JPS643821B2 - - Google Patents

Info

Publication number
JPS643821B2
JPS643821B2 JP1040680A JP1040680A JPS643821B2 JP S643821 B2 JPS643821 B2 JP S643821B2 JP 1040680 A JP1040680 A JP 1040680A JP 1040680 A JP1040680 A JP 1040680A JP S643821 B2 JPS643821 B2 JP S643821B2
Authority
JP
Japan
Prior art keywords
suspension
raw materials
gel mass
raw material
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1040680A
Other languages
Japanese (ja)
Other versions
JPS56109853A (en
Inventor
Teruo Ogita
Shuichi Arakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoshima Chemical Co Ltd
Original Assignee
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co Ltd filed Critical Konoshima Chemical Co Ltd
Priority to JP1040680A priority Critical patent/JPS56109853A/en
Publication of JPS56109853A publication Critical patent/JPS56109853A/en
Publication of JPS643821B2 publication Critical patent/JPS643821B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、軽量珪酸カルシウム成形体の製造法
に関するものである。 従来この種軽量珪酸カルシウム成形体の製造方
法としては1)成形に先立ち珪酸原料と石灰原料
を水中煮沸混合し一旦かさ高い珪酸カルシウムゲ
ル粒子を含むスラリーとなした後成形し、オート
クレーブ養生する方法、2)成形前に珪酸カルシ
ウム結晶をつくり成形後直ちに乾燥する方法、な
ど何れもより軽量、より断熱性等を目的とする研
究が報告されている。 しかし前述従来法では何れも夫々得失があり、
1)法では軽量化が不充分2)法では乾燥収縮に
よる歪みが生じ易いなど夫々製品品質に問題を残
している。 本発明者は、以上従来技術の欠点を改善すべく
鋭意研究の結果、最もオリジナルな前記1)法に
おける原料懸濁液の撹拌加熱による昇温を可及的
短時間に行いその後保温静置し珪酸質原料と石灰
質原料とを静止状態でゲル化反応させ懸濁液全体
をゲル塊とした際は、このゲル塊は前記1)法に
よる珪酸カルシウムゲル粒子を含むスラリーとは
異り、極めて非圧縮性で同じ圧力にてプレス成形
しても得られる成形物は極めて抱水量が多いにも
かかわらず丈夫でハンドリング性のよいものとな
り、最終乾燥製品も極めて低密度軽量品となると
の知見に至り、更に研究の結果本発明に到達した
ものである。 即ち本発明は、 珪酸質原料、石灰質原料、繊維質原料を主体
とした原料懸濁液を撹拌加熱により速かに昇温
させた後保温静置して、懸濁液中の珪酸質原料
と石灰質原料とを静置ゲル化反応させ、懸濁液
全体をゲル塊となす第一工程と;第一工程で得
たゲル塊を成形し、オートクレーブ養生後乾燥
する第二工程とからなることを特徴とする、軽
量珪酸カルシウム成形体の製造法。 及び 珪酸質原料、石灰質原料、繊維質原料を主体
とした原料懸濁液を撹拌加熱により速かに昇温
させた後保温静置して、懸濁液中の珪酸質原料
と石灰質原料とを静置ゲル化反応させ、懸濁液
全体をゲル塊となすにあたり、前記懸濁液を、
石灰質原料とのゲル化反応の難易度を異にする
珪酸質原料毎にわけて調製し、各懸濁液毎にゲ
ル塊を得る第一工程と;第一工程で各懸濁液毎
に得たゲル塊を砕いた後まぜ合わせて成形し、
オートクレーブ養生後乾燥する第二工程とから
なることを特徴とする、軽量珪酸カルシウム成
形体の製造法。 を提供するものである(以下前者を第一法、後者
を第二法といい、両方法を含めて本法という)。 この種珪酸カルシウム成形製品の軽量性は成形
工程において如何に抱水量の多い成形物を得るか
と云うことと不可分の関係にある。従つて従来の
軽量化技術では殆んど例外なく原料をいきなり成
形せず、原料懸濁液を撹拌加熱し一旦抱水粒子と
もいうべき珪酸カルシウムゲル粒子を多数生成さ
せ、これらの粒子が水中に浮遊している状態のス
ラリーとした後プレス成形していた。 本法においても原料懸濁液の撹拌加熱は必要で
あり、これによつて原料懸濁液全体をゲル化反応
に必要な温度となすが、本法においては、撹拌加
熱は原料懸濁液の均一昇温の手段にすぎず、ゲル
化反応は、飽くまでも無撹拌無流動の静止系内で
行うことにより、原料懸濁液全体を流動性のない
ゲル塊となし、本来珪酸カルシウム粒子が含むゲ
ル水以外の全自由水をも包含したものとする。尚
従来この珪酸カルシウム化反応時の固形物濃度
は、生成ゲルが必要とする水及び生成したゲル粒
子が液内にて自由運動するに必要な水が共存して
