラム数を算出する。 実施例 1 オートクレーブにCA129g、反応溶媒のエチレ
ングリコールモノメチルエーテル387g及び触媒
としてトリエチルアミン1.2gを入れ、反応温度
118〜122℃圧力3.0Kg/cm2G以下の条件で1時間
10分で中和価が3.6になるまでEOを付加反応させ
た。要した量は133gであつた。反応液を10℃に
冷却して析出したTHEICの結晶を別し、メタ
ノール200gを用いて10℃で再結晶精製した。精
製THEICは80℃×20mg×3hrの条件で乾燥した収
量227.6g収率87.2%であり、融点は135.0℃であ
つた。 一方反応液からTHEICを別した母液に損失
した反応溶媒を補充して溶媒量が387gになるよ
うに調整して新たにCA129g及びメタノール再結
晶母液よりメタノールを蒸留除去して得た残留物
を入れた同じ条件下にEOを中和価が5.0になる迄
付加反応させた。要した量は133gであつた。以
下同様に処理して乾燥精製THEIC246.6gを得
た。収率94.5%、融点は135.1℃であつた。この
操作を中和価2〜6の範囲で9回繰返した。以上
の結果を第1表に示す。
The present invention relates to an improved method for producing tris(2-hydroxyethyl)isocyanurate (hereinafter referred to as THEIC), which is useful as a raw material for heat-resistant polymers. This invention relates to an improved manufacturing method that allows stable and high-yield production of THEIC from EO (hereinafter referred to as EO), and which produces no waste. As is well known, since CA is insoluble or slightly soluble in most organic solvents, various reaction media have been proposed with the intention of allowing the reaction to proceed smoothly. Examples include dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, aliphatic nitrile, morpholine, dimethyl sulfoxide, water, alcohol, glycol, glycol ether, ether, tetrahydrofuran, alkylene halohydrin, dialkyl carbonate, etc. . Also, by reacting CA with EO in the above reaction medium,
It is also well known that when producing THEIC, a decomposition reaction occurs gradually or suddenly during the reaction or near the end of the reaction. Particularly in nitrogen-containing media such as dimethylformamide and highly polar media such as dimethyl sulfoxide, the solubility of CA is relatively high and the reaction rate is high.
477~) or RWCummins (J.Org.Chem., 28
85 (1963), or similar to this, a large amount of decomposition products were generated during the reaction and at the end of the reaction, reducing the purity and yield of THEIC, and also separating THEIC from the reaction solution. The remaining residue is a candy-like, highly viscous substance that is in addition to decomposition products.
Although there is a large amount of dissolved THEIC, it is no longer possible to obtain THEIC as secondary crystals, and there is no hope of improving the yield by adding EO.The yield is around 80% at most, and a large amount of waste is required. It was something that would result in something being produced. Alcohols, glycols, glycol ethers, ketones, ethers, water, etc. have been proposed as reaction media with fewer such drawbacks.
As mentioned above, there is no concern that the solvent itself will form an onium salt and catalytically decompose the EO adduct of CA, but if the solvent is trying to react with a stoichiometric amount of EO or the thermal history is If the process is too long, a large amount of decomposed products that cannot be recycled are produced, which often makes stable operation difficult and results in low purity and low yield. Other attempts to obtain THEIC from CA and EO in high yields include treating the recrystallized residue with hydrogen peroxide (Japanese Patent Publication No. 53-73573) and using alkylene halohydrin as a solvent (Japanese Patent Publication No. 53-73573). 44-22497), but it was not preferable because the process was complicated and highly toxic substances had to be handled. As we have seen so far, when carrying out the industrial reaction of unstable CA and EO, some sacrifices have been made in terms of high purity, high yield, stable operation, and no waste generation. In order to simultaneously solve these problems, the present inventors have conducted various studies including detailed research on decomposition reactions. We found that highly pure THEIC can be obtained from a reaction product to which a limited amount of EO is added, and that the recrystallized residue can react with EO again, and that highly pure THEIC can be obtained by recrystallization. This has led to the present invention. That is, the present invention allows CA to be reacted with EO in the presence of an inert medium to produce THEIC, in which a limited amount of EO is reacted with CA, and the reaction by-products separated from the reaction solution are recycled. This method is characterized by the fact that according to the present invention, a stable reaction is possible, and the recrystallized residue obtained from the reaction mixture is substantially composed of CA, adducts of 1 mol and 2 mol of CA, and
Consisting of THEIC, containing virtually no decomposition products,
