JPS644646B2 - - Google Patents
Info
- Publication number
- JPS644646B2 JPS644646B2 JP57154968A JP15496882A JPS644646B2 JP S644646 B2 JPS644646 B2 JP S644646B2 JP 57154968 A JP57154968 A JP 57154968A JP 15496882 A JP15496882 A JP 15496882A JP S644646 B2 JPS644646 B2 JP S644646B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- zno
- subcomponents
- atomic
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 25
- 239000011651 chromium Substances 0.000 claims description 12
- 239000011787 zinc oxide Substances 0.000 claims description 12
- 229910052779 Neodymium Inorganic materials 0.000 claims description 10
- 229910052792 caesium Inorganic materials 0.000 claims description 10
- 229910052573 porcelain Inorganic materials 0.000 claims description 10
- 229910052804 chromium Inorganic materials 0.000 claims description 9
- 238000010304 firing Methods 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 1
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Thermistors And Varistors (AREA)
Description
本発明は、電圧非直線抵抗器、さらに詳しくは
過電圧保護用素子として用いられる酸化亜鉛
(ZnO)を主成とした電圧非直線抵抗磁器に関す
る。
従来、電子機器、電気機器の過電圧保護を目的
として、それぞれシリコンカーバイド(SiC)、
セレン(Se)、シリコン(Si)又はZnOを主成分
としたパリスタが利用されている。中でもZnOを
主成分としたパリスタは一般に制限電圧が低く、
電圧非直線係数が大きいなどの特徴を有している
ため、半導体素子のような過電流耐量の小さいも
ので構成される機器の過電圧に対する保護に適し
ているので、SiCよりなるパリスタなどに代つて
広く利用されるようになつた。
また、ZnOを主成分とし、副成分としてネオジ
ム(Nd)及びコバルト(Co)を元素又は化合物
の形で添加して焼成することにより製造される電
圧非直線抵抗磁器が電圧非直線性に優れているこ
とが知られている。しかし、このような電圧非直
線抵抗磁器においては、動作開始電圧が周囲温度
の上昇によつて著しく減少すると漏れ電流が大き
くなり、従つて熱暴走を起こす可能性が生ずる。
さらに制限電圧がやゝ高いという欠点があつた。
従つて、実用上は、これらの優れた電圧非直線性
の他に、できるだけ動作開始電圧が周囲温度に対
して安定であることと、更に制限電圧が低いこと
が望まれるのである。
従つて、本発明は、動作開始電圧の周囲温度に
対する安定性を向上させ、且つ制限電圧を更に減
少させ、しかも一層好適な特性を付与された電圧
非直線抵抗磁器を提供することを目的とする。
こゝに本発明者等は、ZnOを主成分とし、副成
分としてNdとCoを添加してなる従来技術の電圧
非直線抵抗磁器に、更に副成分としてセシウム
(Cs)とクロム(Cr)を添加することにより、優
れた電圧非直線性を保持した上で、動作開始電圧
の周囲温度に対する安定性が向上し、且つ制限電
圧が低減された電圧非直線抵抗磁器が得られるこ
とを見出し、本発明を売成した。
しかして、本発明によれば、ZnOを主成分と
し、副成分としてNd、Coを含む電圧非直線抵抗
磁器において、更に副成分としてCs及びCrを添
加したことを特徴とする電圧非直線抵抗磁器が提
供される。
本発明の更に好ましい具体例によれば、ZnOを
主成分とし、副成分としてNd及びCoの他にCs及
びCrを、Ndが0.1〜5.0原子%、Coが0.5〜5原子
%、Csが0.05〜0.5原子%、Crが0.05〜0.5原子%
であるような量で含む電圧非直線抵抗磁器が提供
される。
こゝで、原子%とは、所定の電圧非直線抵抗磁
器を製造するために配合された原料組成物中の各
成分金属元素の原子数の総和に対する添加金属元
素の原子数の百分率を意味する。
本発明に従う電圧非直線抵抗磁器は、一般には
ZnOと添加成分の金属又は化合物の混合物を酸素
含有雰囲気のもとで高温で焼成し、焼結させるこ
とによつて製造される。
通常、添加成分は金属酸化物の形で添加される
が、焼成過程で酸化物になり得る化合物、例えば
炭酸塩、水酸化物、弗化物なども用いることがで
き、或いは単体元素の形で用いて焼成過程で酸化
物にすることもできる。
特に好ましい方法によれば、本発明の電圧非直
線抵抗磁器は、ZnO粉末に添加成分金属又は化合
物の粉末を十分に混合し、焼成前に空気中で500
〜1000℃で数時間仮焼し、仮焼物を十分に粉砕
し、所定の形状に成形し、次いで空気中で1200〜
1400℃程度の温度で数時間焼成することにより製
造される。1200℃より低い焼成温度では、焼結が
不十分で特性が不安定である。また、1400℃より
高い温度では、均質な焼結体を得ることが困難と
なり、電圧非直線性が低下し、特性の制御などの
再現性に難点があり、実用に供する製品を得がた
い。
こゝで、本発明をさらに例示するために実施例
を示す。
実施例
ZnO粉末にNd2O3、Co3O4、Cs2CO3、Cr2O3粉
末を後記の第1表に記載の所定の原子%に相当す
る量で添加し、十分に混合した後、500〜1000℃
で数時間仮焼した。次いで、仮焼物を十分に粉砕
し、金型を用いて直径17mmの円板状に成型して、
1200〜1400℃で空気中で1時間焼成して焼結磁器
を得た。このようにして得られた磁器を厚さ2mm
の試料に研磨し、その両面に電極を焼付けて素子
を作り、その電気的特性を測定した。
電気的特性としては、25℃において素子に1m
Aの電流を流したときの動作開始電圧V1mA、
25℃における電圧非直線係数α、V1mAの25℃
と85℃との間の変化率△v1/v1並びに素子に40A
の電流を流したときの制限電圧V40AとV1mAの
比を求めた。非直線係数αは、素子電流Iの電圧
Vに対する変化を次式に近似したときに得られ
る。
I=(v/c)〓
こゝで、Cは電流密度が1mA/cm2のときの素
子の厚さ1mm当りの電圧である。
磁器の配合組成を種々変えたときの電気的特性
の測定結果を併わせて第1表に示す。第1表に示
した配合組成は、配合された原料中の各成分金属
元素の原子数の総和に対する添加元素の原子数の
比から算出される原子%で示されている。
The present invention relates to a voltage nonlinear resistor, and more particularly to a voltage nonlinear resistance ceramic mainly composed of zinc oxide (ZnO) used as an overvoltage protection element. Conventionally, silicon carbide (SiC) and
Pallisters whose main components are selenium (Se), silicon (Si), or ZnO are used. Among them, pallisters whose main component is ZnO generally have a low limiting voltage.