いればそれ以上の水は全く無意味であるため通常
固形物原料の10〜15倍量の水を加えていた。しか
しながら、上述したところからも明らかなように
本法では単に珪酸カルシウムゲル粒子を生成させ
るのではなく、個々のゲル粒子を三次元的に連継
させ更に繊維質によつてこのゲル網目を補強し、
これらのゲル網目間隙に共存する自由水をも包含
させて反応槽内全体を一つの大きなゲル塊とする
ことが重要であるため反応槽内の固形物濃度を従
来における場合よりもうすくし、固形物原料に対
しその15〜30倍量の水を加えることが望ましい。 ゲル化温度、即ち、本法における保温静置が50
℃以下では抱水量の少ない柔らかいゲル塊しか得
られず、かといつて100℃以上の温度を得るため
には加熱に圧力缶を必要とする。従つて使用する
珪酸質原料の反応性にもよるが本法における保温
静置は、80〜90℃でおこなうことが望ましい。 上記した80〜90℃での保温静置時間は、原料依
存性が強いため、一様にはいえないが反応性のよ
い原料でも3時間以下ではゲル塊を得るに不充
分、反応性の悪い原料の場合15〜20時間を必要と
する。尚、24時間以内でゲル塊となし得ないもの
は本法原料として不適当である。 この種珪酸カルシウム成形体製造に用いられる
珪酸原料としては、従来から珪藻土、白土、珪
石、粘土類など珪酸分の多い天産品を始め、フエ
ロシリコンダスト、燐鉱石処理副産シリカなど各
種産業排棄物が使用されているが、珪藻土以外は
製品の質、コストなどの面から混用されるケース
が多い。この場合二種以上の珪酸原料は石灰原料
と共に同時に同一系内にてゲル化反応させるので
あるが、個々の珪酸原料は夫々結晶性、粒状など
が異り石灰との反応性も異るので両者の平均的ゲ
ル化反応条件を選定したとしても易反応性原料は
過反応(ゲル化反応が過ぎた場合最終製品の強度
が劣下する)となり難反応性原料はゲル化反応が
不充分となる。第二法は、この点に着目し夫々の
珪酸原料を夫々のゲル化反応条件にて別々にゲル
化反応させてゲル塊となし、ゲル塊を砕いた後混
合成形するものであり、本法の軽量化効果を最大
限に発揮させうるものである。 上記ゲル塊を解砕する工程でゲル塊を余りにも
微細化してしまつては本法の骨子とする一次硬化
による折角の巨大網目構造を破壊してしまうの
で、適当な粒状に解砕することが重要である。 第一法においては必ずしもゲル塊を解砕する必
要はなく所望の形状に切出しオートクレーブ養生
又は適当な重量、大きさに切出し成形、オートク
レーブ養生してもよい。 しかし本法を工業生産に実用化する場合はゲル
塊を一旦流動状態に変え成形機まで液体輸送する
のが得策であり、本発明者はこの点についても種
種実験を重ねた結果、ゲル塊を加水し乍ら解砕機
にかけ粒状スラリーとすることにより充分液体輸
送が可能でしかも軽量性を維持した成形体が得ら
れることを併せて見いだしている。 本法において原料懸濁液を調製するにあたり、
珪酸原料と石灰原料の混合懸濁液をボールミルな
どを用いて10〜30分間湿式摩砕処理した場合に
は、より強固なゲル塊、いいかえればプレス成形
時非圧縮性の大なゲル塊とすることができ、本法
効果をより助長させることができる。 この摩砕効果は一見微粒子原料には無意味と考
えられるが、微粒子原料程二次凝結性が強く現実
の粉末は逆に大きな二次凝縮粒子となつておるた
め反応性が劣る。又同じ大きさの粒子でも粉砕直
後はその表面がメカノケミカル的に活性化され
る。即ちこれら反応原料粉を予め水の存在下に湿
式摩砕する操作は、珪酸カルシウム生成反応を助
長して得られるゲル塊を強くし、より非圧縮性と
するために有益といえるのであり、これによつて
成形物は抱水率大なるにも拘らずハンドリング性
のよいものとなる。 この種珪酸カルシウム成形体としては、従来か
ら耐熱度650℃のトバモライト系と1000℃のゾノ
トライト系とが実用化されているが、本法を用い
てトバモライト系製品を得る場合は従来における
場合と同様に珪酸と石灰の割合をCaO/SiO2
ル比0.6〜0.9とし、オートクレーブ養生温度を
150〜180℃とする。又ゾノトライト系製品を目的
とする場合は原料として可及的アルミナ分の少な
いものを選びCaO/SiO2モル比0.9〜1.1とし、オ
ートクレーブ養生温度を180〜220℃とすればよ
い。 以上説明した本法は、従来の珪酸カルシウム成
形体よりもより軽量な珪酸カルシウム成形体を得
る方法として有益なものである。 以下、本法を、実施例並びに比較例によつて更
に説明する。 実施例 1 珪藻土64部(重量部)CaO10%の石灰乳360部、
水1500部、石綿5部、木質パルプ2部を混合して
原料懸濁液を調製した後、これに蒸気を吹込み、
昇温時間30分にて80℃とする。その後ゲル化反応
槽に移し約10時間保温静置し、ゲル塊を得る。こ
のゲル塊を大部分20〜30mm径となるように加水し
乍ら解砕し、プレス成形したのち、オートクレー
ブに入れ蒸気圧8Kg/cm2(175℃)にて8時間養
生硬化させ、乾燥して製品を得た。 実施例 2 実施例1において、ゲル塊を径約3mm以下に加
水し乍ら解砕することとした以外は実施例1と同
様に処理して製品を得た。 実施例 3 実施例1において、原料懸濁液の昇温時間を20
分とした以外は、実施例1と同様に処理して製品
を得た。 実施例 4 実施例1において、原料懸濁液の昇温時間を
120分とした以外は、実施例1と同様に処理して
製品を得た。 実施例 5 実施例1において、繊維質原料以外の混合懸濁
液を湿式ボールミルにて20分間摩砕し、その後繊
維質原料を混合して原料懸濁液を調製することと