The above residue can be repeatedly returned to the EO addition reaction step, and as a result, stable and highly pure THEIC is obtained in high yield, with virtually no waste produced. When carrying out the present invention, the amount of EO at the end of the reaction is controlled using the neutralization value, which is the weight (milligrams) of potassium hydroxide required to directly neutralize the reaction solution. ) per gram of reactant (excluding reaction medium). In the past, there was a concept of controlling the reaction system using pH in order to obtain high yields (Special Publication No. 43-6216),
In this method, the degree of dissociation of the catalyst used and the very small amount of amine decomposition products from the triazine ring differs, and therefore the quantification of basic compounds, etc., which are the components that trigger the decomposition of THEIC, is incomplete. It was hot. The present inventors have conducted a detailed study on the neutralization value and decomposition status using liquid chromatography, infrared spectroscopy, etc., and have found the following trends. That is, when the neutralization number reaches 0, a large amount of decomposition already occurs during the reaction, and in the range of 0 to 1, the amount of decomposition tends to decrease as the neutralization number increases, but still occurs, and the heated reaction liquid Decomposition progresses gradually. However, the neutralization value is 1
This phenomenon shows a unique tendency to dissipate discontinuously before and after 1, and at 1 or more, it is virtually completely decomposed not only during the reaction but also by continuous heating (90℃ x 1 week) after the reaction. will not occur. Therefore, if the amount of reaction of EO to CA of the present invention is expressed as a neutralization value, the upper limit is not particularly limited as long as it is 1 or more; Although stopping the EO addition reaction at is effective in suppressing the generation of decomposition products,
This is not a good idea as it only lowers the reaction conversion rate of CA and lowers the purity of THEIC. Therefore, the neutralization value is 1 to 20.
is preferable, and 1 to 10 is particularly preferable. Neutralization value is 1
~10 specifically corresponds to 99 to 99.8% by weight based on the theoretical amount of 3 moles of EO per 1 mole of CA. Such strict control of the amount of EO becomes possible only by introducing a simple neutralization value measurement method, and by this, the generation of decomposition products can be substantially suppressed, and the purpose of the present invention is achieved. It is quite amazing that this can be achieved. The inert medium of the present invention is not particularly limited as long as the medium itself or its component does not induce decomposition during the reaction of CA and EO, and conventionally known alcohols, ketones, ethers, water, etc. Can be applied. Further, the medium of the present invention dissolves THEIC when hot, and may be either soluble or insoluble when cold, and preferably one that does not color or odor THEIC. Preferred typical examples include lower alcohols, monoalkyl or phenyl ethers of mono-, di- or trialkylene glycols, mono- or dialkylene glycols, alcohols such as aromatic substituted lower alcohols, acetone, methyl ethyl ketone, n- Ketones such as propyl ketone, diethyl ketone, cyclohexanone, mono-, di- or triglyme,
Examples include ethers such as latrahydrofuran and dioxane. The amount of these reaction media used is
It is preferably 1 to 5 times the weight of CA. A catalyst is usually used for the EO reaction.
Preferably, it is partially soluble in the reaction medium or recrystallization solvent as it is, or can be removed by distillation from the reaction mixture. Further, catalysts which become soluble in the reaction medium or recrystallization solvent after inactivation treatment such as neutralization after completion of the reaction, or which can be removed by distillation from the reaction mixture can also be used as preferred catalysts. Examples of these include alkali hydroxides such as sodium hydroxide and potassium hydroxide, and primary and secondary
Known catalysts such as primary, tertiary amines or quaternary ammonium salts can be used, and the amount of these catalysts used is preferably 0.05-5% by weight based on CA. It is also possible to adopt a method in which water is added without adding a catalyst to substantially produce a catalyst component in the reaction system by decomposition of the triazine ring. When carrying out the present invention, the reactor R in FIG.
