JPS643850B2 - - Google Patents

Info

Publication number
JPS643850B2
JPS643850B2 JP55140822A JP14082280A JPS643850B2 JP S643850 B2 JPS643850 B2 JP S643850B2 JP 55140822 A JP55140822 A JP 55140822A JP 14082280 A JP14082280 A JP 14082280A JP S643850 B2 JPS643850 B2 JP S643850B2
Authority
JP
Japan
Prior art keywords
blood
polyacrylonitrile
granulocytes
fibers
iodine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55140822A
Other languages
Japanese (ja)
Other versions
JPS5764615A (en
Inventor
Kenji Honda
Masaki Myamoto
Shigeru Sasagawa
Takashi Fushiie
Toshio Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP55140822A priority Critical patent/JPS5764615A/en
Publication of JPS5764615A publication Critical patent/JPS5764615A/en
Publication of JPS643850B2 publication Critical patent/JPS643850B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】 本発明は血液、体液またはこれらを処理して得
られる血球浮遊液から各血液成分を分離回収する
装置に関する。更に詳しくは、血液、体液または
これらを処理して得られる血球浮遊液をポリアク
リロニトリル系繊維状物質に接触させて顆粒球を
該繊維に選択的に粘着させてリンパ球と分離した
後顆粒球の活性損失を最少限にしてこれを脱着回
収する事を特徴とする白血球成分分離回収装置を
含む血液成分の分離回収装置に関する。 血液は血球と血漿にわけられ、血球成分は赤血
球、白血球及び血小板にわけられるが、このうち
白血球は一般に顆粒球とリンパ球とからなる。最
近、癌の化学療法時に血球減少を起し、顆粒球不
足による感染症、血小板不足による出血傾向等を
併発するためその対症療法として、更に重症感染
症等のために各血液成分が輸注される様になつ
た。 従来から、血液成分の分別には、デキストラン
やヒドロキシエチル、澱粉などの凝集剤を添加し
て赤血球を沈澱させ白血球を得る方法があるが、
白血球純度が低く、時間もかかり、又白血球中の
顆粒球とリンパ球との分離はできない。遠心分離
法によりバツフイー・コート中の白血球を集める
方法や密度勾配液の上に血液をのせて遠心分離し
て比重の差により各血球成分を分離する方法があ
るが、多量に処理する事は困難であり、特に白血
球中の顆粒球とリンパ球との分離は純度よく分別
する事は難しく、そのため感染症防止ないし治療
のために顆粒球輸注を行なつても、不純物のリン
パ球のために白血球抗原不適合による副作用をお
こし発熱、悪寒のみならず、しだいに輸注効果の
減少をもたらすなどの欠点があつた。一方、リン
パ球は各種免疫療法やインターフエロン製造原料
として注目され社会的要求は日々高まるばかりで
ある。 次に、繊維状物質に白血球成分が粘着(接着と
も言う)する事により一部の血球を分離する方法
は古くから知られ、その応用として現在遠心分離
法によつて得られる血漿や血小板浮遊液から不純
物である白血球成分を除去する目的で綿、レイヨ
ン、ポリエステル繊維、ナイロン繊維、ガラス繊
維等を充填したフイルターが実用化されている。 前記の遠心分離装置は甚だ高価で、患者数の多
い大病院しか設置する事ができない。又分離され
た血球は寿命が数時間程度と短かいため献血者か
ら被輸血者のペツドサイドで採血し、必要血液成
分を分別採取してこれを被輸血者(患者)に輸注
し、残部の血液成分は献血者に返換するなど手軽
な方法が望まれている。繊維状物質への粘着分離
法は純度のよい分離ができかつカラムに血液を流
すという手軽な方法であるが回収された白血球、
特に顆粒球の活性が低下しているなど、更に改良
が期待されている分野である。 本発明者らはこれまで繊維状物質への血球成分
の粘着脱着方法について鋭意研究を重ねて来た結
果、後述のヨー素配向度が4以下のポリアクリロ
ニトリル系繊維が白血球中の顆粒球成分を選択性
高く粘着し、さらに該繊維の直径が10μより大き
い場合に著しく活性保持率の高い顆粒球が回収さ
れる事を見い出し本発明に到達した。 即ち本発明の要旨とするところは、血液、体液
又はこれらを処理して得られる血球浮遊液から、
