JPS644074Y2 - - Google Patents

Info

Publication number
JPS644074Y2
JPS644074Y2 JP16823782U JP16823782U JPS644074Y2 JP S644074 Y2 JPS644074 Y2 JP S644074Y2 JP 16823782 U JP16823782 U JP 16823782U JP 16823782 U JP16823782 U JP 16823782U JP S644074 Y2 JPS644074 Y2 JP S644074Y2
Authority
JP
Japan
Prior art keywords
silicon steel
induction coil
laminated
steel plates
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16823782U
Other languages
Japanese (ja)
Other versions
JPS5972499U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16823782U priority Critical patent/JPS5972499U/en
Publication of JPS5972499U publication Critical patent/JPS5972499U/en
Application granted granted Critical
Publication of JPS644074Y2 publication Critical patent/JPS644074Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、誘導溶解炉に関し、特に珪素鋼板を
積層した帰磁路鉄心の締結構造を改良したもので
ある。
[Detailed Description of the Invention] The present invention relates to an induction melting furnace, and in particular improves the fastening structure of a return path core made of laminated silicon steel plates.

一般に誘導溶解炉は第1図に示すように耐火材
で形成されたるつぼ形の溶解室1の外周に、水冷
鋼管で形成された誘導コイル2が巻回され、更に
この背面に絶縁板3を介して複数本の帰磁路鉄心
4…が放射状に配置され、各帰磁路鉄心4は炉枠
5に取付けた押圧ボルト6により炉中心方向に押
圧支持されている。
In general, an induction melting furnace has an induction coil 2 made of a water-cooled steel pipe wound around the outer circumference of a melting chamber 1 in the shape of a crucible made of a refractory material, as shown in Fig. 1, and an insulating plate 3 on the back side of the melting chamber 1. A plurality of return magnetic path cores 4 are arranged radially through the furnace frame 5, and each return magnetic path core 4 is supported by pressing bolts 6 attached to the furnace frame 5 toward the furnace center.

前記帰磁路鉄心4は、電磁誘導により誘導コイ
ル2から発生する磁束の外部への漏洩を防止して
有効な磁束ループを形成すると共に、誘導コイル
2を外側から支持して、溶解室1の熱膨張による
誘導コイル2の変形を防止する役割を果すもので
ある。
The return magnetic path core 4 prevents the magnetic flux generated from the induction coil 2 by electromagnetic induction from leaking to the outside to form an effective magnetic flux loop, and also supports the induction coil 2 from the outside to prevent the magnetic flux generated from the induction coil 2 from leaking to the outside. This serves to prevent deformation of the induction coil 2 due to thermal expansion.

従来の帰磁路鉄心4の構成は、第2図および第
3図に示すように、複数本の珪素鋼板7を平面コ
字形状をなす金属製の支持枠8に嵌め込んで形成
されている。この支持枠8は両側に平行に配置し
た2枚の側板9,9と、この間に縦方向に沿つて
間隔をおいて一体に溶接された複数枚の押え板1
0とから成り、押え板10の内面は凹曲面を成し
ているので、ここに長板状の珪素鋼板7を積層し
て嵌め込むことにより、積層鉄心11の前面(誘
導コイル背面側)は、誘導コイル2の外周曲率と
同一の曲率となるようになつている。
As shown in FIGS. 2 and 3, the conventional return path core 4 is constructed by fitting a plurality of silicon steel plates 7 into a metal support frame 8 having a U-shape in plan view. . This support frame 8 includes two side plates 9, 9 arranged in parallel on both sides, and a plurality of presser plates 1 welded together at intervals along the longitudinal direction.
0, and the inner surface of the holding plate 10 is a concave curved surface, so by laminating and fitting the long silicon steel plates 7 therein, the front surface of the laminated core 11 (the back side of the induction coil) is , the curvature is the same as the curvature of the outer periphery of the induction coil 2.

しかしながらこのような従来の帰磁路鉄心4
は、積層した珪素鋼板7を、単に支持枠8に嵌め
込んだだけの構造であるため強度が充分でなく、
溶湯金属による溶解室1の熱膨張を誘導コイル2
を介して受け、帰磁路鉄心4が次第に扇形状に開
き、各珪素鋼板7がずれて誘導コイル2の背面と
密着せず、誘導コイル2の変形を防止することが
できなかつた。
However, such a conventional return path core 4
Since the structure is simply that the laminated silicon steel plates 7 are fitted into the support frame 8, the strength is not sufficient.
Thermal expansion of the melting chamber 1 due to molten metal is induced by the induction coil 2.
The return magnetic path iron core 4 gradually opened into a fan shape, and each silicon steel plate 7 was shifted and did not come into close contact with the back surface of the induction coil 2, making it impossible to prevent the induction coil 2 from deforming.