For the EO addition reaction in step 1, the temperature is 70 to 200℃ and the pressure is
This can be carried out under known conditions such as 10 Kg/cm 2 or less. Also, crystallizer R connected to solid-liquid separation in R-4
To explain the crystallization step in step-3, here, simple separation or recrystallization purification of the reaction medium is performed using a cold THEIC-insoluble solvent.
Explaining recrystallization, the known THEIC recrystallization solvent can be used as an applicable solvent, and the reaction medium and the recrystallization solvent may be the same or different, but the important thing is that Regarding by-products: When the residual amount of THEIC is large, the product THEIC can be obtained with high purity, but the recrystallization efficiency is reduced, and when there is a small amount, the opposite effect occurs, so the reaction by-product to be separated in the present invention is the residual THEIC. It is particularly preferable to adjust the amount to 10 to 90% by weight. Preferred solvents include lower alcohols, mono-lower alkyl ethers of ethylene glycol, tetrahydrofuran, dioxane, and the like, with lower alcohols being particularly recommended. The amount of solvent to be used is 0.5 to 10 times the weight of crude THEIC, particularly preferably 1 to 3 times by weight, the crystallization temperature is particularly preferably 5 to 15°C, and the cooling rate is 3 to 0.1°C per minute. is preferred, particularly 0.5 to 0.3°C. The THEIC slurry obtained in this way is
The purified wet THEIC crystal part and the filtrate part are separated using either a batch or continuous pressurizer, centrifugation, or sedimentation method, and the wet THEIC is heated and dried under reduced pressure or normal pressure to produce high-purity THEIC. It's something you get. THEIC thus obtained has a melting point
134℃ or higher, purity determined by high performance liquid chromatography is 98% or higher. The separation of THEIC from the reaction solution, the separation of reaction by-products, and the circulation method of the present invention are explained with reference to FIG. The reaction solution obtained by heating and reacting with EO so that the neutralization value falls within the range of 1 to 10 is sent to the concentrator R-2 via pipe 6 (A) when cold THEIC soluble medium is used. , where most of the reaction medium is heated at normal pressure to reduced pressure for 14 hours.
The liquid crude THEIC remaining in the pot is sent to crystallizer R-3 via 7. In R-3, a new recrystallization solvent is introduced from 15, heated and dissolved under stirring, and then cooled to crystallize fine powder THEIC.This slurry is transferred to separator R-4 via 8. The wet THEIC crystal part thus separated is sent to a dryer through step 12, and a small amount of recrystallization solvent contained in the wet THEIC is removed by drying to obtain a product.
On the other hand, the separated liquid part passes through 10 to the solvent recovery device R-5, where most of the solvent is evaporated off from 16 under heating under normal pressure or reduced pressure, and the reaction by-products containing THEIC are concentrated as a residue. is circulated to reactor R-1 via 11. In some cases,
That is, when a recrystallization solvent that can be used as a reaction medium is used, it can be directly circulated to the reactor R-1 via 9. (B) On the other hand, when cold THEIC insoluble medium is used, it is directly transferred to the crystallizer R-3 via 5.
The liquid is then cooled as it is to crystallize fine powder THEIC.
THEIC separates into crystal part and liquid part. Although the obtained liquid portion can be recovered as a solvent in the solvent recovery device R-5, it is preferable to directly circulate it as it is to the reactor R-1 as a reaction medium in which reaction by-products are dissolved. The wet THEIC crystal part remains as it is 12
The product can be sent to the dryer via 13, but in some cases it may be sent to the crystallizer R via 13.
-3, and the subsequent recrystallization operations can be carried out according to (A). (C) In some cases, even when cold THEIC-insoluble medium is used, if it is preferable to remove the reaction medium and perform the recrystallization operation, perform the concentration step in concentrator R-2 and subsequent steps according to (A). It is something that can be done. In each of the above methods, the number of circulations of the reaction by-products can range from 5 to 15 times, and
The purity and yield of THEIC will hardly decrease. According to the method of the present invention, reaction by-products that do not substantially contain decomposition products can be effectively recycled, resulting in a final yield of high-purity THEIC of 95% or more based on EO and CA. The purity of THEIC is 10-15% compared to the conventional method using the same reaction medium and the same purification treatment, or the method using other reaction media and purification treatment.