血液成分の一部又は全部を分離回収する装置に於
て、白血球中の顆粒球成分を実質的に選択粘着さ
せた後脱着させる事によつて該白血球成分を分離
回収するために、ヨー素配向度4以下のポリアク
リロニトリル系繊維状物質を充填した容器からな
ることを特徴とする血液成分の分離回収装置であ
る。 本発明で言うポリアクリロニトリル系繊維と
は、アクリロニトリル70モル%以上100モル%以
下と、これと共重合しうるビニル化合物例えば
(メタ)アクリル酸ないしそのアルキルエステル、
塩化ビニル、臭化ビニル、ビニルピロリドン、酢
酸ビニル、プロピオン酸ビニル、スチレン、スチ
レンスルホン酸ないしその塩、(メタ)アリルス
ルホン酸ないしその塩、スルホフエニル(メタ)
アリルエーテルないしその塩、2―アクリルアミ
ド―2―メチルプロパンスルホン酸ないしその塩
等の一又は二以上0〜30モル%以下との共重合体
(以下、アクリロニトリル系重合体と言う)を、
溶媒に溶解した後、湿式、乾式ないし乾湿式法に
て紡糸し、延伸、後処理して繊維状に成型したも
のを言う。 近年ポリアクリロニトリル系繊維を白血球成分
の粘着素材としての研究がなされている。例えば
特開昭54−119013には平均直径10μ以下の繊維を
用いて血液中の白血球全体を粘着し分離回収する
方法が開示されているが、白血球中の顆粒球とリ
ンパ球のいずれかを選択粘着する事は認められて
いない。 ところが本発明者らが製造したポリアクリロニ
トリル系繊維は白血球中の顆粒球を選択的に粘着
する事を見い出し、鋭意検討を重ねた結果繊維の
配向度が高くなると顆粒球の粘着性が小さくなる
ため選択性が低下することを見い出した。この因
果関係は不明であるが、繊維構造が高配向化する
とポリアクリロニトリル系分子相互間の凝集力が
大きく、みかけの分極性が低下するため顆粒球の
粘着性が低下するものと考えられる。従来から極
性の高いナイロン繊維は顆粒球を選択的に粘着す
るが、極性の低いポリエステル繊維やポリプロピ
レン繊維は顆粒球、リンパ球の選択性が低い事が
知られている。 本発明におけるポリアクリロニトリル系繊維の
配向度は次のヨー素配向度をもつて定量化した。
即ち長さL0のポリアクリロニトリル系繊維を25
℃、2時間、ヨー素濃度1.2モル/、ヨー素カ
リ濃度1.5モル/を含む水溶液に浸漬後、収縮
した長さLを顕微鏡付マイクロメーターで測定
し、L0/L比をヨー素配向度とした。 このようにして測定したヨー素配向度は、ポリ
アクリロニトリルのような結晶領域が判然としな
い高分子では、結晶領域の配向と同時に非晶領域
の配向も同時に表す物性値であり、分子全体の繊
維軸方向への配向度を表す値として現実によく用
いられている。 即ちヨー素・ヨー化カリ溶液へ配向した繊維を
浸漬すると、ヨー素分子が繊維を構成する分子間
中に浸入し、分子間力を弱めるため配向した繊維
は無配向となり、繊維は繊維軸方向へ収縮を起
す。従つてヨー素配向度の大きい繊維は高分子の
繊維軸方向への配向が大きいものと言える。配向
した分子間へのヨー素の浸入力は繊維を浸漬する
溶液中のヨー素の濃度によつても変化するので、
測定条件によつて収縮後の長さLは変化するので
注意を要する。1.2モル/の濃度では分子間力
の強い領域までヨー素は浸入するので心配はな
い。 ヨー素配向度はこのようにポリアクリロニトリ
ル分子の分子間力の強さの指標でもあり、この値
が小さいものは、分子間力が弱く染料などの分子
も浸入しやすく飽和染着量も大きい。このような
ことから、ポリアクリロニトリル分子間力の弱い
ものが、顆粒球を効果的に粘着させる結果となる
ものと考えられる。 市販の標準タイプといわれるポリアクリロニト
リル系繊維のヨー素配向度を測定するとボンネル
2.5、トレロン3.7、カシミロン4.5、エクスラン
4.5であつた。本発明者らの研究によるとヨー素
配向度が4をこえると顆粒球とリンパ球の選択性
が低下し実用的ではないことが明らかとなつた。
しかし、ヨー素配向度が1.5以下となると繊維の
強度がなくなり使用困難となる。繊維のヨー素配
向度は、該繊維製造過程での製造パラメーター、
たとえば延伸温度、延伸倍率、緩和条件等を変更
することによつて変えることが出来る。 本発明者らは、ポリアクリロニトリル系繊維の
平均直径が10μより大きい場合は顆粒球の活性損
失が、従来のナイロン繊維や細いポリアクリロニ
トリル系繊維等に比べ非常に小さく、極めて実用
的である事も見い出した。即ち繊維が細い場合
は、顆粒球が繊維を抱きかかえる様に広がつて粘
着する事が顕微鏡観察される。このため粘着顆粒
球の変形が著しく、酵素の放出が多くなり、ナイ
ロン同様大きな顆粒球活性の低下がみられる。従
つて繊維の直径は、顆粒球(直径10〜16μ)より
小なる事は好ましくなく、10μより大きい時活性
損失の少くない顆粒球を回収することが出来る。
また繊維が太い場合は平均直径が500μを越える
とカラムへの充填操作が困難となり、又表面積も
小さくなり好ましくない。 本発明に用いる繊維はあらかじめ血漿、血清、
