JPS644814B2 - - Google Patents

Info

Publication number
JPS644814B2
JPS644814B2 JP56192965A JP19296581A JPS644814B2 JP S644814 B2 JPS644814 B2 JP S644814B2 JP 56192965 A JP56192965 A JP 56192965A JP 19296581 A JP19296581 A JP 19296581A JP S644814 B2 JPS644814 B2 JP S644814B2
Authority
JP
Japan
Prior art keywords
coal
extraction
extract
temperature
coal extract
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56192965A
Other languages
Japanese (ja)
Other versions
JPS5895544A (en
Inventor
Kasaku Ikeda
Terumi Hisayuki
Fumio Suenaga
Yutaka Tamura
Morihiko Sawada
Masahiko Kitajima
Kenji Maruki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP56192965A priority Critical patent/JPS5895544A/en
Publication of JPS5895544A publication Critical patent/JPS5895544A/en
Publication of JPS644814B2 publication Critical patent/JPS644814B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Detergent Compositions (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Description

【発明の詳现な説明】 本発明は、界面掻性剀の補造法に関するもので
ある。さらに詳しくは、石炭を高枩䞋に、か぀、
その溶剀の臚界圧力より高い圧力䞋で抜出しお埗
られた抜出物をスルホン酞塩ずするこずを特城ず
する、特に分散剀およびセメント混和剀ずしお高
い効果を瀺す界面掻性剀の補造法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a surfactant. More specifically, coal is heated to high temperature and
A method for producing a surfactant that is particularly effective as a dispersant and a cement admixture, characterized in that the extract obtained by extraction under a pressure higher than the critical pressure of the solvent is converted into a sulfonate. It is.

石炭を原料ずしお界面掻性剀、䟋えばセメント
混和剀を補造するこずに関しおは、すでにいく぀
かの技術が知られおいる。䟋えば、特公昭33−
4080号公報には䜎品䜍炭に含たれるフミン様物質
からセメント枛氎剀を補造するずの発明が開瀺さ
れおいる。たた、特公昭47−39208号公報にはコ
ヌルタヌルを700−2000℃の高枩で凊理したのち
スルホン化するこずによりセメント枛氎剀を埗る
ずの発明が開瀺されおいる。しかし、これらの発
明を利甚しお界面掻性剀を補造する堎合には、石
炭皮に限定があ぀たり、あるいは石炭の也留品で
あるコヌルタヌルを700℃以䞊ずいう高枩で凊理
しなければならず、そのようなコヌルタヌルの高
枩凊理物から埗られる界面掻性剀は、セメントの
分散剀ずしおの甚途、あるいは石炭ず氎ずのスラ
リヌの分散剀ずしおの甚途などにおいお必ずしも
充分満足できる界面掻性䜜甚を瀺さないなどの問
題がある。
Several techniques are already known for producing surfactants, such as cement admixtures, using coal as a raw material. For example,
Publication No. 4080 discloses an invention for producing a cement water reducing agent from humic-like substances contained in low-rank coal. Further, Japanese Patent Publication No. 47-39208 discloses an invention in which a cement water reducing agent is obtained by treating coal tar at a high temperature of 700-2000°C and then sulfonating it. However, when producing surfactants using these inventions, there are restrictions on the type of coal, or coal tar, which is a carbonized product of coal, must be treated at a high temperature of 700°C or higher. Surfactants obtained from such high-temperature treated coal tar do not necessarily exhibit sufficient surfactant action when used as a dispersant for cement or as a dispersant for slurry of coal and water. There are problems such as.

本発明は、石炭を原料ずしながらも、䞊蚘のよ
うな公知の界面掻性剀の補造法ずは党く異な぀た
方法により界面掻性剀を効率良く補造する方法を
提䟛するものである。
The present invention provides a method for efficiently producing a surfactant using coal as a raw material, but using a method completely different from the known methods for producing surfactants as described above.

本発明は、石炭を、200〜500℃奜たしくは、
300〜450℃の抜出枩床にお、該抜出枩床よりも
䜎い臚界枩床を有する抜出溶剀を甚いお、該抜出
溶剀の臚界圧力よりも高い圧力䞋で、抜出しお埗
られた石炭抜出物を、スルホン化し、次いでアル
カリ化剀を甚いお䞭和するこずを特城ずする界面
掻性剀の補造法からなるものである。
In the present invention, coal is heated at a temperature of 200 to 500°C (preferably,
The coal extract obtained by extraction is carried out at an extraction temperature of 300 to 450 ° C., using an extraction solvent having a critical temperature lower than the extraction temperature, and under a pressure higher than the critical pressure of the extraction solvent. , a method for producing a surfactant characterized by sulfonation and then neutralization using an alkalizing agent.

埓぀お、本発明は、任意の炭皮の石炭を原料ず
し、これを比范的䜎枩の条件䞋で収率良く埗られ
る石炭抜出物を利甚し、その石炭抜出物をスルホ
ン酞塩ずするこずにより性胜の優れた界面掻性剀
の取埗が容易に実珟するため、実甚的に非垞に有
利である。
Therefore, the present invention uses coal of any type as a raw material, utilizes a coal extract that can be obtained in good yield under relatively low temperature conditions, and converts the coal extract into a sulfonate. Since it is easy to obtain a surfactant with excellent performance, it is very advantageous in practical terms.

次に本発明を詳しく説明する。 Next, the present invention will be explained in detail.

本発明のスルホン化の原料ずする石炭抜出物は
任意の炭皮の石炭を200〜500℃の枩床にお、その
抜出枩床より䜎い臚界枩床を有する溶剀を甚い、
か぀、その臚界圧力より高い圧力䞋で抜出しお埗
られた石炭抜出物である。石炭を芳銙族炭化氎玠
で、その芳銙族炭化氎玠の臚界枩床より高い枩床
およびその臚界圧力よりも高い圧力䞋、すなわち
超臚界状態にお抜出凊理するこずにより石炭抜出
物を埗るずの技術は既に、䟋えば米囜特蚱第
3558468号に開瀺されおおり公知である。
The coal extract used as the raw material for sulfonation of the present invention is obtained by extracting coal of any coal type at a temperature of 200 to 500°C using a solvent having a critical temperature lower than the extraction temperature.
Moreover, it is a coal extract obtained by extraction under a pressure higher than the critical pressure. There is already a technology to obtain a coal extract by extracting coal with aromatic hydrocarbons at a temperature higher than the critical temperature of the aromatic hydrocarbons and under a pressure higher than the critical pressure, that is, in a supercritical state. , for example, U.S. Patent No.
It is disclosed in No. 3558468 and is publicly known.