した以外は、実施例1と同様に処理して製品を得
た。 比較例 1 実施例1において、原料懸濁液の調製後これを
15分間煮沸混合するのみで後保温静置せずに直ち
にプレス成形することとした以外は、実施例1と
同様に処理し製品を得た。 比較例 2 実施例1において、原料懸濁液の調製後これを
2時間煮沸混合するのみで後保温静置せずに直ち
にプレス成形することとした以外は、実施例1と
同様に処理し製品を得た。 実施例 6 珪藻土64部、フエロシリコンダスト25部、
CaO10%の石灰乳450部、耐アルカリ硝子繊維4.5
部、木質パルプ3部、水2400部を混合して原料懸
濁液を調製した後、これに昇温時間15分にて70℃
となるよう蒸気を吹込み、その後約8時間保温静
置して抱水ゲル塊を得る。次いで、このゲル塊を
加水し乍ら大部分20〜30mm径となるように解砕し
て粒状スラリーとし、プレス成形したのちオート
クレーブ内にて蒸気圧12Kg/cm2(190℃)にて10
時間処理後乾燥製品化した。 実施例 7 実施例6において、ゲル塊を径約3mm以下に加
水し乍ら解砕することとした以外は、実施例6と
同様に処理し製品を得た。 実施例 8 実施例6において、ゲル塊を大部分10〜20mm径
となるように加水し乍ら解砕することとした以外
は、実施例6と同様に処理し製品を得た。 実施例 9 実施例6において、繊維質原料以外の混合懸濁
液を湿式ボールミルにて15分間摩砕し、その後繊
維質原料を混合して原料懸濁液を調製することと
した以外は、実施例6と同様に処理して製品を得
た。 実施例 10 珪藻土64部、CaO10%の石灰乳360部、水1500
部、耐アルカリ硝子繊維3部、木質パルプ2部を
混合して原料懸濁液を調製した後、これを昇温時
間30分にて80℃となるよう蒸気加熱し、その後約
10時間保温静置して抱水ゲル塊を得、更にこのゲ
ル塊を加水し乍ら大部分10〜20mm径となるように
解砕しAスラリーとする。 別にフエロシリコンダスト25部、CaO10%の石
灰乳190部、水900部、耐アルカリ硝子繊維1.5部、
木質パルプ1部を混合して原料懸濁液を調製した
後、これを昇温時間20分にて70℃となるよう蒸気
加熱し、その後約8時間保温静置して抱水ゲル塊
を得、更にこのゲル塊を加水し乍ら大部分10〜20
mm径となるように解砕しBスラリーとする。 上記A,B両スラリーを混合後、実施例6同様
成形・オートクレーブ処理、乾燥して製品を得
た。 実施例 11 実施例10におけるA,B両スラリーの調製にあ
たり、ゲル塊を共に径約3mm以下に加水し乍ら解
砕することとした以外は、実施例10と同様処理し
て製品を得た。 実施例 12 実施例10におけるA,B両スラリーの調製にあ
たり、いずれも繊維質原料以外の混合懸濁液を湿
式ボールミルにて20分間摩砕し、その後繊維質原
料を混合して原料懸濁液を調製することとした以
外は、実施例10と同様に処理して製品を得た。 実施例 13 実施例11におけるA,B両スラリーの調製にあ
たり、いずれも繊維質原料以外の混合懸濁液を湿
式ボールミルにて20分間摩砕し、その後繊維質原
料を混合して原料懸濁液を調製することとした以
外は、実施例11と同様に処理して製品を得た。 比較例 3 実施例6において、原料懸濁液の調製後これを
30分間煮沸混合するのみで後保温静置せずに直ち
にプレス成形することとした以外は、実施例6と
同様に処理し製品を得た。 比較例 4 実施例6において、原料懸濁液の調製後これを
2時間煮沸混合するのみで後保温静置せずに直ち
にプレス成形することとした以外は、実施例6と
同様に処理し製品を得た。 以上の実施例、比較例製品の密度・強度を測定
するとともに比強度を算定したところ、次のよう
な結果を得た。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a lightweight calcium silicate molded body. Conventionally, methods for manufacturing this type of lightweight calcium silicate molded body include 1) prior to molding, a silicic acid raw material and a lime raw material are boiled and mixed in water to form a slurry containing bulky calcium silicate gel particles, and then molded and autoclaved for curing; 2) Research has been reported aimed at making the product lighter and more heat insulating, such as by creating calcium silicate crystals before molding and drying them immediately after molding. However, each of the conventional methods mentioned above has its advantages and disadvantages.