血漿アルブミン、ゼラチン、修性ゼラチン、ヘパ
リン、N―ヒドロキシエチルピペラジン―N′―
エタンスルホン酸塩(HEPES)、ポリエチレン
グリコール及びその誘導体、ポリプロピレングリ
コール及びその誘導体、ポリプロピレングリコー
ル―ポリエチレングリコールブロツクポリマー、
ポリビニルピロリドン、ポリビニルアルコールな
どのうち一又は二以上で前処理する事ができる。 本発明の装置は特別の形態に限定されるもので
はない。即ち該ポリアクリロニトリル系繊維と血
液、体液又はこれらを処理して得られる血球浮遊
液が効率よく接触出来るようなものであればどん
なものでも良い。好ましい形態としては該繊維を
円筒状のカラムに適切な密度でもつて充填したも
のであり、これにより白血球成分の粘着と脱着を
連続して行なうことが出来る。又円筒状カラムの
代りに円錐状の容器も効果的である。繊維が入口
と出口を有する密閉空間に充填されているもの
が、持ち運びや滅菌処理の観点から好ましい。 第1図は本発明の装置の1例で、血球浮遊液の
入口1および出口4を設けたカラム2の中へヨー
素配向度4以下のポリアクリロニトリル系繊維3
を充填した簡単なものである。入口1より重力あ
るいはポンプの作用により血球浮遊液をカラム内
へ送り、白血球中の顆粒球を該繊維に選択的に粘
着させ、出口4からは顆粒球の少くない血球浮遊
液が回収される。次いでカラム内を適切な洗浄液
で洗い、脱着液を流して顆粒球を脱着回収する。
入口1の前、出口4の後に他の適当なフイルター
や分離装置を装着して、血球浮遊液の性状に応じ
て赤血球や白血球をさらに選択分離することも可
能である。 本発明でいう血液、体液又はこれらを処理して
得られる血球浮遊液とは、全血液のみならず腹
水、骨髄液等そのものの他に例えばデキストラン
等赤血球凝集剤によつて一部血球を除去した血球
浮遊液、遠心分離操作等により得た血球浮遊液、
細胞電気泳動等により得た血球浮遊液等何らかの
処理操作によつて得られる血球浮遊液をいう。 これら血液、体液又はこれらを処理して得られ
る血球浮遊液は本発明の装置にて処理するに際
し、そのまま又はこれを生理的食塩水、ヘパリン
加生理的食塩水、HEPES加生理的食塩水、マグ
ネシウム塩、カルシウム塩等金属塩の細胞吸着促
進剤、PH緩衝剤等を含む食塩水等で希釈して用い
てもよい。処理時間は例えばカラム装置の場合そ
のまま流下させるべき短い時間が好ましいが、場
合によつては加温ないし冷却してカラム内に適当
時間滞在させてインキユベイトしてもよい。 次に粘着した白血球成分を脱着するに際して
は、脱着剤として血漿、血清、PH緩衝剤、クエン
酸あるいはEDTA等のキレート剤、その他公知
の薬剤、温度変化、機械的刺戟等物理的要因など
のいずれか又は二以上を組合わせて行なうことが
出来る。 本発明の装置に於ては白血球成分中の顆粒球と
リンパ球を粘着分別するに際し、ヨー素配向度4
以下のポリアクリロニトリル系繊維を充填したカ
ラムを特徴とするが、この他に公知の装置を組合
わせて血液成分の分離回収システムとする事がで
きる。 次に実施例により具体的に説明する。 実施例 1 アクリロニトリルと酢酸ビニルとメタリルスル
ホン酸ソーダとを合わせて100部を水500部中で窒
素気流下に過硫酸カリウムと亜硫酸水素ソーダに
より40℃で懸濁重合させ、アクリロニトリル93
%、酢酸ビニル6.4%、メタリルスルホン酸ソー
ダ0.6%からなる共重合体を78部得た。この共重
合体を水洗乾燥後、ジメチルアセトアミドに原液
濃度20%となる様に溶解し、40℃の35%ジメチル
アセトアミド水中に紡糸し、沸水中で4倍に延伸
し、加熱ローラー上で乾燥し、クリンプ加工を施
し130℃湿熱中で繊維を固定して5デニール(直
径24.6μ)のポリアクリロニトリル系繊維を得た。
これをソツクスレー抽出器で4時間エタノール洗
浄し、乾燥後、更に蒸留水にて充分水洗して、10
c.c.プラスチツク シリンジに一定表面積(2500
cm2)になる様に詰めカラムを得た。このカラムに
20ミリモルHEPES緩衝生理的食塩水(HBS)を
加えて空気を追い出した後、採血直後に分離して
得られたバツフイーコートを含む赤血球濃厚液を
それぞれ1ミリモルの塩化マグネシウムと塩化カ
ルシウムを含むHBSにてヘマトクリツト50%に
なる様に浮遊させ、12ml/min一定流速で室温下
にカラムを通過させた。カラムに粘着した細胞は
17ミリモルクエン酸を含むPH5.6の10ミリモルリ
ン酸緩衝生理的食塩水を用い、カラムを叩きなが
ら脱着、回収した。白血球数の測定はコールター
カウンターで、顆粒球・リンパ球含有率はコール
ターチヤネライザーを用いて粒度分布パターンか
ら測定した。繊維へ粘着による顆粒球活性の損失
は顆粒球を各繊維と37℃,30分インキユベートし
た後、細胞外に漏出した酵素(ここではリゾチー
ム及びラクテートデヒドロゲナーゼ〔LDH〕)を
定量して求めた。結果を第1表にまとめて示す。
粘着した細胞は顆粒球が多く、又酵素損失は非常
に少ないことがわかる。 実施例 2 実施例1と同様にして、アクリロニトリル93