本発明においお甚いる石炭抜出物も䞊蚘のよう
な抜出方法により埗られるものである。抜出溶剀
ずしおは、必ずしも芳銙族炭化氎玠に限定する必
芁はなく、溶剀抜出操䜜に利甚する枩床より䜎い
臚界枩床を持ち、か぀抜出枩床にお比范的安定
で、高い反応性を持たない溶剀である限り任意の
溶剀を甚いるこずができる。ただし、抜出枩床に
察しお臚界枩床が極床に䜎い溶剀を甚いた堎合に
は、溶剀の溶解力が小さくなり、工業的な抜出操
䜜ずしおは䞍利になるため、抜出枩床より僅かに
臚界枩床が䜎い溶剀を遞ぶのが望たしく、たた抜
出枩床ず臚界枩床ずの差は、䞀般に150℃以内ず
なるように遞択するのが奜たしい。そのような溶
剀の䟋ずしおは、ベンれン、トル゚ン、−キシ
レン、−キシレン、−キシレン、キシレン混
合物、゚チルベンれン、プロピルベンれンなどの
芳銙族炭化氎玠、シクロペンタン、シクロヘキサ
ンなどの炭玠数以䞊の脂環族炭化氎玠、そしお
ヘキサン、ヘプタン、ノナンなどの炭玠数以䞊
の脂肪族炭化氎玠ような炭化氎玠、そしおメチル
アミン、゚チルアミン、ゞメチルアミンなど脂肪
族アルキルアミン、ピリゞンのような耇玠環化合
物を挙げるこずができる。特に奜たしい溶剀は芳
銙族炭化氎玠である。たた、これらの溶剀は単独
で甚いおもよく、たた二以䞊を組み合わせお甚い
おもよい。
The coal extract used in the present invention is also obtained by the extraction method described above. The extraction solvent does not necessarily need to be limited to aromatic hydrocarbons; it must be a solvent that has a critical temperature lower than the temperature used for solvent extraction, is relatively stable at the extraction temperature, and does not have high reactivity. Any solvent can be used as long as it is suitable. However, if a solvent whose critical temperature is extremely low compared to the extraction temperature is used, the solvent's dissolving power will be small, making it disadvantageous for industrial extraction operations, so the critical temperature must be slightly lower than the extraction temperature. It is desirable to select a solvent such that the difference between the extraction temperature and the critical temperature is generally within 150°C. Examples of such solvents include benzene, toluene, o-xylene, m-xylene, p-xylene, xylene mixtures, aromatic hydrocarbons such as ethylbenzene and propylbenzene, and those having 5 or more carbon atoms such as cyclopentane and cyclohexane. Hydrocarbons such as alicyclic hydrocarbons, aliphatic hydrocarbons with 6 or more carbon atoms such as hexane, heptane, and nonane, aliphatic alkylamines such as methylamine, ethylamine, and dimethylamine, and heterocyclic compounds such as pyridine. can be mentioned. Particularly preferred solvents are aromatic hydrocarbons. Further, these solvents may be used alone or in combination of two or more.

溶剀抜出の察象ずなる石炭の炭皮には特に制限
はなく任意の炭皮を察象ずするこずができる。
There is no particular restriction on the type of coal to be subjected to solvent extraction, and any type of coal can be targeted.

溶剀抜出操䜜は、前述のように200〜500℃奜
たしくは、300〜450℃の枩床にお行なう。ただ
し、溶剀抜出枩床は、䞊蚘の範囲内で、か぀䜿甚
する抜出溶剀の臚界枩床を越える枩床が遞ばれ
る。抜出枩床を500℃を越える枩床ずした堎合に
は、石炭の熱分解が激しくなるため、䜎沞点留分
が倚量生成し、その䜎沞点留分が溶剀抜出物䞭に
倚量含たれおくる。このような䜎沞点留分を倚量
含む抜出物を埌述のような方法でスルホン化し、
䞭和しおスルホン酞塩ずしおも界面掻性剀、䟋え
ばセメントの混和剀や石炭ず氎ずのスラリヌの分
散剀などの甚途の界面掻性剀ずしお有効な䜜甚を
瀺さない。䞀方、抜出操䜜を200℃より䜎い枩床
で行な぀た堎合には、抜出効率が悪く、工業的に
有効な収率で抜出物を埗るこずができない。
The solvent extraction operation is carried out at a temperature of 200 to 500°C (preferably 300 to 450°C) as described above. However, the solvent extraction temperature is selected to be within the above range and above the critical temperature of the extraction solvent used. When the extraction temperature exceeds 500°C, thermal decomposition of the coal becomes more intense, resulting in the production of a large amount of low boiling point fractions, which are contained in large amounts in the solvent extract. The extract containing a large amount of such a low boiling point fraction is sulfonated by the method described below,
Even when neutralized as a sulfonate, it does not show any effective action as a surfactant, for example, as an admixture for cement or a dispersant for slurry of coal and water. On the other hand, when the extraction operation is performed at a temperature lower than 200°C, the extraction efficiency is poor and it is not possible to obtain an extract with an industrially effective yield.

なお、抜出操䜜は、抜出に甚いる溶媒の臚界圧
力より高い圧力䞋で実斜する必芁がある。溶剀の
溶解力は、臚界圧力以䞋では非垞に䜎いが、臚界
圧力を越えるず急に高くなる。埓぀お、抜出操䜜
を臚界圧力以䞋ずした堎合には抜出物の収率は、
極めお䜎くなり、工業的な抜出操䜜ずしお非垞に
䞍利ずなる。
Note that the extraction operation needs to be performed under a pressure higher than the critical pressure of the solvent used for extraction. The solvency power of a solvent is very low below the critical pressure, but increases sharply when the critical pressure is exceeded. Therefore, when the extraction operation is performed below the critical pressure, the yield of the extract is
This becomes extremely low, which is extremely disadvantageous for industrial extraction operations.

たた、本発明の界面掻性剀の原料ずなる石炭抜
出物を埗るための抜出操䜜を、抜出枩床より䜎い
臚界枩床を有する溶剀を甚いお超臚界状態で行な
うこずにより、のちに界面掻性剀に誘導した堎合
に優れた界面掻性䜜甚を瀺す石炭成分が倚量抜出
されやすいずの利点がある。たた曎に、そのよう
な抜出溶剀の䜿甚は、抜出操䜜埌の石炭抜出物ず
溶剀ずの分離が容易ずなるなどの有利な点もあ
る。埓぀お、本発明を実斜するためには、このよ
うな条件䞋での抜出による石炭抜出物を甚いるこ
ずが必芁である。
In addition, by performing the extraction operation to obtain the coal extract, which is the raw material for the surfactant of the present invention, in a supercritical state using a solvent with a critical temperature lower than the extraction temperature, it is possible to later convert it into a surfactant. This has the advantage that a large amount of coal components exhibiting excellent surfactant action can be easily extracted. Furthermore, the use of such an extraction solvent has advantages such as ease of separation of the coal extract and the solvent after the extraction operation. Therefore, in order to carry out the invention it is necessary to use a coal extract extracted under such conditions.