1) The weight reduction is insufficient with the 2) method, and distortion due to drying shrinkage is likely to occur with the 2) method, resulting in problems with product quality. As a result of intensive research to improve the drawbacks of the conventional techniques, the present inventors have discovered that the most original method 1) involves raising the temperature of the raw material suspension by stirring and heating it in the shortest possible time, and then leaving it to stand still while keeping it warm. When the siliceous raw material and the calcareous raw material are subjected to a gelation reaction in a static state and the entire suspension is made into a gel mass, this gel mass is extremely non-volatile, unlike the slurry containing calcium silicate gel particles obtained by the method 1) above. We have come to the knowledge that the molded product obtained by press molding at the same compressible pressure is strong and easy to handle despite having an extremely high water content, and the final dried product is also extremely low density and lightweight. As a result of further research, we have arrived at the present invention. That is, in the present invention, a raw material suspension mainly composed of a silicic raw material, a calcareous raw material, and a fibrous raw material is rapidly raised in temperature by stirring and heating, and then left to stand at a warm temperature to separate the silicic raw materials and the silicic raw materials in the suspension. The method consists of a first step in which the calcareous raw material is subjected to a stationary gelation reaction and the entire suspension is formed into a gel mass; a second step in which the gel mass obtained in the first step is shaped and dried after autoclaving. A manufacturing method for lightweight calcium silicate molded bodies. A raw material suspension mainly composed of silicic raw materials, calcareous raw materials, and fibrous raw materials is rapidly raised in temperature by stirring and heating, and then kept at a temperature to allow the silicic raw materials and calcareous raw materials in the suspension to separate. When performing a stationary gelation reaction to form the entire suspension into a gel mass, the suspension is
A first step in which silicic raw materials with different degrees of gelation reaction difficulty with calcareous raw materials are prepared and a gel mass is obtained for each suspension; After crushing the gel mass, mix and mold.