%、酢酸ビニル7%からなるポリアクリロニトリ
ル系共重合体からなる5デニール(直径24.6μ)
の繊維を得た。この繊維を用いて実施例1と同様
にして血液成分の分離を行なつた。結果を第1表
に示した。 実施例 3 実施例1と同様にして、アクリロニトリル93
%、アクリル酸メチル6%及びビニルベンゼンス
ルホン酸ソーダ1%を含むポリアクリロニトリル
系繊維をジメチルアセトアミドを用いて成型し、
白血球分別を同様に行なつた。結果を第1表にま
とめて示す。 実施例 4 実施例1に於て、溶媒をジメチルアセトアミド
に替えて、ジメチルスルホキシドを用いてほぼ同
条件にて成型したアクリル繊維(2.5デニール)
をカラムに充填して実施例1と同様にして白血球
の分離実験を行なつた。結果を第1表に示した。 実施例 5 実施例2で製造したポリアクリロニトリル系共
重合体を0.12デニール(直径3.8μ)に成型し、実
施例1と同様にして白血球分離及び回収を行なつ
た。結果を第1表にまとめて示した。顆粒球、リ
ンパ球の粘着は実施例1,2と変らないが、酵素
の漏出が多く、顆粒球の失活度が大きい事がわか
る。 比較例 1 実施例1の方法により、アクリロニトリル92
%、アクリル酸メチル7.5%、メタリルスルホン
酸ソーダ0.5%からなるアクリロニトリル系共重
合体を合成し、これを60%ロダン酸ソーダ水に11
%濃度に溶解した後、0℃の13%ロダン酸ソーダ
水中に紡糸し、沸水中で12倍に延伸した後、クリ
ンプを施し120℃で30分熱処理してアクリロニト
リル系繊維を得た。これを実施例1と同様に白血
球粘着実験を行なつた所、第1表のようになつ
た。回収した顆粒球の純度(白血球中に含まれる
顆粒球の割合)が70%であり、分離前の白血球中
に含まれる割合と大差なく顆粒球とリンパ球の粘
着性に差がない事がわかる。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for separating and recovering blood components from blood, body fluids, or a blood cell suspension obtained by processing these. More specifically, blood, body fluids, or a blood cell suspension obtained by treating these are brought into contact with a polyacrylonitrile-based fibrous material to cause granulocytes to selectively adhere to the fibers and to separate them from lymphocytes. The present invention relates to a blood component separation and recovery device including a leukocyte component separation and recovery device which is characterized by desorption and recovery of leukocyte components while minimizing activity loss. Blood is divided into blood cells and plasma, and blood cell components are divided into red blood cells, white blood cells, and platelets, among which white blood cells generally consist of granulocytes and lymphocytes. Recently, blood cells have decreased during chemotherapy for cancer, and various blood components have been transfused as a symptomatic treatment, as well as for severe infections, etc. due to complications such as infection due to lack of granulocytes and bleeding tendency due to lack of platelets. I became like that. Traditionally, blood components have been separated by adding a flocculant such as dextran, hydroxyethyl, or starch to precipitate red blood cells to obtain white blood cells.