以䞊に述べたような溶剀抜出操䜜を経たのち、
溶剀を陀去しお埗られた石炭抜出物は、垞枩では
固䜓状である。この固䜓状の石炭抜出物は耇雑な
化孊構造を有する倚数の成分から構成されおお
り、その成分の各々に぀いおは明らかではない。
そしお、この点は、瞮合環の数が比范的少ない成
分が䞻成分ずな぀おいるコヌルタヌルず察称的で
ある。
After going through the solvent extraction operation as described above,
The coal extract obtained by removing the solvent is solid at room temperature. This solid coal extract is composed of many components with complex chemical structures, and the details of each component are not clear.
This point is symmetrical to coal tar whose main component is a component with a relatively small number of condensed rings.

すなわち、石炭の也留品であるコヌルタヌルは
箄1000℃前埌の高枩で石炭を也留しお埗られるも
のであり、そのような高枩の凊理により、石炭が
本来有しおいる耇雑な化孊構造骚栌が砎壊されお
ナフタリン、メチルナフタリン、アントルセン、
ベンズピレンなどの䜎沞点の芳銙族化合物が倚量
生成し、それらがコヌルタヌル䞭に倚量含有され
る結果ずなる。そしお、コヌルタヌルにおいおは
これらの瞮合環の数が比范的少ない成分が䞻成分
ずな぀おいるため、これをスルホン化し、䞭和し
お界面掻性剀に誘導しおも、䟋えば、セメント枛
氎剀のようなセメント混和剀、あるいは石炭埮粉
末を氎に分散させるための分散剀などのような甚
途の界面掻性剀ずしおは満足できる効果を瀺さな
いものず考えられる。
In other words, coal tar, which is a carbonized product of coal, is obtained by carbonizing coal at a high temperature of around 1000℃, and due to such high temperature treatment, the complex chemical structure that coal originally has is destroyed. Destroyed naphthalene, methylnaphthalene, anthorcene,
A large amount of low boiling point aromatic compounds such as benzpyrene are produced, resulting in large amounts of them being contained in coal tar. Coal tar is mainly composed of components with a relatively small number of these fused rings, so even if it is sulfonated, neutralized, and converted into a surfactant, it cannot be used as a cement water reducer, for example. It is thought that it does not exhibit satisfactory effects as a surfactant for uses such as cement admixtures or dispersants for dispersing fine coal powder in water.

しかるに、本発明の界面掻性剀の補造に利甚す
る石炭抜出物には䞊蚘のようなコヌルタヌルの䞻
芁成分のナフタリン、アントラセンなどのような
䜎沞点の瞮合環の数が比范的少ない成分が殆ど含
たれおいない。これは本発明で利甚する石炭抜出
物は比范的䜎枩における抜出操䜜により埗られた
ものであり、このため石炭の耇雑な化孊構造骚栌
の分解があたり進たず、埓぀お、のちに界面掻性
剀に誘導した堎合に界面掻性剀ずしお、そしお特
に、セメント枛氎剀のようなセメント混和剀、あ
るいは石炭粉末を氎に分散させるための分剀剀な
どのような甚途の界面掻性剀ずしお非垞に有効な
䜜甚を瀺すものず考えられる。
However, the coal extract used in the production of the surfactant of the present invention mostly contains components with a relatively small number of fused rings of low boiling point, such as naphthalene and anthracene, which are the main components of coal tar as described above. Not yet. This is because the coal extract used in the present invention is obtained through an extraction operation at a relatively low temperature, so the decomposition of the complex chemical structure of coal does not progress very much, and therefore it is difficult to convert it into a surfactant later. very effective as a surfactant when derivatized, and especially as a surfactant for applications such as cement admixtures, such as cement water reducers, or dispersing agents for dispersing coal powder in water, etc. This is considered to indicate that

次に、本発明のスルホン化方法およびアルカリ
化剀による䞭和方法に぀いお述べる。
Next, the sulfonation method and the neutralization method using an alkalizing agent of the present invention will be described.

芳銙族化合物および瞮合環化合物のスルホン化
方法は抂に公知であり、本発明の石炭抜出物のス
ルホン化もそれらの公知のスルホン化方法に準じ
た方法により実斜するこずができる。
Sulfonation methods for aromatic compounds and condensed ring compounds are generally known, and the sulfonation of the coal extract of the present invention can also be carried out by a method similar to those known sulfonation methods.

スルホン化に甚いられるスルホン化剀ずしお
は、䟋えば、硫酞、発煙硫酞、クロルスルホン
酞、あるいは無氎硫酞などのようなスルホン化剀
が䞀般的に䜿甚されおおり、本発明においおもそ
れらのスルホン化剀を甚いるこずが望たしい。こ
れらのスルホン化剀の内では、スルホン化反応の
䜜業性、スルホン化反応の収率の向䞊、副生する
無機物の生成量を少なくするなどの芳点から、特
に無氎硫酞が奜たしい。
As the sulfonating agent used for sulfonation, for example, sulfonating agents such as sulfuric acid, oleum, chlorosulfonic acid, or sulfuric anhydride are generally used, and these sulfonating agents are also used in the present invention. It is desirable to use Among these sulfonating agents, sulfuric anhydride is particularly preferred from the viewpoint of improving the workability of the sulfonation reaction, improving the yield of the sulfonation reaction, and reducing the amount of by-product inorganic substances produced.

スルホン化剀の䜿甚量ずしおは、石炭抜出物に
察しお重量比で0.1−5.0倍量ずするのが奜たし
い。䜿甚量が0.1倍量未満では、石炭抜出物に付
加するスルホン酞基の量が少なくなるため、埗ら
れる界面掻性剀が充分な性胜を有するものずなり
にくいばかりでなく、石炭抜出物からのスルホン
化物の生成量が少なくなるずの問題がある。䞀
方、䜿甚量が5.0倍量を越えおも石炭抜出物に付
加するスルホン酞基の量の増加は特に期埅でき
ず、スルホン化収量が向䞊しないだけでなく、未
反応のスルホン化物を反応生成物䞭に残留させる
こずによる経枈的な䞍利益、すなわち、未反応の
スルホン化剀を反応生成物から陀去するために䞭
和剀および゚ネルギヌを別に必芁ずする点なども
あり有利ずはいえない。
The amount of the sulfonating agent used is preferably 0.1 to 5.0 times the weight of the coal extract. If the amount used is less than 0.1 times the amount, the amount of sulfonic acid groups added to the coal extract will be small, which will not only make it difficult for the obtained surfactant to have sufficient performance, but also reduce the amount of sulfonated products from the coal extract. There is a problem when the amount of produced decreases. On the other hand, even if the amount used exceeds 5.0 times the amount used, no increase in the amount of sulfonic acid groups added to the coal extract can be expected, and not only will the sulfonation yield not improve, but the unreacted sulfonated product will be converted into a reaction product. This cannot be said to be advantageous because of the economic disadvantage of leaving the unreacted sulfonating agent in the reaction product, ie, the need for a neutralizing agent and energy separately to remove the unreacted sulfonating agent from the reaction product.

