JPS643441Y2 - - Google Patents

Info

Publication number
JPS643441Y2
JPS643441Y2 JP1982128404U JP12840482U JPS643441Y2 JP S643441 Y2 JPS643441 Y2 JP S643441Y2 JP 1982128404 U JP1982128404 U JP 1982128404U JP 12840482 U JP12840482 U JP 12840482U JP S643441 Y2 JPS643441 Y2 JP S643441Y2
Authority
JP
Japan
Prior art keywords
liquid
absorption
heat
temperature
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982128404U
Other languages
Japanese (ja)
Other versions
JPS5931404U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1982128404U priority Critical patent/JPS5931404U/en
Publication of JPS5931404U publication Critical patent/JPS5931404U/en
Application granted granted Critical
Publication of JPS643441Y2 publication Critical patent/JPS643441Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【考案の詳細な説明】 (イ) 考案の技術分野 本考案は、化学プロセス等の設備から得られる
熱を有効に利用して該設備に用いられている精留
塔から得られる塔頂蒸気より高温レベルの被加熱
流体を取り出す吸収ヒートポンプ装置に関する。
[Detailed explanation of the invention] (a) Technical field of the invention This invention effectively utilizes the heat obtained from equipment such as chemical processes to collect the overhead vapor obtained from the rectification tower used in the equipment. The present invention relates to an absorption heat pump device that takes out heated fluid at a high temperature level.

(ロ) 従来技術とその問題点 従来、石油精製その他の学プロセスにおける設
備では、精留塔の塔頂蒸気をコンデンサーで凝縮
し、更にクーラーで冷却した後、還流槽に導き、
該還流槽から一部を再び精留塔に戻し、一部を留
出液として取り出すことが行なわれている。
(b) Prior art and its problems Conventionally, in equipment used in petroleum refining and other scientific processes, the top vapor of a rectification tower is condensed in a condenser, further cooled in a cooler, and then led to a reflux tank.
A portion of the reflux tank is returned to the rectification column, and a portion is taken out as a distillate.

しかし、上記従来設備においては、コンデンサ
ー及びクーラーに供給する冷却水(例えば海水)
を設備外へ(例えば海へ)そのまま廃棄している
ために、上記設備から得られる熱を何ら利用する
ことなく棄てているのが通例であつた。それ故、
近年、第1図に示すように、上記設備に用いられ
ている精留塔1からの塔頂蒸気を吸収ヒートポン
プ2の熱源として利用することが提案されてい
る。第1図において、3,4,5,6及び7は、
夫々、前記吸収ヒートポンプ2の発生器、凝縮
器、蒸発器、吸収器及び溶液熱交換器で、これら
機器は、第1冷媒ポンプ8を有する冷媒液管9、
第2冷媒ポンプ10を有する冷媒液還流管11、
溶液ポンプ12を有する濃液管13及び稀液管1
4で気密に接続されており、前記発生器3及び蒸
発器5には、夫々、熱源管15及び16が収納さ
れ、前記凝縮器4及び吸収器6には夫々、冷却管
17及び被加熱流体取り出し管18が収納されて
いる。19は上記設備に用いられている還流槽、
20は前記精留塔1の塔頂と熱源管15,16と
を接続した塔頂蒸気導管、21は、塔頂蒸気が前
記導管20から熱源管15,16へと並流しつつ
発生器3において吸収液から冷媒を分離する加熱
源及び蒸発器5において液冷媒を気化する加熱源
として使用されて凝縮ドレンとなつたものを還流
槽19へ導くように、該還流槽と熱源管15,1
6とを接続したドレン管、22は該管と前記濃液
管13とを熱交換関係に配設したドレン熱回収
器、23は、前記還流槽19に導かれたドレンの
一部を精留塔1へ戻すように、該精留塔上部と還
流槽19とを接続した液ポンプ24付きの液戻し
管、25は、前記還流槽19に導かれたドレンの
一部を留出液として取り出すように、液戻し管2
3の液ポンプ24吐出側と接続した留出液管、2
6は前記精留塔1底部に接続した罐出液管、並び
に27は前記精留塔1の中間部に原液を導く原液
供給管である。而して、前記吸収ヒートポンプ2
の吸収器6において蒸発器5からの気化冷媒を吸
収液に吸収させる際に発生する熱(以下、吸収熱
という)により被加熱流体取り出し管18内の流
体を昇温し、塔頂蒸気温度以上の被加熱流体を取
り出すようにしている。
However, in the above conventional equipment, cooling water (e.g. seawater) supplied to the condenser and cooler
Because the heat obtained from the equipment was disposed of outside the equipment (for example, into the sea), it was customary to waste the heat obtained from the equipment without making any use of it. Therefore,
In recent years, as shown in FIG. 1, it has been proposed to utilize the top steam from a rectification column 1 used in the above-mentioned equipment as a heat source for an absorption heat pump 2. In Figure 1, 3, 4, 5, 6 and 7 are
Respectively, the generator, condenser, evaporator, absorber and solution heat exchanger of the absorption heat pump 2, these devices include a refrigerant liquid pipe 9 with a first refrigerant pump 8;
a refrigerant liquid return pipe 11 having a second refrigerant pump 10;
Concentrated liquid tube 13 and diluted liquid tube 1 with solution pump 12
The generator 3 and evaporator 5 house heat source tubes 15 and 16, respectively, and the condenser 4 and absorber 6 house a cooling tube 17 and a fluid to be heated, respectively. A take-out tube 18 is housed therein. 19 is a reflux tank used in the above equipment;
20 is a tower top steam conduit connecting the top of the rectification column 1 and the heat source tubes 15 and 16; 21 is a tower top steam conduit that connects the top of the rectification column 1 and the heat source tubes 15 and 16; The reflux tank and the heat source tubes 15 and 1 are used as a heat source to separate the refrigerant from the absorption liquid and to vaporize the liquid refrigerant in the evaporator 5, so that the condensed drain is guided to the reflux tank 19.
6 is connected to the drain pipe, 22 is a drain heat recovery device in which the pipe and the concentrated liquid pipe 13 are arranged in a heat exchange relationship, and 23 is a drain heat recovery device for rectifying a part of the drain led to the reflux tank 19. A liquid return pipe 25 with a liquid pump 24 connecting the upper part of the rectification column and the reflux tank 19 so as to return it to the column 1 takes out a part of the drain led to the reflux tank 19 as a distillate. As shown, liquid return pipe 2
A distillate pipe connected to the discharge side of the liquid pump 24 of No. 3, 2
Reference numeral 6 denotes a filtrate pipe connected to the bottom of the rectification column 1, and 27 a stock solution supply pipe that leads the stock solution to the middle part of the rectification column 1. Therefore, the absorption heat pump 2
In the absorber 6, the heat generated when the vaporized refrigerant from the evaporator 5 is absorbed into the absorption liquid (hereinafter referred to as absorption heat) raises the temperature of the fluid in the heated fluid extraction pipe 18 to a temperature higher than the top vapor temperature. The fluid to be heated is taken out.