The white blood cell purity is low, it takes time, and it is not possible to separate granulocytes and lymphocytes in the white blood cells. There are methods to collect white blood cells in the bathy coat using centrifugation, and methods to place blood on a density gradient solution and centrifuge it to separate each blood cell component based on the difference in specific gravity, but it is difficult to process large amounts. In particular, it is difficult to separate granulocytes and lymphocytes in white blood cells with high purity. Therefore, even when granulocytes are injected to prevent or treat infectious diseases, white blood cells are lost due to impurity lymphocytes. There were disadvantages such as side effects due to antigen incompatibility, such as fever and chills, and a gradual decrease in the effectiveness of the transfusion. On the other hand, lymphocytes are attracting attention as a raw material for various immunotherapies and interferon production, and social demands are increasing day by day. Next, a method of separating some blood cells by adhesion (also called adhesion) of leukocyte components to fibrous substances has been known for a long time, and as an application of this method, plasma and platelet suspensions are currently obtained by centrifugation. Filters filled with cotton, rayon, polyester fiber, nylon fiber, glass fiber, etc. have been put into practical use for the purpose of removing white blood cell components, which are impurities, from human blood. The centrifugal separator described above is extremely expensive and can only be installed in large hospitals with a large number of patients. Separated blood cells have a short lifespan of only a few hours, so blood is collected from the donor at the recipient's side, and the necessary blood components are separated and transfused to the recipient (patient). An easy method is desired, such as returning the components to blood donors. The adhesion separation method for fibrous substances is a simple method that allows separation with good purity and requires blood to flow through a column.
This is an area in which further improvement is expected, especially as the activity of granulocytes is decreasing. The present inventors have conducted intensive research on methods for adhesion and desorption of blood cell components to fibrous substances, and as a result, we have found that polyacrylonitrile fibers with an iodine orientation of 4 or less, which will be described later, can absorb granulocyte components in white blood cells. The present invention was achieved by discovering that granulocytes with highly selective adhesion and a significantly high activity retention rate can be recovered when the diameter of the fibers is larger than 10 μm. That is, the gist of the present invention is that from blood, body fluids, or a blood cell suspension obtained by processing these,
In an apparatus for separating and recovering part or all of blood components, iodine orientation is used to separate and recover the granulocyte components in white blood cells by substantially selectively adhering them and then desorbing them. This is a blood component separation and recovery device characterized by comprising a container filled with polyacrylonitrile-based fibrous material having a degree of 4 or less. The polyacrylonitrile fiber referred to in the present invention refers to 70 mol% or more of acrylonitrile and 100 mol% or less of acrylonitrile, and a vinyl compound that can be copolymerized with this, such as (meth)acrylic acid or its alkyl ester.
Vinyl chloride, vinyl bromide, vinylpyrrolidone, vinyl acetate, vinyl propionate, styrene, styrene sulfonic acid or its salts, (meth)allylsulfonic acid or its salts, sulfophenyl (meth)
A copolymer (hereinafter referred to as an acrylonitrile polymer) with one or more of allyl ether or a salt thereof, 2-acrylamido-2-methylpropanesulfonic acid or a salt thereof, and 0 to 30 mol% or less,
After dissolving in a solvent, it is spun using a wet, dry or dry-wet method, stretched and post-treated to form a fiber. In recent years, research has been conducted on polyacrylonitrile fibers as adhesive materials for leukocyte components. For example, Japanese Patent Application Laid-Open No. 119013/1984 discloses a method for separating and collecting all leukocytes in blood by adhering them to each other using fibers with an average diameter of 10 μ or less. Sticking is not allowed. However, we discovered that the polyacrylonitrile fibers produced by the present inventors selectively adhere to granulocytes in white blood cells, and after extensive study, we found that as the degree of fiber orientation increases, the adhesiveness of granulocytes decreases. It was found that the selectivity decreased. Although this causal relationship is unclear, it is thought that when the fiber structure becomes highly oriented, the cohesive force between polyacrylonitrile molecules increases, and the apparent polarizability decreases, resulting in a decrease in the adhesiveness of the granulocytes. It has been known that nylon fibers with high polarity selectively adhere to granulocytes, but polyester fibers and polypropylene fibers with low polarity have low selectivity for granulocytes and lymphocytes. The degree of orientation of the polyacrylonitrile fiber in the present invention was quantified using the following degree of iodine orientation.
In other words, 25 polyacrylonitrile fibers with length L 0
℃ for 2 hours in an aqueous solution containing an iodine concentration of 1.2 mol/potassium iodine and a potassium iodine concentration of 1.5 mol/cm, the contracted length L was measured with a micrometer equipped with a microscope, and the L 0 /L ratio was calculated as the degree of iodine orientation. And so. The degree of iodine orientation measured in this way is a physical property value that simultaneously represents the orientation of the crystalline region and the orientation of the amorphous region in polymers such as polyacrylonitrile where the crystalline regions are not clearly defined, and the It is often used in practice as a value representing the degree of orientation in the axial direction. In other words, when oriented fibers are immersed in an iodine/potassium iodide solution, iodine molecules penetrate into the molecules that make up the fibers, weakening the intermolecular forces, so the oriented fibers become non-oriented, and the fibers become oriented in the fiber axis direction. contraction occurs. Therefore, it can be said that fibers with a high degree of iodine orientation have a high polymer orientation in the fiber axis direction. The penetration force of iodine between oriented molecules also changes depending on the concentration of iodine in the solution in which the fiber is immersed.