スルホン化の反応枩床には特に制限はないが、
䞀般的には、−200℃の範囲から遞ぶこずが奜
たしい。反応枩床を℃より䜎くした堎合には、
スルホン化の反応速床が䜎䞋し、たたスルホン化
剀が凝固し反応操䜜が難しくなるなどの䞍利益な
点がある。䞀方、反応枩床を200℃より高くした
堎合には、スルホン化反応による発熱が著しくな
り、反応枩床の制埡が困難になるなどの問題が発
生する。
There is no particular restriction on the reaction temperature for sulfonation, but
Generally, it is preferable to select from the range of 0-200°C. When the reaction temperature is lower than 0°C,
There are disadvantages such as the reaction rate of sulfonation is reduced and the sulfonating agent is solidified, making reaction operation difficult. On the other hand, if the reaction temperature is higher than 200°C, problems arise such as significant heat generation due to the sulfonation reaction, making it difficult to control the reaction temperature.

なお、本発明の石炭抜出物は前述のように垞枩
では固䜓状態で埗られるため、スルホン化反応は
石炭抜出物を適圓な溶剀に溶解し、溶液ずしお実
斜するのが奜たしい。本発明の石炭抜出物を溶解
する溶剀に぀いおは、その抜出物を溶解し、か぀
スルホン化剀ず反応しないものである限り特に限
定はないが、実甚䞊は、塩化メチレン、クロロホ
ルム、四塩化炭玠などのような塩玠系炭化氎玠を
甚いるのが奜たしい。これらの塩玠系炭化氎玠溶
剀は、本発明の石炭抜出物を良く溶解するだけで
はなく、硫酞、発煙硫酞、クロルスルホン酞、あ
るいは無氎硫酞などのようなスルホン化剀に察し
お反応性を持たないため、本発明におけるスルホ
ン化反応の反応溶剀ずしお特に奜たしい。
In addition, since the coal extract of the present invention is obtained in a solid state at room temperature as described above, the sulfonation reaction is preferably carried out as a solution by dissolving the coal extract in an appropriate solvent. The solvent for dissolving the coal extract of the present invention is not particularly limited as long as it dissolves the extract and does not react with the sulfonating agent, but for practical purposes, methylene chloride, chloroform, carbon tetrachloride, etc. It is preferable to use chlorinated hydrocarbons such as. These chlorinated hydrocarbon solvents not only dissolve the coal extract of the present invention well, but also have no reactivity with sulfonating agents such as sulfuric acid, oleum, chlorosulfonic acid, or sulfuric anhydride. Therefore, it is particularly preferable as a reaction solvent for the sulfonation reaction in the present invention.

䞊蚘のような方法によりスルホン化された石炭
抜出物は、次いでアルカリ化剀を甚いお䞭和する
こずにより界面掻性剀ずしお有甚な生成物に倉換
される。
The sulfonated coal extract by the method described above is then converted into a product useful as a surfactant by neutralization with an alkalizing agent.

界面掻性剀の補造においおスルホン化物をアル
カリ化剀により䞭和しおスルホン酞塩ずする技術
は既に公知であり、各皮のアルカリ化剀を甚いた
䞭和法が知られおいる。本発明においおも、それ
らの䞭和法を甚いるこずが奜たしい。埓぀お、本
発明の䞭和反応に甚いるアルカリ化剀および反応
条件は、公知のアルカリ化剀および反応条件に準
じお遞択すればよい。
In the production of surfactants, the technique of neutralizing a sulfonated substance with an alkalizing agent to form a sulfonate is already known, and neutralization methods using various alkalizing agents are known. Also in the present invention, it is preferable to use these neutralization methods. Therefore, the alkalizing agent and reaction conditions used in the neutralization reaction of the present invention may be selected according to known alkalizing agents and reaction conditions.

本発明により埗られる界面掻性剀は、前蚘のよ
うな特定の条件䞋の抜出により埗られた石炭抜出
物のスルホン酞塩−SO3M、ここでは、Na、
などのアルカリ金属、Mg、Ca、Baなどのア
ルカリ土類金属、たたは、−NH4、−
NH2CH2CH2OH、−NHCH2CH2OH2、−
C2H5OH3などの有機アミンなどがあるを䞻
成分ずするものである。そしお、本発明により埗
られる界面掻性剀は、特に、埮粉状石炭あるいは
他の氎䞍溶性埮粉末を氎系スラリヌずする堎合な
どに甚いられる分散剀ずしお、あるいは枛氎剀な
どのようなセメント甚混和剀ずしお有甚である。
The surfactant obtained according to the present invention is a sulfonate (-SO 3 M, where M is Na,
Alkali metals such as K, alkaline earth metals such as Mg, Ca, Ba, or -NH 4 , -
NH2CH2CH2OH , -NH ( CH2CH2OH ) 2 , -N
The main component is organic amines such as (C 2 H 5 OH) 3 ). The surfactant obtained according to the present invention can be used as a dispersant for making an aqueous slurry from pulverized coal or other water-insoluble fine powder, or as an admixture for cement such as a water reducing agent. Useful.

次に本発明の実斜䟋および比范䟋を瀺す。 Next, Examples and Comparative Examples of the present invention will be shown.

実斜䟋  石炭抜出物の補造 粒埄がmmパス100ずなるように粉砕した囜
内炭氎分1.3、灰分20.4、揮発分37.7、
固定炭玠39.030ずトル゚ン臚界枩床
320℃300ずを内容積0.5の撹拌機付きオヌ
トクレヌブに仕蟌み、オヌトクレヌブ内を窒玠ガ
スで眮換しお、内郚の空気を充分に陀去し、密閉
した。内容物を撹拌しながら、オヌトクレヌブを
電気炉で加熱し、時間かけおオヌトクレヌブ枩
床を400℃にたで昇枩した。このずき、オヌトク
レヌブ内の圧力は220Kgcm2であ぀た。さらに撹
拌を続けながらこの枩床を時間維持し、石炭の
抜出を行な぀た。
Example 1 Production of coal extract Domestic A coal (moisture 1.3%, ash content 20.4%, volatile content 37.7%,
Fixed carbon 39.0%) 30g and toluene (critical temperature:
(320°C) and 300 g of the autoclave were placed in an autoclave with an internal volume of 0.5 and equipped with a stirrer, the inside of the autoclave was purged with nitrogen gas, the air inside was sufficiently removed, and the autoclave was sealed. While stirring the contents, the autoclave was heated in an electric furnace, and the autoclave temperature was raised to 400°C over 1 hour. At this time, the pressure inside the autoclave was 220 Kg/cm 2 . This temperature was further maintained for 1 hour while stirring was continued to extract coal.