A method for producing a lightweight calcium silicate molded body, comprising a second step of drying after autoclave curing. (Hereinafter, the former is referred to as the first law, the latter as the second law, and both laws are collectively referred to as this law). The light weight of this type of calcium silicate molded product is inseparable from how much water retention can be obtained in the molding process. Therefore, with almost no exceptions, conventional weight reduction technologies do not suddenly mold the raw material, but instead stir and heat the raw material suspension to generate a large number of calcium silicate gel particles, which can be called hydrated particles. It was made into a suspended slurry and then press-molded. In this method as well, stirring and heating of the raw material suspension is necessary to bring the entire raw material suspension to the temperature required for the gelation reaction. The gelation reaction is simply a means of uniform temperature rise, and by performing the gelation reaction in a static system with no stirring and no flow, the entire raw material suspension becomes a gel mass with no fluidity, and the gel originally contained in calcium silicate particles is It also includes all free water other than water. Conventionally, the concentration of solids during this silicic acid calcification reaction is such that if the water required for the produced gel and the water necessary for the free movement of the produced gel particles in the liquid coexist, no more water will be added. Because it was meaningless, water was usually added in an amount 10 to 15 times the amount of solid material. However, as is clear from the above, this method does not simply generate calcium silicate gel particles, but instead connects individual gel particles three-dimensionally and further reinforces this gel network with fibrous material. ,
It is important to incorporate free water that coexists in the gaps between these gel networks and make the entire reaction tank into one large gel mass, so the solid concentration in the reaction tank is lower than in the conventional case, It is desirable to add 15 to 30 times the amount of water to the raw material. The gelation temperature, that is, the temperature at which the temperature is left standing in this method is 50
At temperatures below 100°C, only a soft gel mass with a low water content can be obtained; however, in order to reach a temperature above 100°C, a pressure canner is required for heating. Therefore, depending on the reactivity of the silicic acid raw material used, it is preferable that the temperature preservation in this method be carried out at 80 to 90°C. The above-mentioned incubation time at 80 to 90°C is highly dependent on the raw materials, so it cannot be said uniformly, but if it is less than 3 hours, it is insufficient to obtain a gel mass, even if the raw materials have good reactivity, and the reactivity is poor. In the case of raw materials, 15 to 20 hours are required. In addition, those that cannot be formed into a gel mass within 24 hours are unsuitable as raw materials for this method. The silicic acid raw materials used to manufacture this type of calcium silicate molded body have traditionally been natural products with a high silicic acid content such as diatomaceous earth, white clay, silica stone, and clay, as well as various industrial waste materials such as ferrosilicon dust and silica by-product of phosphate ore processing. Waste materials are used, but in many cases, materials other than diatomaceous earth are used in combination due to product quality and cost. In this case, two or more types of silicic acid raw materials are subjected to a gelation reaction together with lime raw materials in the same system, but since the individual silicic acid raw materials have different crystallinity and granularity, and have different reactivity with lime, both Even if average gelation reaction conditions are selected, easily reactive raw materials will overreact (if the gelation reaction exceeds, the strength of the final product will deteriorate), and less reactive raw materials will undergo an insufficient gelation reaction. . In the second method, focusing on this point, each silicic acid raw material is separately gelled under different gelation reaction conditions to form a gel mass, and the gel mass is crushed and then mixed and molded. The weight reduction effect can be maximized. If the gel mass is made too fine in the step of crushing the gel mass, the huge network structure caused by the primary hardening, which is the essence of this method, will be destroyed, so it is difficult to crush the gel mass into appropriate particles. is important. In the first method, it is not necessary to crush the gel mass, and it may be cut into a desired shape and cured in an autoclave, or cut into a suitable weight and size, molded, and cured in an autoclave. However, if this method is to be put to practical use in industrial production, it is best to first transform the gel mass into a fluid state and then transport the gel mass to the molding machine. It has also been found that by adding water and applying it to a crusher to form a granular slurry, it is possible to obtain a molded product that is capable of sufficient liquid transport and maintains light weight. In preparing the raw material suspension in this method,