Because it has characteristics such as a large voltage non-linearity coefficient, it is suitable for overvoltage protection of equipment made of devices with low overcurrent tolerance such as semiconductor elements, so it can be used in place of SiC pallisters, etc. It has become widely used. In addition, voltage nonlinear resistance porcelain, which is manufactured by firing ZnO as a main component and adding neodymium (Nd) and cobalt (Co) as subcomponents in the form of elements or compounds, has excellent voltage nonlinearity. It is known that there are However, in such a voltage non-linear resistance ceramic, if the operation start voltage is significantly reduced due to a rise in ambient temperature, leakage current increases, and therefore there is a possibility of thermal runaway occurring.
Another drawback was that the limiting voltage was rather high.
Therefore, in practice, in addition to these excellent voltage nonlinearities, it is desirable that the operation start voltage be as stable as possible with respect to the ambient temperature and that the limiting voltage be as low as possible. Therefore, an object of the present invention is to provide a voltage nonlinear resistance ceramic that improves the stability of the operation start voltage with respect to ambient temperature, further reduces the limiting voltage, and has more suitable characteristics. . Therefore, the present inventors added cesium (Cs) and chromium (Cr) as subcomponents to the conventional voltage nonlinear resistance ceramic, which is made of ZnO as a main component and Nd and Co as subcomponents. We discovered that by adding this material, it is possible to obtain a voltage nonlinear resistance ceramic that maintains excellent voltage nonlinearity, improves the stability of the operation start voltage with respect to ambient temperature, and reduces the limiting voltage. sold the invention. Therefore, according to the present invention, there is provided a voltage nonlinear resistance porcelain containing ZnO as a main component and Nd and Co as subcomponents, and further containing Cs and Cr as subcomponents. is provided. According to a more preferred embodiment of the present invention, ZnO is the main component, and in addition to Nd and Co, Cs and Cr are used as subcomponents, Nd is 0.1 to 5.0 atomic%, Co is 0.5 to 5 atomic%, and Cs is 0.05 atomic%. ~0.5 at%, Cr 0.05-0.5 at%
A voltage non-linear resistance porcelain is provided comprising in an amount such that . Here, atomic % means the percentage of the number of atoms of the added metal element relative to the total number of atoms of each component metal element in the raw material composition blended to produce a predetermined voltage nonlinear resistance ceramic. . The voltage nonlinear resistance porcelain according to the present invention is generally
It is produced by firing and sintering a mixture of ZnO and additive metals or compounds at high temperatures in an oxygen-containing atmosphere. Usually, additive components are added in the form of metal oxides, but compounds that can become oxides during the firing process, such as carbonates, hydroxides, fluorides, etc., can also be used, or they can be used in the form of simple elements. It can also be converted into an oxide during the firing process. According to a particularly preferred method, the voltage nonlinear resistance porcelain of the present invention is produced by thoroughly mixing ZnO powder with powder of an additive metal or compound,
Calcinate at ~1000℃ for several hours, thoroughly crush the calcined product, mold it into a predetermined shape, and then heat it in air at ~1200℃.