このため、第4図に示すように、珪素鋼板7を
積層した積層鉄心11にボルト挿通孔12を開孔
し、ここにスタツドボルト13を挿着してナツト
14により、各珪素鋼板7を一体に連結して強度
を向上させる構造が考えられる。
For this reason, as shown in FIG. 4, a structure can be considered in which bolt insertion holes 12 are drilled in a laminated core 11 made of laminated silicon steel plates 7, and stud bolts 13 are inserted into the bolt insertion holes and nuts 14 are used to connect each silicon steel plate 7 together to improve strength.

しかしこの構造では、積層鉄心11の前面側が
凹曲面を形成し、且つ内部に直状のボルト挿通孔
12を形成する必要があるが、このためにはボル
ト挿通孔12を形成するため各孔部15を珪素鋼
板7の幅方向に対して一枚ずつ、ずらせた位置に
開孔しなければならない。この孔部15の開孔は
プレスにより打抜き加工で1枚ずつ行なわなけれ
ばならず各珪素鋼板7ごとに、孔あけ位置をずら
せて、積層した状態で連続した直状のボルト挿通
孔12を形成させることは、加工上および組立上
からは現実的には困難である。
However, in this structure, it is necessary to form a concave curved surface on the front side of the laminated core 11 and to form a straight bolt insertion hole 12 inside. 15 must be opened at positions shifted one by one with respect to the width direction of the silicon steel plates 7. The holes 15 must be punched out one by one using a press, and the positions of the holes are shifted for each silicon steel plate 7 to form continuous straight bolt insertion holes 12 in a stacked state. It is actually difficult to do so from the viewpoint of processing and assembly.

また各珪素鋼板7の孔部15の位置を同じにす
れば加工は容易となるが、積層状態で各孔部15
の連続により形成されるボルト挿通孔12は第5
図に示すように湾曲した形状となる。この場合、
スタツドボルト13も湾曲させて挿着すれば良い
が、ナツト14の取付けが難しく、また締付け強
度を上げて行くと、スタツドボルト13が直状に
変形し、積層鉄心11の前面が平面状になつて誘
導コイル2の背面に密着しなくなつてしまう。
Further, if the positions of the holes 15 of each silicon steel plate 7 are the same, processing becomes easier, but in a stacked state, each hole 15
The bolt insertion hole 12 formed by a series of
It has a curved shape as shown in the figure. in this case,
It is possible to insert the stud bolt 13 by bending it, but it is difficult to install the nut 14, and if the tightening strength is increased, the stud bolt 13 will deform into a straight shape, and the front surface of the laminated core 11 will become flat. Therefore, it will no longer come into close contact with the back surface of the induction coil 2.

このため第6図に示すように珪素鋼板7に開孔
する孔部15の内径を大きくし、直状のスタツド
ボルト13が充分に挿着可能な湾曲したボルト挿
通孔12を形成することも考えられる。しかしな
がら、この構造ではボルト挿通孔12の断面積が
大きく、有効な鉄心断面積が減少するので、鉄心
としての機能が低下する欠点があつた。
Therefore, as shown in FIG. 6, it is considered that the inner diameter of the hole 15 formed in the silicon steel plate 7 is increased to form a curved bolt insertion hole 12 into which a straight stud bolt 13 can be fully inserted. It will be done. However, in this structure, the cross-sectional area of the bolt insertion hole 12 is large, and the effective cross-sectional area of the core is reduced, so the function as an iron core is deteriorated.

本考案は、上記欠点を除去し、加工、組立が容
易で、鉄心断面積の減少を最小限に抑え、強度を
向上させた帰磁路鉄心を備えた誘導溶解炉を得る
ことを目的とするものである。
The purpose of the present invention is to eliminate the above-mentioned drawbacks, to obtain an induction melting furnace equipped with a return path core that is easy to process and assemble, minimizes the reduction in core cross-sectional area, and improves strength. It is something.

以下本考案の一実施例を第7図を参照して詳細
に説明する。
An embodiment of the present invention will be described in detail below with reference to FIG.