When a mixed suspension of silicic acid raw materials and lime raw materials is wet-milled for 10 to 30 minutes using a ball mill, etc., it becomes a stronger gel mass, or in other words, a large gel mass that is incompressible during press molding. This can further enhance the effects of this method. At first glance, this grinding effect is thought to be meaningless for fine-particle raw materials, but the finer-particle raw materials have stronger secondary condensation properties, and in reality powders, on the other hand, have larger secondary condensed particles and are therefore less reactive. Even if the particles are of the same size, their surfaces are mechanochemically activated immediately after pulverization. In other words, the operation of wet-milling these reaction raw material powders in the presence of water in advance can be said to be beneficial in promoting the calcium silicate production reaction, strengthening the resulting gel mass, and making it more incompressible. As a result, the molded product has good handling properties despite having a high water retention rate. As this type of calcium silicate molded body, tobermorite type with heat resistance of 650℃ and xonotrite type with heat resistance of 1000℃ have been put into practical use, but when obtaining tobermorite type products using this method, it is the same as the conventional case. The ratio of silicic acid and lime was adjusted to a CaO/SiO 2 molar ratio of 0.6 to 0.9, and the autoclave curing temperature was adjusted to
The temperature should be 150-180℃. If the purpose is to produce a xonotrite-based product, a material with as little alumina content as possible is selected as the raw material, the CaO/SiO 2 molar ratio is 0.9 to 1.1, and the autoclave curing temperature is 180 to 220°C. The method described above is useful as a method for obtaining a calcium silicate molded body that is lighter than conventional calcium silicate molded bodies. The present method will be further explained below using Examples and Comparative Examples. Example 1 64 parts of diatomaceous earth (parts by weight), 360 parts of milk of lime with 10% CaO,
After preparing a raw material suspension by mixing 1500 parts of water, 5 parts of asbestos, and 2 parts of wood pulp, steam is blown into this.
The temperature is raised to 80°C in 30 minutes. Thereafter, it was transferred to a gelling reaction tank and left to stand for about 10 hours to obtain a gel mass. Most of this gel mass was crushed while adding water to a diameter of 20 to 30 mm, press-molded, placed in an autoclave, cured for 8 hours at a steam pressure of 8 kg/cm 2 (175°C), and dried. and obtained the product. Example 2 A product was obtained in the same manner as in Example 1, except that the gel mass was crushed while adding water to a diameter of about 3 mm or less. Example 3 In Example 1, the heating time of the raw material suspension was 20
A product was obtained by processing in the same manner as in Example 1, except that the mixture was divided into portions. Example 4 In Example 1, the heating time of the raw material suspension was
A product was obtained by processing in the same manner as in Example 1, except that the time was 120 minutes. Example 5 The same procedure was carried out as in Example 1, except that the mixed suspension other than the fibrous raw materials was ground for 20 minutes in a wet ball mill, and then the fibrous raw materials were mixed to prepare the raw material suspension. A product was obtained by processing in the same manner as in Example 1. Comparative Example 1 In Example 1, after preparing the raw material suspension, this
A product was obtained by processing in the same manner as in Example 1, except that the mixture was boiled and mixed for 15 minutes and immediately press-molded without being left to warm. Comparative Example 2 A product was processed in the same manner as in Example 1, except that after preparing the raw material suspension, it was only boiled and mixed for 2 hours and immediately press-molded without being kept warm. I got it. Example 6 64 parts of diatomaceous earth, 25 parts of ferrosilicon dust,
450 parts of milk of lime with 10% CaO, 4.5 parts of alkali-resistant glass fiber
After preparing a raw material suspension by mixing 3 parts of wood pulp, 3 parts of wood pulp, and 2400 parts of water, the mixture was heated to 70°C for 15 minutes.