次に、オヌトクレヌブを宀枩にたで冷华したの
ち、内容物を取り出し、ろ過機を甚いお固䜓状の
抜出残査ずトル゚ン溶液の圢態の抜出物ろ液
ずに分離した。次いで、゚バポレヌタヌを甚い
お、ろ液からトル゚ンを垞圧䞋で蒞発させたの
ち、さらに枛圧䞋でトル゚ンを充分に蒞発陀去し
お、石炭抜出物を埗た。
Next, after cooling the autoclave to room temperature, the contents are taken out and filtered to extract the solid extraction residue and the extract (filtrate) in the form of a toluene solution.
It was separated into two parts. Next, toluene was evaporated from the filtrate under normal pressure using an evaporator, and then toluene was sufficiently evaporated and removed under reduced pressure to obtain a coal extract.

抜出収率抜出物重量仕蟌み石炭重
量、也燥石炭重量換算は30重量であ぀
た。そしお、埗られた石炭抜出物にはナフタリ
ン、メチルナフタリン、アントラセン、ベンズピ
レンなどの䜎沞点の芳銙族炭化氎玠は殆ど含たれ
おいなか぀た。
The extraction yield (=weight of extract (g)/weight of charged coal (g, converted to dry coal weight)) was 30% by weight. The obtained coal extract contained almost no low-boiling point aromatic hydrocarbons such as naphthalene, methylnaphthalene, anthracene, and benzpyrene.

スルホン化および䞭和 䞊述のようにしお埗られた石炭抜出物7.0を
50の四塩化炭玠に溶かしお、容量100mlの䞉぀
口フラスコ撹拌装眮、蒞発物を冷华できる装
眮、および滎䞋ロヌトが蚭眮されおいるものに
入れた。フラスコの内容物を撹拌しながら、滎䞋
ロヌトから無氎硫酞をゆ぀くり滎䞋した。この時
点における反応枩床を20℃に維持しながら30分間
かけお総量5.1の無氎硫酞を滎䞋した。滎䞋終
了埌、フラスコの枩床を䞊昇させ、四塩化炭玠が
還流する枩床で時間反応させ、スルホン化を行
な぀た。
Sulfonation and Neutralization 7.0 g of the coal extract obtained as described above was
It was dissolved in 50 g of carbon tetrachloride and placed in a 100 ml three-necked flask (equipped with a stirring device, a device for cooling evaporated matter, and a dropping funnel). While stirring the contents of the flask, sulfuric anhydride was slowly added dropwise from the dropping funnel. At this point, a total of 5.1 g of sulfuric anhydride was added dropwise over 30 minutes while maintaining the reaction temperature at 20°C. After the dropwise addition was completed, the temperature of the flask was raised and the reaction was carried out for 1 hour at a temperature at which carbon tetrachloride refluxed to effect sulfonation.

還流を終了させたのち、このフラスコに枛圧蒞
留できる装眮を取り付け、四塩化炭玠を留去させ
た。フラスコ内に残査ずしお残぀た石炭抜出物ス
ルホン化反応生成物に氎を加えお均䞀な氎溶液ず
したのちフラスコから取り出した。
After the reflux was completed, a vacuum distillation device was attached to the flask, and carbon tetrachloride was distilled off. Water was added to the coal extract sulfonation reaction product remaining as a residue in the flask to make a homogeneous aqueous solution, which was then taken out from the flask.

埗られたスルホン化反応生成物を200の氎に
溶解し、その氎溶液を、容量500mlのビヌカヌに
入れ、撹拌しながら氎酞化カルシりムの氎溶液を
加えおPH7.0に䞭和した。この䞭和液を遠心分離
機にかけ、2000rpm、10分間の条件で遠心分離し
た。遠心分離された䞭和液の䞊柄み液を取り出
し、垞法により氎を蒞発陀去しお石炭抜出物のス
ルホン酞カルシりム3.1を埗た。
The obtained sulfonation reaction product was dissolved in 200 g of water, and the aqueous solution was placed in a beaker with a capacity of 500 ml, and an aqueous solution of calcium hydroxide was added while stirring to neutralize the pH to 7.0. This neutralized solution was applied to a centrifuge and centrifuged at 2000 rpm for 10 minutes. The supernatant liquid of the centrifuged neutralized liquid was taken out, and water was removed by evaporation using a conventional method to obtain 3.1 g of calcium sulfonate as a coal extract.

性胜評䟡 䞊述のようにしお埗られた石炭抜出物のスルホ
ン酞カルシりム1.0を含む氎溶液80を高速ホ
モゞナむザヌ特殊化工機(æ ª)補の容噚に入れ、
これにポルトランドセメント100を加えお、玄
10秒間混緎した。その埌、ホモゞナむザヌの容噚
の壁に付着したセメントスラリヌをかき萜し、再
び分30秒間混緎しおセメントスラリヌを調補し
た。
Performance evaluation 80 g of the aqueous solution containing 1.0 g of calcium sulfonate of the coal extract obtained as described above was placed in the container of a high-speed homogenizer (manufactured by Tokushu Kakoki Co., Ltd.).
Add 100g of portland cement to this and make approx.
Kneaded for 10 seconds. Thereafter, the cement slurry adhering to the wall of the homogenizer container was scraped off, and the mixture was kneaded again for 1 minute and 30 seconds to prepare a cement slurry.

予め別に、平板状ガラス板䞊に、フロヌコヌン
内容積86ml、䞊端盎埄25mm×䞋端盎埄50mm×高
さ75mmを眮いたフロヌ倀枬定装眮を甚意し、こ
のフロヌコヌンに、混緎埌のセメントスラリヌを
盎ちに入れた。そしお、そのフロヌコヌンを静か
に持ち䞊げおガラス板䞊に広がるセメント・氎ス
ラリヌの広がり盎埄をケ所で枬定し、その盎埄
の平均倀をフロヌ倀ずした。なお、これらの混緎
やフロヌ倀枬定の操䜜は25℃の宀枩䞋で行な぀
た。
Separately, prepare a flow value measuring device in which a flow cone (inner volume 86 ml, upper end diameter 25 mm x lower end diameter 50 mm x height 75 mm) is placed on a flat glass plate, and the cement slurry after mixing is placed in this flow cone. I put it in immediately. Then, the flow cone was gently lifted and the spread diameter of the cement/water slurry spread on the glass plate was measured at two locations, and the average value of the diameters was taken as the flow value. Note that these kneading operations and flow value measurement operations were performed at room temperature of 25°C.