Care must be taken because the length L after contraction changes depending on the measurement conditions. At a concentration of 1.2 mol/mol, there is no need to worry because iodine will penetrate into areas where intermolecular forces are strong. The degree of iodine orientation is thus also an index of the strength of the intermolecular force of polyacrylonitrile molecules, and the smaller this value is, the weaker the intermolecular force is and the easier the infiltration of molecules such as dyes results in a large amount of saturated dyeing. From this, it is thought that polyacrylonitrile with weak intermolecular forces causes granulocytes to adhere effectively. When measuring the degree of iodine orientation of commercially available standard polyacrylonitrile fibers, Bonnell
2.5, Trelon 3.7, Cashmiron 4.5, Exlan
It was 4.5. According to research conducted by the present inventors, it has become clear that when the degree of iodine orientation exceeds 4, the selectivity for granulocytes and lymphocytes decreases, making it impractical.
However, when the degree of iodine orientation is less than 1.5, the fiber loses its strength and becomes difficult to use. The degree of iodine orientation of the fiber is a manufacturing parameter in the fiber manufacturing process,
For example, it can be changed by changing the stretching temperature, stretching ratio, relaxation conditions, etc. The present inventors have found that when the average diameter of polyacrylonitrile fibers is larger than 10μ, the loss of granulocyte activity is extremely small compared to conventional nylon fibers or thin polyacrylonitrile fibers, making it extremely practical. I found it. That is, when the fibers are thin, it is observed under a microscope that the granulocytes spread out and adhere to the fibers. As a result, adhesive granulocytes are significantly deformed, enzymes are released more frequently, and granulocyte activity is greatly reduced as with nylon. Therefore, it is not preferable that the diameter of the fibers be smaller than that of granulocytes (10 to 16 μm in diameter), and when the diameter is larger than 10 μm, granulocytes can be recovered with no small loss of activity.
Furthermore, if the fibers are thick and the average diameter exceeds 500μ, it will be difficult to fill the fiber into a column, and the surface area will also become small, which is not preferable. The fibers used in the present invention are prepared in advance from plasma, serum,
Plasma albumin, gelatin, modified gelatin, heparin, N-hydroxyethylpiperazine-N'-
ethanesulfonate (HEPES), polyethylene glycol and its derivatives, polypropylene glycol and its derivatives, polypropylene glycol-polyethylene glycol block polymer,
Pretreatment can be performed with one or more of polyvinylpyrrolidone, polyvinyl alcohol, and the like. The device of the present invention is not limited to any particular form. That is, any material may be used as long as it allows efficient contact between the polyacrylonitrile fiber and blood, body fluid, or a blood cell suspension obtained by treating these. A preferred form is one in which the fibers are packed in a cylindrical column at an appropriate density, which allows continuous adhesion and desorption of leukocyte components. Also, instead of a cylindrical column, a conical container is also effective. One in which the fibers are filled in a closed space having an inlet and an outlet is preferable from the viewpoint of portability and sterilization. FIG. 1 shows an example of the apparatus of the present invention, in which a polyacrylonitrile fiber 3 with an iodine orientation degree of 4 or less is introduced into a column 2 provided with an inlet 1 and an outlet 4 for a blood cell suspension.
It is a simple thing filled with. A blood cell suspension is sent into the column from an inlet 1 by gravity or by the action of a pump, and granulocytes among white blood cells are selectively adhered to the fibers, and a blood cell suspension containing few granulocytes is collected from an outlet 4. Next, the inside of the column is washed with an appropriate washing solution, and a desorption solution is allowed to flow to desorb and recover the granulocytes.
It is also possible to further selectively separate red blood cells and white blood cells depending on the properties of the blood cell suspension by installing other suitable filters or separation devices before the inlet 1 and after the outlet 4. In the present invention, blood, body fluid, or a blood cell suspension obtained by processing these refers to not only whole blood but also ascites fluid, bone marrow fluid, etc., as well as blood cells from which some blood cells have been removed using a hemagglutinating agent such as dextran. Blood cell suspension, blood cell suspension obtained by centrifugation, etc.
Refers to a blood cell suspension obtained by some processing operation, such as a blood cell suspension obtained by cell electrophoresis. When these blood, body fluids, or the blood cell suspension obtained by processing them are processed with the apparatus of the present invention, they can be used as they are or in physiological saline, heparin-added physiological saline, HEPES-added physiological saline, magnesium-added physiological saline, etc. It may be used after being diluted with a saline solution containing a cell adsorption promoter of a salt, a metal salt such as a calcium salt, a PH buffer, or the like. For example, in the case of a column device, the treatment time is preferably a short time in which the ink is allowed to flow down as it is, but in some cases, the ink bait may be heated or cooled and allowed to stay in the column for an appropriate time. Next, when desorbing the adherent white blood cell components, use any desorbent such as plasma, serum, PH buffer, chelating agent such as citric acid or EDTA, other known drugs, physical factors such as temperature change, mechanical stimulation, etc. Or a combination of two or more can be carried out. In the device of the present invention, when adhesion-separating granulocytes and lymphocytes in white blood cell components, the degree of iodine orientation is 4.