In addition to increasing the amount above, it is possible to operate stably without producing substantially any waste. The present invention will be explained below with reference to Examples and Comparative Examples. The neutralization value measurement method is as follows. Accurately collect 10 g of the reaction solution and dissolve it in 100 ml of 95% (5% water) alcohol. Then titrate with 1/10N potassium hydroxide solution using a phenolphthalein indicator. The number of milligrams of potassium hydroxide per gram of reactant is calculated by removing the reaction solvent from the required amount of potassium hydroxide solution. Example 1 129 g of CA, 387 g of ethylene glycol monomethyl ether as a reaction solvent, and 1.2 g of triethylamine as a catalyst were placed in an autoclave, and the reaction temperature was increased.
118-122℃ under pressure 3.0Kg/cm 2 G or less for 1 hour
Addition reaction of EO was carried out until the neutralization value reached 3.6 in 10 minutes. The amount required was 133g. The reaction solution was cooled to 10°C, the precipitated THEIC crystals were separated, and purified by recrystallization at 10°C using 200 g of methanol. The purified THEIC was dried under conditions of 80°C x 20mg x 3hr to give a yield of 227.6g, yield 87.2%, and a melting point of 135.0°C. On the other hand, add the lost reaction solvent to the mother liquor after separating THEIC from the reaction solution, adjust the amount of solvent to 387 g, and add 129 g of CA and the residue obtained by distilling off methanol from the methanol recrystallization mother liquor. Addition reaction of EO was carried out under the same conditions as above until the neutralization value reached 5.0. The amount required was 133g. The same procedure was followed to obtain 246.6 g of dried and purified THEIC. The yield was 94.5%, and the melting point was 135.1°C. This operation was repeated 9 times within the range of neutralization number 2 to 6. The above results are shown in Table 1.

【表】 実施例 2 オートクレーブにCA258g反応溶媒としてエチ
レングリコールモノエチルエーテル774g及び触
媒の水酸化カリウム1.0gを入れ118〜122℃圧力
3.0Kg/cm2G以下の条件で1時間で中和価が7.0に
なる迄EOを付加反応させた、要した量は266gで
あつた。この反応液649gを10℃に冷却して析出
したTHEICを別し、エタノール230gを用いて
10℃で再結晶した。ついで80℃×20mg×3hrの条
件で乾燥した。収量227.0g、収率87.0%であつ
た。又融点は135.2℃であつた。 一方反応液からTHEICを別した母液を蒸留
して反応溶媒330gを回収し残留物を新たな
CA129g及びエチレングリコールモノエチルエー
テル350gに加えて前と同じ条件で中和価が1.5に
なる迄EOを付加反応させた、要した量は134gで
あつた。反応液を前と同様処理して、乾燥精製
THEIC250.8gを得た。収率96.1%、又融点は
135.0℃であつた。 実施例 3 実施例2で合成した反応液649gを10℃に冷却
して析出したTHEICを別して再結晶精製に供
し、一方の母液404gに新たにEO1.2gを120℃、
15分の条件で反応させて中和価1.3とした。反応
液より反応溶媒を蒸留により分離し、残留物をメ
タノールから再結晶して後乾燥して乾燥
THEIC24.1gを得た。又融点は134.9℃であつた。
そして最初の反応液から析出したTHEICをメタ
ノール再結晶及び乾燥して得たTHEIC(融点
135.1℃)226.5gと合計すると収率96.0%である。 実施例 4 実施例1と同じオートクレーブにCA129g、エ
チレングリコールモノメチルエーテル387g触媒
としてトリエチルアミン1.3gを入れ、実施例1
と同じ反応条件下に中和価が3.0になる迄EOを付
加反応させた。要した量は133gであつた。反応
液から蒸留によつて反応溶媒350gを回収した。
残留物にメタノール214gを用いて10℃で再結晶
した、THEICを別して後80℃×20mmHg×3時
間の条件で乾燥した。収量226.8g、収率86.9%、
融点は135.1℃であつた。 一方メタノール再結晶の際の母液からエチレン
グリコールモノメチルエーテルを含んだメタノー
ル231gを蒸留により回収したところ残留物49.2
gを得た。この残留物を新たなCA129g及びエチ
レングリコールモノメチルエーテル387gに加え
前と同じ条件でEO133gを付加反応させて中和価
が4.8で反応を終了させた。以下同様に処理して
乾燥精製THEIC252.6gを得た。収率は96.8%又、
融点は135.0℃であつた。この操作を6回繰返し
た結果を第2表に示す。
[Table] Example 2 Put 258 g of CA in an autoclave, 774 g of ethylene glycol monoethyl ether as a reaction solvent, and 1.0 g of potassium hydroxide as a catalyst, and set the pressure at 118 to 122°C.