It is manufactured by firing at a temperature of around 1400℃ for several hours. If the firing temperature is lower than 1200°C, sintering will be insufficient and the properties will be unstable. Furthermore, at temperatures higher than 1400°C, it becomes difficult to obtain a homogeneous sintered body, voltage nonlinearity decreases, and there are difficulties in reproducibility in controlling characteristics, making it difficult to obtain a product for practical use. Examples are now presented to further illustrate the invention. Example Nd 2 O 3 , Co 3 O 4 , Cs 2 CO 3 , Cr 2 O 3 powder was added to ZnO powder in an amount corresponding to the predetermined atomic % listed in Table 1 below and thoroughly mixed. After, 500~1000℃
I baked it for several hours. Next, the calcined product was sufficiently crushed and molded into a disc shape with a diameter of 17 mm using a mold.
Sintered porcelain was obtained by firing in air at 1200-1400°C for 1 hour. The porcelain thus obtained is 2mm thick.
A device was made by polishing a sample and baking electrodes on both sides, and its electrical characteristics were measured. The electrical characteristics are as follows: 1m on the element at 25℃
Operation start voltage V1mA when a current of A flows,
Voltage nonlinear coefficient α at 25℃, V1mA at 25℃
The rate of change △v 1 /v 1 between
The ratio of the limiting voltage V 40 A and V 1 mA when a current of 40 A was applied was determined. The nonlinear coefficient α is obtained by approximating the change in the element current I with respect to the voltage V by the following equation. I=(v/c)〓 Here, C is the voltage per 1 mm of the thickness of the element when the current density is 1 mA/cm 2 . Table 1 also shows the measurement results of the electrical properties when the blending composition of the porcelain was varied. The blended compositions shown in Table 1 are expressed in atomic % calculated from the ratio of the number of atoms of the added element to the total number of atoms of each component metal element in the blended raw materials.
【表】【table】
【表】
第1表に示す試料No.1は、ZnOにNd、Coのみ
を添加して製造した従来の磁器に相当し、その
V1mAの温度変化率△v1/v1は−7.5%、制限電
圧と動作開始電圧の比V40/V1mAは2.2である。
本発明の目的であるV1mAの温度に対する安定
性と制限電圧特性が良好である。即ち、△v1/v1
が−7.5%より0に近く、V40A/V1mAが2.2以
下の試料は、第1表からNo.3〜8、11〜14、17〜
20、23〜26である。従つて、Ndは0.1〜5.0原子
%、Coは0.5〜5.0原子%、Csは0.05〜0.5原子%、
Crは0.05〜0.5原子%の範囲内で添加する必要が
あることがわかる。
以上、第1表から明らかなように、副成分とし
てのNd、Co系にCs、Crを添加することにより、
V1mAの温度特性と制限電圧特性が大巾に改良
される。これは、ZnOにNd、Co、Cs、Crが共存
して初めて達成されるものである。これらの副成
分を単独で添加すると、電圧非直線性は極めて悪
く、ほぼオーミツクな特性しか得られない。ま
た、Nd、Coの外に、CsまたはCrだけを添加した
場合には、高抵抗化したり、あるいは低抵抗化し
て電圧非直線性が失われ、バリスタとして実用に
供することができない。
上述したように、本発明の電圧非直線抵抗磁器
は、良好な電圧非直線性を保持した上で、V1m
Aの温度特性と制限電圧特性が大巾に向上し、従
つてバリスタとして極めて有効に使用することが
できる。[Table] Sample No. 1 shown in Table 1 corresponds to conventional porcelain manufactured by adding only Nd and Co to ZnO.