The system is characterized by a column packed with the following polyacrylonitrile fibers, but other known devices can be combined to form a blood component separation and recovery system. Next, a concrete explanation will be given using examples. Example 1 A total of 100 parts of acrylonitrile, vinyl acetate, and sodium methallylsulfonate was suspended and polymerized at 40°C with potassium persulfate and sodium bisulfite in 500 parts of water under a nitrogen stream to obtain acrylonitrile 93.
%, 6.4% vinyl acetate, and 0.6% sodium methallylsulfonate. After washing and drying this copolymer, it was dissolved in dimethylacetamide to a stock solution concentration of 20%, spun in 35% dimethylacetamide water at 40°C, stretched 4 times in boiling water, and dried on a heating roller. The fibers were crimped and fixed in a humid heat environment of 130°C to obtain a 5 denier (diameter 24.6 μm) polyacrylonitrile fiber.
This was washed with ethanol for 4 hours using a Soxhlet extractor, dried, and then thoroughly washed with distilled water.
CC plastic syringe with a constant surface area (2500
cm 2 ) was obtained. in this column
After adding 20 mmol HEPES-buffered saline (HBS) and expelling the air, the red blood cell concentrate containing the batty coat obtained by separation immediately after blood collection was added to HBS containing 1 mmol magnesium chloride and calcium chloride, respectively. The mixture was suspended at a hematocrit of 50% and passed through the column at room temperature at a constant flow rate of 12 ml/min. Cells that adhere to the column
Using 10 mmol phosphate buffered saline containing 17 mmol citric acid and a pH of 5.6, the column was desorbed and collected while hitting the column. The number of white blood cells was measured using a Coulter counter, and the granulocyte/lymphocyte content was measured from the particle size distribution pattern using a Coulter channelizer. The loss of granulocyte activity due to adhesion to the fibers was determined by incubating the granulocytes with each fiber at 37°C for 30 minutes, and then quantifying the enzymes (in this case, lysozyme and lactate dehydrogenase [LDH]) that leaked out of the cells. The results are summarized in Table 1.
It can be seen that many of the adherent cells are granulocytes, and enzyme loss is very small. Example 2 In the same manner as in Example 1, acrylonitrile 93
%, 5 denier (diameter 24.6μ) made of polyacrylonitrile copolymer made of 7% vinyl acetate.
fibers were obtained. Using this fiber, blood components were separated in the same manner as in Example 1. The results are shown in Table 1. Example 3 In the same manner as in Example 1, acrylonitrile 93
%, 6% methyl acrylate and 1% sodium vinylbenzenesulfonate, polyacrylonitrile fibers are molded using dimethylacetamide,
Leukocyte differentiation was performed in the same manner. The results are summarized in Table 1. Example 4 Acrylic fiber (2.5 denier) molded under almost the same conditions as in Example 1 but using dimethyl sulfoxide instead of dimethyl acetamide.
A column was filled with the mixture, and a leukocyte separation experiment was conducted in the same manner as in Example 1. The results are shown in Table 1. Example 5 The polyacrylonitrile copolymer produced in Example 2 was molded to a size of 0.12 denier (3.8 μm in diameter), and leukocytes were separated and recovered in the same manner as in Example 1. The results are summarized in Table 1. Although the adhesion of granulocytes and lymphocytes is the same as in Examples 1 and 2, it can be seen that there is a large amount of enzyme leakage and that the degree of deactivation of granulocytes is large. Comparative Example 1 Acrylonitrile 92 was prepared by the method of Example 1.
%, 7.5% methyl acrylate, and 0.5% sodium methallylsulfonate, and mixed this in 60% sodium rhodanate water for 11 hours.
% concentration, spun in 13% sodium rhodanate water at 0°C, stretched 12 times in boiling water, crimped and heat treated at 120°C for 30 minutes to obtain acrylonitrile fiber. A leukocyte adhesion experiment was conducted in the same manner as in Example 1, and the results were as shown in Table 1. The purity of the recovered granulocytes (the proportion of granulocytes contained in white blood cells) is 70%, which is not much different from the proportion contained in white blood cells before separation, and it can be seen that there is no difference in the adhesiveness of granulocytes and lymphocytes. . 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の血液成分の分離回収装置であ
る。 1……カラム入口、2……カラム、3……繊維
状物質、4……カラム出口。
FIG. 1 shows a blood component separation and recovery apparatus of the present invention. 1... Column inlet, 2... Column, 3... Fibrous material, 4... Column outlet.