The addition reaction of EO was carried out under conditions of 3.0 Kg/cm 2 G or less in 1 hour until the neutralization value reached 7.0, and the amount required was 266 g. 649 g of this reaction solution was cooled to 10°C, the precipitated THEIC was separated, and 230 g of ethanol was used to remove the precipitated THEIC.
Recrystallized at 10°C. Then, it was dried under the conditions of 80°C x 20mg x 3hr. The yield was 227.0 g, yield 87.0%. The melting point was 135.2°C. On the other hand, the mother liquor from which THEIC was separated from the reaction solution was distilled to recover 330 g of the reaction solvent, and the residue was recycled.
In addition to 129 g of CA and 350 g of ethylene glycol monoethyl ether, EO was added and reacted under the same conditions as before until the neutralization value reached 1.5, the amount required was 134 g. Treat the reaction solution as before and dry and purify.
250.8 g of THEIC was obtained. The yield is 96.1%, and the melting point is
It was 135.0℃. Example 3 649 g of the reaction solution synthesized in Example 2 was cooled to 10°C, the precipitated THEIC was separated and subjected to recrystallization purification, and 1.2 g of EO was added to 404 g of the mother liquor at 120°C.
The reaction was carried out for 15 minutes to give a neutralization value of 1.3. The reaction solvent is separated from the reaction solution by distillation, and the residue is recrystallized from methanol and then dried.
24.1 g of THEIC was obtained. The melting point was 134.9°C.
Then, THEIC precipitated from the first reaction solution was recrystallized with methanol and dried to obtain THEIC (melting point
(135.1°C) 226.5g, giving a total yield of 96.0%. Example 4 129 g of CA, 387 g of ethylene glycol monomethyl ether, and 1.3 g of triethylamine as a catalyst were placed in the same autoclave as in Example 1.
Addition reaction of EO was carried out under the same reaction conditions as above until the neutralization value reached 3.0. The amount required was 133g. 350 g of reaction solvent was recovered from the reaction solution by distillation.
The residue was recrystallized at 10°C using 214 g of methanol, and after the THEIC was separated, it was dried at 80°C x 20 mmHg x 3 hours. Yield 226.8g, yield 86.9%,
The melting point was 135.1°C. On the other hand, when 231 g of methanol containing ethylene glycol monomethyl ether was recovered from the mother liquor during methanol recrystallization by distillation, a residue of 49.2 g was recovered.
I got g. This residue was added to 129 g of fresh CA and 387 g of ethylene glycol monomethyl ether, and an addition reaction of 133 g of EO was carried out under the same conditions as before, and the reaction was completed at a neutralization value of 4.8. The same procedure was followed to obtain 252.6 g of dried purified THEIC. The yield is 96.8%,
The melting point was 135.0°C. This operation was repeated six times and the results are shown in Table 2.