Steam is blown into the mixture, and then the mixture is kept warm for about 8 hours to obtain a hydrated gel mass. Next, this gel mass is crushed into a granular slurry while adding water to a diameter of 20 to 30 mm, which is press-molded and then molded in an autoclave at a steam pressure of 12 kg/cm 2 (190°C) for 10 min.
After time treatment, it was made into a dried product. Example 7 A product was obtained in the same manner as in Example 6, except that the gel mass was crushed while adding water to a diameter of about 3 mm or less. Example 8 A product was obtained in the same manner as in Example 6, except that the gel mass was crushed while adding water so that most of the gel mass had a diameter of 10 to 20 mm. Example 9 The same procedure was carried out as in Example 6, except that the mixed suspension other than the fibrous raw materials was ground for 15 minutes in a wet ball mill, and then the fibrous raw materials were mixed to prepare the raw material suspension. A product was obtained by processing in the same manner as in Example 6. Example 10 64 parts of diatomaceous earth, 360 parts of milk of lime with 10% CaO, 1500 parts of water
After preparing a raw material suspension by mixing 1 part, 3 parts of alkali-resistant glass fiber, and 2 parts of wood pulp, this was heated with steam to a temperature of 80°C for 30 minutes, and then heated to approx.
A hydrated gel mass was obtained by keeping it warm for 10 hours, and the gel mass was further crushed into slurry A with a diameter of 10 to 20 mm while adding water. Separately, 25 parts of ferrosilicon dust, 190 parts of lime milk with 10% CaO, 900 parts of water, 1.5 parts of alkali-resistant glass fiber,
After preparing a raw material suspension by mixing 1 part of wood pulp, this was steam-heated to 70°C for 20 minutes, and then left to stand for about 8 hours to obtain a hydrated gel mass. , while adding water to this gel mass, most of the 10 to 20
The slurry is crushed to a diameter of mm to obtain slurry B. After mixing the slurries A and B, the slurries were molded, autoclaved and dried in the same manner as in Example 6 to obtain a product. Example 11 In preparing both slurries A and B in Example 10, a product was obtained by processing in the same manner as in Example 10, except that both gel lumps were crushed while adding water to a diameter of about 3 mm or less. . Example 12 In preparing both slurries A and B in Example 10, the mixed suspension other than the fibrous raw material was ground for 20 minutes in a wet ball mill, and then the fibrous raw material was mixed to form the raw material suspension. A product was obtained in the same manner as in Example 10, except that . Example 13 In preparing both slurries A and B in Example 11, the mixed suspensions other than the fibrous raw materials were ground in a wet ball mill for 20 minutes, and then the fibrous raw materials were mixed to form the raw material suspensions. A product was obtained in the same manner as in Example 11, except that . Comparative Example 3 In Example 6, after preparing the raw material suspension, this
A product was obtained in the same manner as in Example 6, except that the mixture was boiled and mixed for 30 minutes and immediately press-molded without being left to warm. Comparative Example 4 A product was processed in the same manner as in Example 6, except that after preparing the raw material suspension, it was only boiled and mixed for 2 hours, and then press-molded immediately without being kept warm. I got it. When the density and strength of the products of the above examples and comparative examples were measured and the specific strength was calculated, the following results were obtained. 【table】

Claims (1)

【特許請求の範囲】 1 珪酸質原料、石灰質原料、繊維質原料を主体
とした原料懸濁液を撹拌加熱により速かに昇温さ
せた後保温静置して、懸濁液中の珪酸質原料と石
灰質原料とを静置ゲル化反応させ、懸濁液全体を
ゲル塊となす第一工程と;第一工程で得たゲル塊
を成型し、オートクレーブ養生後乾燥する第二工
程とからなることを特徴とする、軽量珪酸カルシ
ウム成形体の製造法。 2 珪酸質原料、石灰質原料、繊維質原料を主体
とした原料懸濁液を撹拌加熱により速かに昇温さ
せた後保温静置して、懸濁液中の珪酸質原料と石
灰質原料とを静置ゲル化反応させ、懸濁液全体を
ゲル塊となすにあたり、前記懸濁液を、石灰質原
料とのゲル化反応の難易度を異にする珪酸質原料
毎にわけて調製し、各懸濁液毎にゲル塊を得る第
一工程と;第一工程で各懸濁液毎に得たゲル塊を
小さなゲル塊に解砕した後まぜ合わせて成型し、
オートクレーブ養生後乾燥する第二工程とからな
ることを特徴とする、軽量珪酸カルシウム成形体
の製造法。