The temperature change rate Δv 1 /v 1 of V1 mA is -7.5%, and the ratio of the limiting voltage to the operation start voltage V 40 /V 1 mA is 2.2.
The V1 mA temperature stability and limiting voltage characteristics, which are the objects of the present invention, are good. That is, △v 1 /v 1
is closer to 0 than -7.5%, and samples with V 40 A/V 1 mA of 2.2 or less are Nos. 3-8, 11-14, 17-
20, 23-26. Therefore, Nd is 0.1 to 5.0 at%, Co is 0.5 to 5.0 at%, Cs is 0.05 to 0.5 at%,
It can be seen that Cr needs to be added within the range of 0.05 to 0.5 at%. As mentioned above, as is clear from Table 1, by adding Cs and Cr to Nd and Co as subcomponents,
The temperature characteristics and limiting voltage characteristics of V 1 mA are greatly improved. This is achieved only when Nd, Co, Cs, and Cr coexist in ZnO. If these subcomponents are added alone, voltage nonlinearity will be extremely poor and only nearly ohmic characteristics will be obtained. Furthermore, if only Cs or Cr is added in addition to Nd and Co, the resistance becomes high or low and voltage nonlinearity is lost, making it impossible to put it to practical use as a varistor. As described above, the voltage non-linear resistance ceramic of the present invention maintains good voltage non-linearity and has a V 1 m
The temperature characteristics and limiting voltage characteristics of A are greatly improved, and therefore it can be used extremely effectively as a varistor.
Claims (1)
ネオジム、コバルト、セシウムおよびクロムを元
素または化合物の形でそれぞれ元素に換算して、
ネオジムは0.1〜5.0原子%、コバルトは0.5〜5.0
原子%、セシウムは0.05〜0.5原子%、クロムは
0.05〜0.5原子%の範囲で添加して焼成してなる
ことを特徴とする電圧非直線抵抗磁器。1 Zinc oxide is the main component, and neodymium, cobalt, cesium and chromium are added as subcomponents in the form of elements or compounds, each converted to an element,
Neodymium is 0.1-5.0 at%, cobalt is 0.5-5.0
atomic%, cesium is 0.05 to 0.5 atomic%, chromium is
Voltage nonlinear resistance porcelain characterized by being made by adding and firing in a range of 0.05 to 0.5 at%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57154968A JPS5944804A (en) | 1982-09-06 | 1982-09-06 | Voltage nonlinear resistance porcelain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57154968A JPS5944804A (en) | 1982-09-06 | 1982-09-06 | Voltage nonlinear resistance porcelain |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5944804A JPS5944804A (en) | 1984-03-13 |
JPS644646B2 true JPS644646B2 (en) | 1989-01-26 |
Family
ID=15595825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57154968A Granted JPS5944804A (en) | 1982-09-06 | 1982-09-06 | Voltage nonlinear resistance porcelain |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5944804A (en) |
-
1982
- 1982-09-06 JP JP57154968A patent/JPS5944804A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5944804A (en) | 1984-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0584641B2 (en) | ||
JPS644648B2 (en) | ||
JPH0142613B2 (en) | ||
JPS644651B2 (en) | ||
JPS644646B2 (en) | ||
JPS6321324B2 (en) | ||
JPS644647B2 (en) | ||
JPS6321328B2 (en) | ||
JPS644649B2 (en) | ||
JPS6321327B2 (en) | ||
JPS6321325B2 (en) | ||
JPS6320363B2 (en) | ||
JPS6321323B2 (en) | ||
JPS6321322B2 (en) | ||
JPS6321326B2 (en) | ||
JPS6330761B2 (en) | ||
JPS6330763B2 (en) | ||
JPS6330762B2 (en) | ||
JPS6046005A (en) | Voltage nonlinear resistor | |
JPS644643B2 (en) | ||
JPS644644B2 (en) | ||
JPS5982704A (en) | Voltage nonlinear resistor | |
JPH0125202B2 (en) | ||
JPH0125203B2 (en) | ||
JPH0125204B2 (en) |