【表】 実施例 5 オートクレーブにCA129g、エタノール溶媒
150g及び水酸化カリウム1gを入れ反応温度120
〜125℃、圧力8Kg/cm2G以下の条件で1時間で
中和価が4.0になる迄EO133gを付加反応させた。
反応液を20℃に冷却して析出したTHEICを別
し、エタノールから再結晶した。収量235g、収
率90.0%、融点は134〜135℃であつた。 一方反応液からTHEICを別した母液に損失
した反応溶媒を補充して新たにCA129g及び再再
結晶母液より溶媒を蒸留除去して得た残留物を入
れて同じ条件下にEOを中和価が4.5になる迄付加
反応させ、以下同様処理して乾燥精製THEIC251
gを得た。収率96.2%、この操作を中和価2〜6
の範囲で5回繰返した結果、平均収率96.1%、い
ずれの場合も融点134〜135℃のTHEICを得た。 実施例 6 溶媒としてアセトン390g及び触媒としてベン
ジルトリメチルアンモニウムクロロライドを3g
用いた以外は実施例5と同様反応させて、再結晶
溶媒としてイソプロパノールを用いた他は実施例
5と同様処理して、5回繰返した結果(いずれも
中和価3.0〜6.0)、いずれも融点134〜135℃の
THEICを平均収率95.5%で得た。 実施例 7 反応溶媒としてジオキサン320gを用いた他は
実施例4と同様反応させ、反応後から同様に溶媒
を分離し、同様にメタノールから再結晶した。又
実施例4と同様方法にて、いずれも中和価3.0〜
6.0の範囲で5回の繰返し反応を行つた結果、平
均収率95.1%、いずれの場合も融点134〜135℃の
THEICを得た。 実施例 8 反応溶媒として水250ml、触媒として水酸化カ
リウム1.0gを用いた他は実施例4と同様反応を
行い、又同様に、いずれも中和価3.0〜7.0の範囲
で5回の繰返し反応を行つた結果、平均収率95.0
%、いずれの場合も融点134〜135℃のTHEICを
得た。 比較例 1 実施例1と同じオートクレーブにCA129g、エ
チレングリコールモノメチルエーテル387g及び
触媒として水酸化カリウム0.5gを入れ118〜122
℃、圧力3.0Kg/cm2G以下で1.5時間で中和価が0
になる迄EOを付加反応させた、反応液を10℃に
冷却して以下実施例1と同様処理及び再結晶精製
したところ、THEIC101gを得た。収率38.7%で
あつた。再結晶母液を分析したところオキサゾリ
ドンを主とした多量の分解物があつた。 比較例 2 実施例2と同じオートクレーブにCA258g、エ
チレングリコールモノメチルエーテル774g及び
触媒としてトリエチルアミン2.5gを入れ、118〜
122℃、圧力3.0Kg/cm2G以下で1.2時間でEOを付
加反応させて中和価1.5とした。この時点で一旦
反応を中止し反応液650gを系外に採取した(こ
の反応液をAとする)。ついで反応器中の残りの
反応液に120℃でEOの付加反応を続け中和価0.8
になつたところで反応を停止した。要した合計の
EOの量は268gであつた。(この反応液をBとす
る) 反応液A及びBを液体クロマトグラフイーで分
析して収率を求めた。次にA,B両液を加温処理
した後の同じく液体クロマトグラフイーにより分
析して収率を求めたところ第3表のようになつ
た。 B試料中は多量のオキサゾリドンを主とした分
解物が生成した。
[Table] Example 5 129g of CA and ethanol solvent in autoclave
Add 150g and 1g of potassium hydroxide and reaction temperature: 120
An addition reaction of 133 g of EO was carried out at ~125° C. and a pressure of 8 Kg/cm 2 G or less in 1 hour until the neutralization value reached 4.0.
The reaction solution was cooled to 20°C, precipitated THEIC was separated, and recrystallized from ethanol. The yield was 235 g, yield 90.0%, and the melting point was 134-135°C. On the other hand, the lost reaction solvent was replenished into the mother liquor after removing THEIC from the reaction solution, and 129 g of CA and the residue obtained by distilling off the solvent from the recrystallized mother liquor were added, and the neutralization value of EO was increased under the same conditions. Addition reaction was carried out until the value reached 4.5, and the following procedures were carried out in the same manner to dry and purify THEIC251.