このようにしお埗られたフロヌ倀は199mmであ
぀た。
The flow value thus obtained was 199 mm.

実斜䟋  石炭抜出物の補造 実斜䟋においお抜出枩床を350℃に倉え、か
぀、オヌトクレヌブに仕蟌む囜内炭ずトル゚ン
の量をそれぞれ10増加すなわち、囜内炭ず
トル゚ンの仕蟌み量を、それぞれ33ず330ず
倉曎した以倖は同䞀の操䜜を行ない、石炭抜出
物を埗た。なお、オヌトクレヌブの枩床を350℃
に昇枩したずきの、オヌトクレヌブ内の圧力は実
斜䟋ず同じく220Kgcm2であ぀た。
Example 2 Production of coal extract In Example 1, the extraction temperature was changed to 350°C, and the amounts of domestic A charcoal and toluene charged into the autoclave were each increased by 10% (i.e., the amounts of domestic A charcoal and toluene charged were increased by 10%). A coal extract was obtained by performing the same operation except that the amounts were changed to 33 g and 330 g, respectively. Please note that the temperature of the autoclave is 350℃.
The pressure inside the autoclave when the temperature was raised to 220 Kg/cm 2 was the same as in Example 1.

抜出収率は20重量であ぀た。埗られた石炭抜
出物には、実斜䟋で埗られた石炭抜出物ず同様
に、䜎沞点の芳銙族炭化氎玠は殆ど含たれおいな
か぀た。
The extraction yield was 20% by weight. Similar to the coal extract obtained in Example 1, the obtained coal extract contained almost no low-boiling point aromatic hydrocarbons.

スルホン化および䞭和 䞊述のようにしお埗られた石炭抜出物6.0を
50の塩化メチレンに溶かした溶液を甚い、スル
ホン化に甚いる無氎硫酞の量を11.6に倉え、か
぀還流を塩化メチレンの還流条件で行な぀た以倖
は、実斜䟋ず同䞀の操䜜により石炭抜出物のス
ルホン酞カルシりム4.8を埗た。
Sulfonation and Neutralization 6.0 g of the coal extract obtained as described above was
Coal extraction was performed in the same manner as in Example 1, except that a solution dissolved in 50 g of methylene chloride was used, the amount of sulfuric anhydride used for sulfonation was changed to 11.6 g, and reflux was performed under the reflux conditions of methylene chloride. 4.8 g of calcium sulfonate was obtained.

性胜評䟡 䞊述のようにしお埗られた石炭抜出物のスルホ
ン酞カルシりム1.0を甚いお、実斜䟋ず同䞀
の条件によりセメントフロヌの詊隓を行な぀た。
埗られたフロヌ倀は210mmであ぀た。
Performance Evaluation A cement flow test was conducted under the same conditions as in Example 1 using 1.0 g of calcium sulfonate from the coal extract obtained as described above.
The flow value obtained was 210 mm.

比范䟋  石炭抜出物のスルホン酞カルシりムの代りに垂
販のリグニンスルホン酞塩系枛氎剀を甚い、実斜
䟋ず同䞀の条件によりセメントフロヌの詊隓を
行な぀たずころ埗られたフロヌ倀は133mmであ぀
た。
Comparative Example 1 A cement flow test was conducted under the same conditions as in Example 1 using a commercially available lignin sulfonate water reducing agent in place of the calcium sulfonate in the coal extract, and the flow value obtained was 133 mm. It was hot.

実斜䟋  石炭抜出物の補造 実斜䟋においお、石炭を囜内炭から豪州
炭氎分3.1、灰分14.4、揮発分31.8、固定
炭箠50.8に倉えた以倖は同䞀の操䜜により、
400℃の抜出操䜜をを行ない、石炭抜出物を埗た。
なお、オヌトクレヌブの枩床を400℃に昇枩した
ずきの、オヌトクレヌブ内の圧力は実斜䟋ず同
じく220Kgcm2であ぀た。
Example 3 Production of coal extract In Example 1, coal was changed from domestic coal A to Australian coal B.
The same procedure was used except that charcoal (moisture 3.1%, ash 14.4%, volatile content 31.8%, fixed carbon 50.8%) was used.
An extraction operation was performed at 400°C to obtain a coal extract.
Note that when the temperature of the autoclave was raised to 400° C., the pressure inside the autoclave was 220 Kg/cm 2 as in Example 1.

抜出収率は20重量であ぀た。埗られた石炭抜
出物には、実斜䟋で埗られた石炭抜出物ず同様
に、䜎沞点の芳銙族炭化氎玠は殆ど含たれおいな
か぀た。
The extraction yield was 20% by weight. Similar to the coal extract obtained in Example 1, the obtained coal extract contained almost no low-boiling point aromatic hydrocarbons.

スルホン化および䞭和 䞊述のようにしお埗られた石炭抜出物13.2を
50の塩化メチレンに溶かした溶液を甚い、スル
ホン化に甚いる無氎硫酞の量を9.6に倉え、か
぀還流を塩化メチレンの還流条件で行な぀た以倖
は、実斜䟋ず同䞀の操䜜により石灰抜出物のス
ルホン化物をを埗た。
Sulfonation and Neutralization 13.2 g of the coal extract obtained as described above was
Lime extraction was performed in the same manner as in Example 1, except that a solution dissolved in 50 g of methylene chloride was used, the amount of sulfuric anhydride used for sulfonation was changed to 9.6 g, and reflux was performed under the reflux conditions of methylene chloride. A sulfonated product of the product was obtained.

埗られたスルホン化反応生成物を200の氎に
溶解し、その氎溶液を、容量500mlのビヌカヌに
入れ、撹拌しながら氎酞化カルシりムの氎溶液を
加えおPH7.0に䞭和した。この䞭和液をろ過しお
䞍溶性の無機物を陀去した。さらにろ液を枛圧蒞
留にかけ、氎を留去するこずにより石炭抜出物の
スルホン酞カルシりム13.4を埗た。
The obtained sulfonation reaction product was dissolved in 200 g of water, and the aqueous solution was placed in a beaker with a capacity of 500 ml, and an aqueous solution of calcium hydroxide was added while stirring to neutralize the pH to 7.0. This neutralized solution was filtered to remove insoluble inorganic substances. Furthermore, the filtrate was subjected to vacuum distillation to remove water, thereby obtaining 13.4 g of calcium sulfonate as a coal extract.