絶縁管16の外径よりやや大きい内径の孔部1
5を、スタツドボルト13の挿着位置に対応して
打抜き成形した珪素鋼板7aと、この幅方向に沿
つて位置をずらせて孔部15を打抜き成形した珪
素鋼板7bの2種類を予め用意しておく。
Hole 1 with an inner diameter slightly larger than the outer diameter of the insulating tube 16
5, two types of silicon steel plates 7a are prepared in advance: a silicon steel plate 7a that is punched and formed in accordance with the insertion position of the stud bolt 13, and a silicon steel plate 7b that is punched and formed with holes 15 shifted in position along the width direction. put.

複数枚の珪素鋼板7aを積層して積層鉄心11
Aを形成し、この両側に珪素鋼板7bを積層した
積層鉄心11B,11Bを配置し、更にこの両側
に当て板17,17を設けて、前記孔部15の連
続により形成されたボルト挿通孔12に、絶縁管
16で表面を被覆したスタツドボルト13を挿着
してナツト14で軽く締付ける。次に背面側にリ
ブ18を有する湾曲した押え板19の内面凹曲面
に、一体にした前記積層鉄心11B,11A,1
1Bを押付けて、この前面を誘導コイル2の背面
と同一曲率の揃え、スタツドボルト13で強固に
締結して、帰磁路鉄心4を組立てるものである。
A laminated core 11 is formed by laminating a plurality of silicon steel plates 7a.
A, laminated iron cores 11B, 11B with silicon steel plates 7b laminated on both sides thereof are arranged, and backing plates 17, 17 are provided on both sides, and a bolt insertion hole 12 is formed by continuation of the hole 15. Then, a stud bolt 13 whose surface is covered with an insulating tube 16 is inserted and lightly tightened with a nut 14. Next, the integrated laminated cores 11B, 11A, 1
1B, the front surface thereof is aligned with the same curvature as the back surface of the induction coil 2, and is firmly fastened with stud bolts 13 to assemble the return path iron core 4.

上記帰磁路鉄心4は各珪素鋼板7a,7bがス
タツドボルト13と一体に締結されているので強
度が向上し、溶解室1の熱膨張によつても誘導コ
イル2を確実に支持し、その変形を防止すること
ができる。
The return path iron core 4 has silicon steel plates 7a and 7b integrally fastened to the stud bolts 13, so its strength is improved and the induction coil 2 is reliably supported even by thermal expansion of the melting chamber 1. Deformation can be prevented.

また積層鉄心11B,11A,11Bは孔あけ
位置の異なる2種類の珪素鋼板7a,7bを積層
して形成できるので、孔部15の打抜き加工や、
組立作業が容易である。しかも形成されたボルト
挿通孔12は中央部の曲率が小さく、両側が大き
い不連続な内壁曲率により、直状のスタツドボル
ト13を挿着させる最小の曲率空間を形成し、第
6図に示すものに比べて鉄心断面積の減少を大幅
に抑えることができる。
In addition, since the laminated cores 11B, 11A, 11B can be formed by laminating two types of silicon steel plates 7a, 7b with different hole positions, punching of the holes 15,
Assembly work is easy. Moreover, the formed bolt insertion hole 12 has a small curvature at the center and a large discontinuous inner wall curvature on both sides, thereby forming a minimum curvature space into which a straight stud bolt 13 can be inserted, as shown in FIG. The reduction in the core cross-sectional area can be significantly suppressed compared to the conventional method.

なお上記実施例では孔部15の開孔位置をずら
せた2種類の珪素鋼板7a,7bにより組立てた
場合について示したが、3種以上を組合せたもの
でも良い。しかし加工性、組立性の上からは2〜
3種類程度が好ましい。またスタツドボルト13
は絶縁管16に挿着した構造に限らず、表面を絶
縁被覆したものでも良い。
In the above embodiment, a case was shown in which two types of silicon steel plates 7a and 7b were assembled with the opening positions of the holes 15 shifted, but a combination of three or more types may be used. However, from the viewpoint of workability and assembly, it is 2~
About three types are preferable. Also stud bolt 13
is not limited to the structure in which it is inserted into the insulating tube 16, but may be one in which the surface is coated with insulation.