I got g. Yield: 96.2%, neutralization value: 2-6
As a result of repeating the procedure 5 times in the range of 96.1% on average, THEIC with a melting point of 134 to 135°C was obtained in each case. Example 6 390 g of acetone as a solvent and 3 g of benzyltrimethylammonium chloride as a catalyst
The reaction was carried out in the same manner as in Example 5 except that isopropanol was used as the recrystallization solvent, and the same treatment as in Example 5 was repeated 5 times (all neutralization values were 3.0 to 6.0). Melting point 134-135℃
THEIC was obtained with an average yield of 95.5%. Example 7 The reaction was carried out in the same manner as in Example 4 except that 320 g of dioxane was used as the reaction solvent, and after the reaction, the solvent was separated in the same manner and recrystallized from methanol in the same manner. In addition, in the same manner as in Example 4, the neutralization value was 3.0~
As a result of repeating the reaction five times in the range of
Got THEIC. Example 8 The reaction was carried out in the same manner as in Example 4 except that 250 ml of water was used as the reaction solvent and 1.0 g of potassium hydroxide was used as the catalyst. Similarly, the reaction was repeated 5 times within the range of neutralization number 3.0 to 7.0. As a result, the average yield was 95.0
%, in each case a THEIC with a melting point of 134-135°C was obtained. Comparative Example 1 Into the same autoclave as in Example 1, 129 g of CA, 387 g of ethylene glycol monomethyl ether, and 0.5 g of potassium hydroxide as a catalyst were placed at 118-122
℃, pressure 3.0Kg/cm 2 G or less, neutralization value is 0 in 1.5 hours
The reaction solution was cooled to 10° C. and then treated and recrystallized in the same manner as in Example 1 to obtain 101 g of THEIC. The yield was 38.7%. Analysis of the recrystallized mother liquor revealed a large amount of decomposition products, mainly oxazolidone. Comparative Example 2 258 g of CA, 774 g of ethylene glycol monomethyl ether, and 2.5 g of triethylamine as a catalyst were placed in the same autoclave as in Example 2, and 118-
An addition reaction of EO was carried out for 1.2 hours at 122° C. and a pressure of 3.0 Kg/cm 2 G or less to give a neutralization value of 1.5. At this point, the reaction was temporarily stopped, and 650 g of the reaction solution was collected outside the system (this reaction solution is referred to as A). Next, the addition reaction of EO was continued to the remaining reaction solution in the reactor at 120℃, and the neutralization value was 0.8.
The reaction stopped when the temperature reached . of the total cost
The amount of EO was 268g. (This reaction solution is referred to as B) Reaction solutions A and B were analyzed by liquid chromatography to determine the yield. Next, both solutions A and B were heated and analyzed by liquid chromatography to determine the yields, as shown in Table 3. In sample B, a large amount of decomposition products mainly consisting of oxazolidone was produced.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のTHEICの製造フローシー
トである。
FIG. 1 is a manufacturing flow sheet for THEIC of the present invention.

Claims (1)

【特許請求の範囲】 1 不活性媒体存在下、シアヌール酸(以下CA
と略す)とエチレンオキシド(以下EOと略す)
を反応せしめてトリス(2―ヒドロキシエチル)
イソシアヌレート(以下THEICと略す)を製造
するに際し、CA1モルに対し3モル未満であつ
て、下記に示す中和価が1以上10以下になる量の
EOを反応させ、該反応液からTHEICを分離した
反応副生物を前記反応工程に循環せしめることを
特徴とするTHEICの製法。 [中和価:当該反応終了後の反応液の中和価で
あつて、反応液から反応媒体を除いた反応物1グ
ラム当り消費される水酸化カリウムのミリグラム
数を意味する]。 2 反応液を冷却し、結晶を除去した濾液から溶
媒を除去するか又はしないで分離した反応副生物
を循環することを特徴とする特許請求第1項記載
のTHEICの製法。 3 反応液から溶媒を除去し、次いで再結晶工程
に於てTHEIC結晶を除去した濾液から再結晶溶
媒を除去するか、又はしないで分離した反応副生
物を循環することを特徴とする特許請求の範囲第
1項記載のTHEICの製法。 4 分離した反応副生物中のTHEIC含量が10〜
90重量%であることを特徴とする特許請求の範囲
第1項、第2項または第3項記載のTHEICの製
法。 5 不活性溶媒が、アルコール、エーテル、ケト
ンまたは水である特許請求の範囲第1項、第2
項、または第3項記載のTHEICの製法。
[Claims] 1. Cyanuric acid (hereinafter referred to as CA) in the presence of an inert medium.
) and ethylene oxide (hereinafter abbreviated as EO)
to react with tris(2-hydroxyethyl)
When producing isocyanurate (hereinafter abbreviated as THEIC), an amount of less than 3 mol per 1 mol of CA and such that the neutralization value shown below is 1 or more and 10 or less is used.