次いで、䞊蚘の石炭抜出物のスルホン酞カルシ
りムを氎に溶解させ、炭酞ナトリりムにで゜ヌデ
ヌシペンを行ない、そののち、氎に䞍溶性の無機
物および氎の陀去を行な぀お石炭抜出物のスルホ
ン酞ナトリりムを埗た。
Next, the calcium sulfonate of the above coal extract was dissolved in water and sodated with sodium carbonate, and then water-insoluble inorganic substances and water were removed to obtain the sodium sulfonate of the coal extract. Ta.

性胜評䟡 豪州炭氎分3.5、灰分10.5、揮発分33.7
、固定炭玠52.3の粉砕物を比重液比重
1.35の䞭で浮遊遞別し、その浮䞊炭をボヌルミ
ルで粉砕し、200メツシナパス80の埮粉炭を調
補した。
Performance evaluation Australian C coal (moisture 3.5%, ash 10.5%, volatile content 33.7
%, fixed carbon 52.3%) to a specific gravity liquid (specific gravity
1.35), and the floating coal was pulverized in a ball mill to prepare pulverized coal of 200 mesh pass 80%.

也燥状態での重量が66.8である䞊蚘の埮粉炭
に氎を加えお、その党量が100ずなるようにし
た。これに䞊蚘の石炭抜出物のスルホン酞ナトリ
りムを0.5加えお高速ホモゞナむザヌ特殊化
工機(æ ª)補で分間混合し、埮粉炭・氎スラリヌ
で調補した。混合終了埌ただちに粘床枬定甚容噚
に移し、27℃にお型粘床蚈東京蚈噚(æ ª)補を
甚いお粘床の枬定を行な぀たずころ粘床は
1900cpであ぀た。
Water was added to the above pulverized coal having a dry weight of 66.8 g to give a total weight of 100 g. To this was added 0.5 g of the above-mentioned sodium sulfonate of coal extract and mixed for 5 minutes using a high-speed homogenizer (manufactured by Tokushu Kakoki Co., Ltd.) to prepare a pulverized coal/water slurry. Immediately after mixing, the mixture was transferred to a container for viscosity measurement, and the viscosity was measured using a B-type viscometer (manufactured by Tokyo Keiki Co., Ltd.) at 27°C.
It was 1900 cp.

比范䟋  石炭抜出物のスルホン酞ナトリりムの代りに垂
販のポリカルボン酞型アニオン界面掻性剀を甚い
お、実斜䟋ず同䞀の条件により埮粉炭・氎スラ
リヌに加え、混合物の粘床の枬定を行な぀たずこ
ろ粘床は10000cp以䞊で、流動性がなか぀た。
Comparative Example 2 A commercially available polycarboxylic acid type anionic surfactant was used instead of sodium sulfonate in the coal extract, and added to the pulverized coal/water slurry under the same conditions as in Example 3, and the viscosity of the mixture was measured. After aging, the viscosity was over 10,000 cp and there was no fluidity.

比范䟋  石炭抜出物のスルホン酞ナトリりムの代りに垂
販のリグニンスルホン酞塩型界面掻性剀を甚い
お、実斜䟋ず同䞀の条件により埮粉炭・氎スラ
リヌに加え、混合物の粘床の枬定を行な぀たずこ
ろ粘床は10000cp以䞊で、流動性がなか぀た。
Comparative Example 3 Using a commercially available lignin sulfonate type surfactant instead of sodium sulfonate in the coal extract, it was added to the pulverized coal/water slurry under the same conditions as in Example 3, and the viscosity of the mixture was measured. After aging, the viscosity was over 10,000 cp and there was no fluidity.

実斜䟋  石炭抜出物の補造 トル゚ンの代わりに、シクロペンタン臚界枩
床239℃250を䜿甚し、抜出枩床を250℃に
倉え、抜出圧力を210Kgcm2に倉えた他は、実斜
䟋におけるず同様にしお石炭抜出物1.8抜
出収率重量を埗た。
Example 4 Production of coal extract Same as Example except that 250 g of cyclopentane (critical temperature: 239°C) was used instead of toluene, the extraction temperature was changed to 250°C, and the extraction pressure was changed to 210 Kg/cm 2 1.8 g of coal extract (extraction yield: 6% by weight) was obtained in the same manner as in 1.

スルホン化および䞭和 䞊蚘抜出を回行な぀お埗た石炭抜出物3.0、
四塩化炭玠21.5、および無氎硫酞2.2を䜿甚
した他は実斜䟋におけるず同様にしお、石炭抜
出物のスルホン酞カルシりム1.2を埗た。
Sulfonation and neutralization 3.0 g of coal extract obtained by performing the above extraction twice,
1.2 g of calcium sulfonate of coal extract was obtained in the same manner as in Example 1 except that 21.5 g of carbon tetrachloride and 2.2 g of anhydrous sulfuric acid were used.

性胜評䟡 䞊蚘により埗た石炭抜出物のスルホン酞カルシ
りムを甚いお、実斜䟋におけるず同じ条件によ
りセメントフロヌの詊隓を行な぀た。埗られたフ
ロヌ倀は192mmであ぀た。
Performance Evaluation Using the calcium sulfonate of the coal extract obtained above, a cement flow test was conducted under the same conditions as in Example 1. The flow value obtained was 192 mm.

実斜䟋  石炭抜出物の補造 囜内炭の量を25に倉え、トル゚ンの量を
250に倉え、抜出枩床を450℃に倉え、抜出圧力
を245Kgcm2に倉えた他は、実斜䟋におけるず
同様にしお石炭抜出物6.4抜出収率26重量
を埗た。
Example 5 Production of coal extract The amount of domestic A coal was changed to 25g, and the amount of toluene was changed to 25g.
250g, the extraction temperature was changed to 450°C, and the extraction pressure was changed to 245Kg/cm 2 , but the same procedure as in Example 1 was performed to obtain 6.4g of coal extract (extraction yield: 26% by weight). .

スルホン化および䞭和 䞊蚘抜出を行な぀お埗た石炭抜出物6.0、四
塩化炭玠43、および無氎硫酞4.5を䜿甚した
他は実斜䟋におけるず同様にしお、石炭抜出物
のスルホン酞カルシりム2.4を埗た。
Sulfonation and Neutralization Calcium sulfonate of coal extract was prepared in the same manner as in Example 1 except that 6.0 g of the coal extract obtained by the above extraction, 43 g of carbon tetrachloride, and 4.5 g of sulfuric anhydride were used. 2.4g was obtained.

性胜評䟡 䞊蚘により埗た石炭抜出物のスルホン酞カルシ
りムを甚いお、実斜䟋におけるず同じ条件によ
りセメントフロヌの詊隓を行な぀た。埗られたフ
ロヌ倀は195mmであ぀た。
Performance Evaluation Using the calcium sulfonate of the coal extract obtained above, a cement flow test was conducted under the same conditions as in Example 1. The flow value obtained was 195 mm.