Claims (1)

【特許請求の範囲】 1 血液、体液又はこれらを処理して得られる血
球浮遊液から、血液成分の一部又は全部を分離回
収する装置に於いて、該装置が白血球中の顆粒球
成分を実質的に選択粘着させた後脱着させること
によつて該白血球成分を分離回収するための、下
記で規定されるヨー素配向度4以下のポリアクリ
ロニトリル系繊維状物質を充填した容器からなる
ことを特徴とする血液成分の分離回収装置。 長さL0のポリアクリロニトリル系繊維を25℃、
2時間、ヨー素濃度1.2モル/、ヨー素カリ濃
度1.5モル/を含む水溶液に浸漬後、収縮した
長さLを顕微鏡付マイクロメーターで測定して求
められるL0/L比。 2 ポリアクリロニトリル系繊維状物質の平均直
径が10μより大きいことを特徴とする特許請求の
範囲第1項記載の血液成分の分離回収装置。
[Scope of Claims] 1. In an apparatus for separating or recovering part or all of blood components from blood, body fluids, or a blood cell suspension obtained by processing these, the apparatus substantially eliminates granulocyte components in white blood cells. It is characterized by a container filled with a polyacrylonitrile-based fibrous material having an iodine orientation degree of 4 or less as defined below, for separating and recovering the leukocyte component by selectively adhering it and then desorbing it. Blood component separation and recovery equipment. Polyacrylonitrile fiber with length L 0 is heated at 25℃.
The L 0 /L ratio is determined by measuring the contracted length L using a micrometer with a microscope after immersion in an aqueous solution containing an iodine concentration of 1.2 mol/and a potassium iodine concentration of 1.5 mol/ for 2 hours. 2. The blood component separation and recovery device according to claim 1, wherein the average diameter of the polyacrylonitrile-based fibrous material is larger than 10μ.
JP55140822A 1980-10-08 1980-10-08 Separating and recovering apparatus of blood component Granted JPS5764615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55140822A JPS5764615A (en) 1980-10-08 1980-10-08 Separating and recovering apparatus of blood component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55140822A JPS5764615A (en) 1980-10-08 1980-10-08 Separating and recovering apparatus of blood component

Publications (2)

Publication Number Publication Date
JPS5764615A JPS5764615A (en) 1982-04-19
JPS643850B2 true JPS643850B2 (en) 1989-01-23

Family

ID=15277520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55140822A Granted JPS5764615A (en) 1980-10-08 1980-10-08 Separating and recovering apparatus of blood component

Country Status (1)

Country Link
JP (1) JPS5764615A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2673567B2 (en) * 1987-12-10 1997-11-05 株式会社日本抗体研究所 Method for removing granulocytes in blood and granulocyte removing apparatus used therefor
CN105954342A (en) * 2016-04-26 2016-09-21 兰州蓝星纤维有限公司 Method for testing density of polyacrylonitrile protofilament fibers

Also Published As

Publication number Publication date
JPS5764615A (en) 1982-04-19

Similar Documents

Publication Publication Date Title
EP0267286B1 (en) Filter medium for selectively removing leucocytes
KR100220927B1 (en) Filter medium for leukocyte removal
US5665233A (en) Filter apparatus for selectively removing leukocytes
EP2633871B1 (en) Novel leucocyte removal filter
CN1177620C (en) Leukocyte-removing filter material
JPH0642905B2 (en) Hemodialysis membrane
KR20190026842A (en) Filter elements for blood treatment filters, blood treatment filters and leukocyte removal methods
JPWO2002101029A1 (en) Method for separating and enriching cells for kidney regeneration
JP3176752B2 (en) Blood filtration material
US20030146150A1 (en) Novel leukapheretic filter
JP6143746B2 (en) Nucleated cell capture filter or nucleated cell preparation method using the same
JP3741320B2 (en) Leukocyte selective removal filter material
JP3270125B2 (en) Leukocyte trapping material
JPS643850B2 (en)
KR19990000270A (en) Leukocyte removal filter coated with chitosan
CN104923091B (en) Leukocyte filtration membrane, method for producing same, and use thereof
JP4135893B2 (en) Method for collecting blood from which leukocytes have been removed from a leukocyte removal filter
KR100229579B1 (en) Leucocyte removing filter coated with modified chitosan
JP2011194083A (en) Method for processing polyester nonwoven fabric and leukocyte removal filter comprising the nonwoven fabric processed
JP2001347116A (en) White blood cell removing filter device
JPH1142406A (en) Leucocyes removing filter medium
JPS5854126B2 (en) Leukocyte separation material
JP3467757B2 (en) Leukocyte removal filter
McDonald et al. Leukoreduction
JPS6330887B2 (en)