1. A method for producing THEIC, which comprises reacting EO, separating THEIC from the reaction solution, and circulating a reaction by-product to the reaction step. [Neutralization value: Neutralization value of the reaction solution after the completion of the reaction, meaning the number of milligrams of potassium hydroxide consumed per gram of reactant from the reaction solution excluding the reaction medium]. 2. The method for producing THEIC according to claim 1, characterized in that the reaction solution is cooled and the separated reaction by-product is recycled with or without removing the solvent from the filtrate from which the crystals have been removed. 3. A patent claim characterized in that the solvent is removed from the reaction solution, and then, in the recrystallization step, the recrystallization solvent is removed from the filtrate from which THEIC crystals have been removed, or the separated reaction by-product is recycled without removing the recrystallization solvent. The manufacturing method of THEIC described in Scope 1. 4 THEIC content in the separated reaction by-product is 10~
90% by weight of THEIC according to claim 1, 2 or 3. 5. Claims 1 and 2 in which the inert solvent is alcohol, ether, ketone, or water.
or the method for producing THEIC described in Section 3.
JP15810979A 1979-12-07 1979-12-07 Preparation of tris(2-hydroxyethyl)isocyanurate Granted JPS5681571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15810979A JPS5681571A (en) 1979-12-07 1979-12-07 Preparation of tris(2-hydroxyethyl)isocyanurate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15810979A JPS5681571A (en) 1979-12-07 1979-12-07 Preparation of tris(2-hydroxyethyl)isocyanurate

Publications (2)

Publication Number Publication Date
JPS5681571A JPS5681571A (en) 1981-07-03
JPS645030B2 true JPS645030B2 (en) 1989-01-27

Family

ID=15664492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15810979A Granted JPS5681571A (en) 1979-12-07 1979-12-07 Preparation of tris(2-hydroxyethyl)isocyanurate

Country Status (1)

Country Link
JP (1) JPS5681571A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104710375B (en) * 2015-02-27 2017-01-18 宜兴市中正化工有限公司 Method for producing THEIC

Also Published As

Publication number Publication date
JPS5681571A (en) 1981-07-03

Similar Documents

Publication Publication Date Title
DK1377544T4 (en) Purification of 2-Nitro-4-Methylsulfonylbenzoic acid
CN112390748B (en) Preparation method of 2-cyano-3-fluoro-5-trifluoromethylpyridine
JPH10505084A (en) Method for producing tetrabromobisphenol-A by reducing formation of methyl bromide
RU2383530C2 (en) Method and devices for producing biuret and cyanuric acid
JPS645030B2 (en)
KR20020035846A (en) Processes for preparing triazine compounds and quaternary ammonium salts
EP0136995B1 (en) Preparation of 2-(methylthiomethyl)-6-(trifluoromethyl) aniline from ortho-aminobenzotrifluoride
EP0755920A1 (en) Process for producing a high purity 2,4' -dihydroxydiphenylsulfone
EP2044039A1 (en) Process for preparing triallyl cyanurate
JP2517238B2 (en) Method for treating sodium dithionite reaction mixture
JPS6131047B2 (en)
RU2162843C2 (en) Method of preparing sodium 10-methylene carboxylate-9-acridone or 10- methylenecarboxy-9-acridone from acridone
EP0039166A1 (en) Continuous process for the production of dichloroacetamides
EP0010477B1 (en) Process for the preparation of benzothiazolesulfenamides
JPH0368568A (en) Production of low chlorine-containing epoxy compound
CN112079756B (en) Preparation method of diallyl bisphenol S ether
JPH0217544B2 (en)
CN114195625B (en) Preparation method of 1- (4-chlorophenyl) -2-cyclopropyl-1-acetone
JPS61130282A (en) Production of benzofuranyl carbamate
KR0185280B1 (en) Process for preparation of 2,2-dibromo-3-nitrilopropionamide
RU2173315C2 (en) Method of preparing ionexol
JPH0140836B2 (en)
US20090192309A1 (en) Process for preparing triallyl cyanurate
WO2003057680A1 (en) Process for producing 2-cyanoimino-1,3-thiazolidine
JPS6232187B2 (en)