以上説明した如く、本考案によれば、加工、組
立が容易で、鉄心断面積の減少を最小限に抑え、
強度を向上させた帰磁路鉄心を備えた誘導溶解炉
を得ることができるものである。
As explained above, according to the present invention, processing and assembly are easy, the reduction in the core cross-sectional area is minimized, and
It is possible to obtain an induction melting furnace equipped with a return magnetic path core with improved strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は誘導溶解炉の縦断正面図、第2図は従
来の帰磁路鉄心を示す横断平面図、第3図は第2
図の斜視図、第4図乃至第6図は夫々異なる従来
の帰磁路鉄心を示す横断平面図、第7図は本考案
の一実施例による帰磁路鉄心を示す横断平面図で
ある。 1……溶解室、2……誘導コイル、4……帰磁
路鉄心、6……押圧ボルト、7,7a,7b……
珪素鋼板、8……支持枠、11,11A,11B
……積層鉄心、12……ボルト挿通孔、13……
スタツドボルト、15……孔部、16……絶縁
管、19……押え板。
Figure 1 is a longitudinal sectional front view of an induction melting furnace, Figure 2 is a cross-sectional plan view showing a conventional return path core, and Figure 3 is a
4 to 6 are cross-sectional plan views showing different conventional return path cores, and FIG. 7 is a cross-sectional plan view showing a return path core according to an embodiment of the present invention. 1... Melting chamber, 2... Induction coil, 4... Return magnetic path core, 6... Pressing bolt, 7, 7a, 7b...
Silicon steel plate, 8...Support frame, 11, 11A, 11B
...Laminated core, 12...Bolt insertion hole, 13...
Stud bolt, 15... hole, 16... insulating tube, 19... holding plate.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 溶解室の外周に巻回した誘導コイルと、この誘
導コイルの背面に放射状に密着して配置された複
数本の帰磁路鉄心とからなる誘導溶解炉におい
て、前記帰磁路鉄心を、板幅方向に沿つた異なる
位置に孔部を開孔した少なくとも2種以上の珪素
鋼板を積層して、前記孔部の連続により孔内壁の
曲率が異なつた連続するボルト挿通孔を形成した
積層鋼板と、このボルト挿通孔に挿着され、積層
鋼板を一体に締結するスタツドボルトから形成し
たことを特徴とする誘導溶解炉。
In an induction melting furnace consisting of an induction coil wound around the outer periphery of a melting chamber and a plurality of return path cores arranged radially in close contact with the back surface of the induction coil, the return path cores are A laminated steel plate in which at least two or more types of silicon steel plates with holes drilled at different positions along a direction are laminated to form a continuous bolt insertion hole in which the curvature of the inner wall of the hole differs depending on the continuity of the holes; An induction melting furnace characterized in that it is formed from a stud bolt that is inserted into the bolt insertion hole and fastens the laminated steel plates together.
JP16823782U 1982-11-06 1982-11-06 induction melting furnace Granted JPS5972499U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16823782U JPS5972499U (en) 1982-11-06 1982-11-06 induction melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16823782U JPS5972499U (en) 1982-11-06 1982-11-06 induction melting furnace

Publications (2)

Publication Number Publication Date
JPS5972499U JPS5972499U (en) 1984-05-17
JPS644074Y2 true JPS644074Y2 (en) 1989-02-02

Family

ID=30367851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16823782U Granted JPS5972499U (en) 1982-11-06 1982-11-06 induction melting furnace

Country Status (1)

Country Link
JP (1) JPS5972499U (en)

Also Published As

Publication number Publication date
JPS5972499U (en) 1984-05-17

Similar Documents

Publication Publication Date Title
CA2101202C (en) Pipe assembly for efficient light-off of catalytic converter
JPS644074Y2 (en)
JPH08505554A (en) Multi-layer iron bottom plate made from co-laminated material
JP2885857B2 (en) Electromagnetic cooker
JPS6192252A (en) Beam piercing sleeve
JPS582038Y2 (en) Magnetic shield plate for transformer
JP4638627B2 (en) Stave cooler
JPH0757865A (en) Vessel for electromagnetic cooker
JPS621382Y2 (en)
JPH06265102A (en) Stress reducing structure at boiler side wall welded part having temperature difference
JPH0441218Y2 (en)
JPS632798Y2 (en)
JPS5950512A (en) Electric induction apparatus
JP2568397Y2 (en) Furnace inner wall support device
JPH0429253Y2 (en)
JP2594391Y2 (en) Wave case transformer
JPS58107235A (en) Forming method for clamp band in supporting fitting
JPS5846048B2 (en) reactor
JPS5972709A (en) Winding fixing device
JPH07109506A (en) Method for fitting stave
JPH10298625A (en) Stave cooler for furnace bottom part in blast furnace and manufacture thereof
JPS5811944U (en) Welding generator magnetic pole core
JPH0139440Y2 (en)
JPH0141856Y2 (en)
JP2532827Y2 (en) Induction heating device