[Scope of Claims] 1. A suspension of raw materials mainly composed of siliceous raw materials, calcareous raw materials, and fibrous raw materials is rapidly raised in temperature by stirring and heating, and then kept at a warm temperature to reduce the silicic acid content in the suspension. It consists of a first step in which the raw material and the calcareous material undergo a static gelation reaction and the entire suspension is formed into a gel mass; a second step in which the gel mass obtained in the first step is molded and dried after autoclaving. A method for producing a lightweight calcium silicate molded body, characterized by: 2. A raw material suspension mainly composed of silicic raw materials, calcareous raw materials, and fibrous raw materials is rapidly raised in temperature by stirring and heating, and then kept warm to separate the silicic raw materials and calcareous raw materials in the suspension. In order to form the entire suspension into a gel mass through a static gelation reaction, the suspension was prepared separately for each silicic material having a different degree of gelation reaction difficulty with the calcareous material, and each suspension was A first step of obtaining a gel mass for each suspension; The gel mass obtained for each suspension in the first step is crushed into small gel masses, and then mixed and molded.
A method for producing a lightweight calcium silicate molded body, comprising a second step of drying after autoclave curing.
JP1040680A 1980-01-30 1980-01-30 Manufacture of lightweight calcium silicate formed body Granted JPS56109853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1040680A JPS56109853A (en) 1980-01-30 1980-01-30 Manufacture of lightweight calcium silicate formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1040680A JPS56109853A (en) 1980-01-30 1980-01-30 Manufacture of lightweight calcium silicate formed body

Publications (2)

Publication Number Publication Date
JPS56109853A JPS56109853A (en) 1981-08-31
JPS643821B2 true JPS643821B2 (en) 1989-01-23

Family

ID=11749250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1040680A Granted JPS56109853A (en) 1980-01-30 1980-01-30 Manufacture of lightweight calcium silicate formed body

Country Status (1)

Country Link
JP (1) JPS56109853A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5497958B1 (en) * 2013-10-16 2014-05-21 ニチアス株式会社 Calcium silicate plate and method for producing the same

Also Published As

Publication number Publication date
JPS56109853A (en) 1981-08-31

Similar Documents

Publication Publication Date Title
US1932971A (en) Method of making light weight blocks
US2554934A (en) Method of manufacturing structural insulation
US2143670A (en) Synthesis of base exchange materials
JP2010222190A (en) Method for producing calcium silicate board
US3915725A (en) Process for producing hollow spherical aggregates of xonotlite
US2162386A (en) Process for the manufacture of insulating bodies
JPS643821B2 (en)
CA1058475A (en) Method for making lime-silica insulation from perlite
US2602754A (en) Production of high-temperature heat insulating material
RU2408633C1 (en) Method of producing silica-containing binder
US4477397A (en) Method for recycling greenware in the manufacture of hydrous calcium silicate insulation products
US5370852A (en) Primary particles of amorphous silica composite material, secondary particles of amorphous silica composite material, shaped bodies thereof and processes for their preparation
CN113087477A (en) Pure biomass source calcium silicate board and preparation process thereof
JPS59187700A (en) Production of heat resistant fiber molded article
JPS6140864A (en) Manufacture of lightweight calcium silicate formed body
EP0445301B1 (en) Composite primary particle of noncrystalline silica, composite secondary particle of noncrystalline silica, shaped form thereof and production thereof
US4523955A (en) Hydrous calcium silicate insulation products manufactured by recycling greenware
JPS60103067A (en) Manufacture of calcium silicate formed body
JPS6022643B2 (en) Calcium silicate hydrate aggregate
JPS6374949A (en) Manufacture of calcium silicate formed body
JPS6183667A (en) Manufacture of heat resistant molded body
US1571891A (en) Art of softening water
RU2036875C1 (en) Raw mixture for manufacture of wood building material
SU771052A1 (en) Method of making construction articles
SU808449A1 (en) Method of making lime-silica articles