実斜䟋  石油抜出物の補造 トル゚ンの代わりに、−キシレン臚界枩
床346℃を䜿甚した他は、実斜䟋における
ず同様䜆し、抜出圧力210Kgcm2にしお、石
炭抜出物8.3抜出収率28重量を埗た。
Example 6 Production of petroleum extract Coal extraction was carried out in the same manner as in Example 1 (extraction pressure 210 Kg/cm 2 ) except that m-xylene (critical temperature: 346°C) was used instead of toluene. 8.3 g (extraction yield: 28% by weight) of the product was obtained.

スルホン化および䞭和 䞊蚘抜出を行な぀お埗た石炭抜出物を䜿甚した
他は実斜䟋におけるず同様にしお、石炭抜出物
のスルホン酞カルシりム3.0を埗た。
Sulfonation and Neutralization 3.0 g of calcium sulfonate from a coal extract was obtained in the same manner as in Example 1, except that the coal extract obtained by the above extraction was used.

性胜評䟡 䞊蚘により埗た石炭抜出物のスルホン酞カルシ
りムを甚いお、実斜䟋におけるず同じ条件によ
りセメントフロヌの詊隓を行な぀た。埗られたフ
ロヌ倀は201mmであ぀た。
Performance Evaluation Using the calcium sulfonate of the coal extract obtained above, a cement flow test was conducted under the same conditions as in Example 1. The flow value obtained was 201 mm.

比范䟋  石炭を高枩也溜しお埗られたタヌルを枛圧蒞留
し、垞圧換算で250℃以䞊の留分を埗た。埗られ
た留分7.0を実斜䟋におけるず同様にしおス
ルホン化し、氎酞化カルシりム氎溶液で䞭和し、
氎を蒞発陀去しお䞊蚘留分のスルホン化カルシり
ム2.8を埗た。
Comparative Example 4 Tar obtained by dry distilling coal at high temperature was distilled under reduced pressure to obtain a fraction with a temperature of 250° C. or higher in terms of normal pressure. 7.0 g of the obtained fraction was sulfonated in the same manner as in Example 1, neutralized with an aqueous calcium hydroxide solution,
Water was removed by evaporation to obtain 2.8 g of calcium sulfonate from the above fraction.

このスルホン酞カルシりムを甚いお、実斜䟋
におけるず同じ条件によりセメントフロヌの詊隓
を行な぀た。埗られたフロヌ倀は141mmであ぀た。
Example 1 Using this calcium sulfonate
Cement flow tests were conducted under the same conditions as in . The flow value obtained was 141 mm.

比范䟋  抜出枩床を250℃に倉え、抜出圧力を18Kgcm2
に倉えた他は実斜䟋におけるず同様にしお石炭
の抜出を行な぀た。トル゚ン溶液の抜出物を゚バ
ポレヌタで蒞発させお石炭抜出物を埗た。
Comparative example 5 The extraction temperature was changed to 250℃ and the extraction pressure was 18Kg/cm 2
Coal was extracted in the same manner as in Example 1, except that . The extract of the toluene solution was evaporated using an evaporator to obtain a coal extract.

石炭抜出物の抜出収率は重量以䞋であり、
非垞に䜎く実甚的ではなか぀た。
The extraction yield of the coal extract is less than 2% by weight,
It was very low and impractical.

Claims (1)

【特蚱請求の範囲】[Claims]  石炭を、200〜500℃の抜出枩床にお、該抜出
枩床よりも䜎い臚界枩床を有する抜出溶剀を甚い
お、該抜出溶剀の臚界圧力よりも高い圧力䞋で、
抜出しお埗られた石炭抜出物を、スルホン化し、
次いでアルカリ化剀を甚いお䞭和するこずを特城
ずする界面掻性剀の補造法。
1 Coal is extracted at an extraction temperature of 200 to 500°C using an extraction solvent having a critical temperature lower than the extraction temperature and under a pressure higher than the critical pressure of the extraction solvent,
The coal extract obtained by extraction is sulfonated,
A method for producing a surfactant, which is then neutralized using an alkalizing agent.
JP56192965A 1981-12-02 1981-12-02 Production of surfactant Granted JPS5895544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56192965A JPS5895544A (en) 1981-12-02 1981-12-02 Production of surfactant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56192965A JPS5895544A (en) 1981-12-02 1981-12-02 Production of surfactant

Publications (2)

Publication Number Publication Date
JPS5895544A JPS5895544A (en) 1983-06-07
JPS644814B2 true JPS644814B2 (en) 1989-01-26

Family

ID=16299981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56192965A Granted JPS5895544A (en) 1981-12-02 1981-12-02 Production of surfactant

Country Status (1)

Country Link
JP (1) JPS5895544A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU597531B2 (en) * 1985-07-23 1990-05-31 Fuji Oil Company Limited Process for producing coal-water slurry at high concentration

Also Published As

Publication number Publication date
JPS5895544A (en) 1983-06-07

Similar Documents

Publication Publication Date Title
Kruger et al. A DSC study of curative interactions. I. The interaction of ZnO, sulfur, and stearic acid
CN110240153B (en) Method for macro preparation of functionalized graphene
US3089842A (en) Production of sulfonated asphalt
JPS62275195A (en) Production of high-concentration coal-water slurry
JPS644814B2 (en)
JPH04250839A (en) Method for producing sulfonated dispersing agent
JPH0210687B2 (en)
BR112019019533A2 (en) production process for 2-acrylamido-2-methylpropane sulfonic acid
JPS59105828A (en) Preparation of surfactant
JPH02222720A (en) Dispensation method of sulfonating dispersive agent
RU2478117C2 (en) Carbon nanocluster sulpho-adduct and method for production thereof
US2387572A (en) Detergent composition and method
CS251788B2 (en) Liquefacient and stabilizing admixture and method of its production
CN107413531A (en) A kind of preparation method of mica collecting agent
US2302828A (en) Antirachitics
JPH07216370A (en) Method of recovery and transfer of petroleum derivative
US2522678A (en) Recovery of oxidized petroleum products
CA1036771A (en) Method for the preparation of carbon moldings and activated carbon moldings therefrom
JPH0412917B2 (en)
CN114437749B (en) Amino-enriched asphalt and preparation method of microspheres thereof
CN111054263B (en) Fluorescent surfactant and preparation method thereof
JPS60108495A (en) Treatment of thermal cracking oil fraction
JPH0412916B2 (en)
SU1397426A1 (en) Method of producing composite additive
US2898370A (en) Surface-active sulfonated product