しかし乍ら、第1図に示した吸収ヒートポンプ
装置においては、精留塔1から還流槽19への蒸
気及びドレンの流動は該還流槽と精留塔1との圧
力差並びに落差によつて行なわれており、ドレン
熱回収器22でのドレン流通抵抗が大き過ぎると
流動が行なわれなくなつて、精留塔1及び吸収ヒ
ートポンプ2が正常に働かなくなるおそれがある
ため、ドレン熱回収器22の伝熱面積を十分大き
くとれないと云う制約があり、また該ドレン熱回
収器の伝熱性能も良くないと云う欠点がある。
However, in the absorption heat pump device shown in FIG. 1, the flow of steam and condensate from the rectifying column 1 to the reflux tank 19 is performed by the pressure difference and head difference between the reflux tank and the rectifying column 1. If the condensate flow resistance in the condensate heat recovery device 22 is too large, the condensate will not flow and the rectification column 1 and the absorption heat pump 2 may not work properly. There is a restriction that the heat transfer area cannot be made sufficiently large, and there is also a disadvantage that the heat transfer performance of the drain heat recovery device is not good.

そのため、ドレン熱回収器22において、発生
器3から吸収器6へ送られる吸収液即ち濃液を十
分昇温できず、吸収熱が、濃液の飽和蒸気圧に相
当する温度になるまで、濃液の昇温に消費される
結果、吸収器6からの熱出力が低下する欠点すな
わち濃液の顕熱消費分だけ被加熱流体取り出し管
18から取り出す被加熱流体の熱量が低下する欠
点がある。
Therefore, in the drain heat recovery device 22, the temperature of the absorbing liquid, that is, the concentrated liquid sent from the generator 3 to the absorber 6 cannot be sufficiently raised, and the absorbed heat is not heated until the temperature corresponds to the saturated vapor pressure of the concentrated liquid. As a result of being consumed in raising the temperature of the liquid, there is a disadvantage that the heat output from the absorber 6 decreases, that is, the amount of heat of the heated fluid taken out from the heated fluid extraction pipe 18 decreases by the sensible heat consumption of the concentrated liquid.

(ハ) 問題点を解決するための手段 本考案は、上記問題点に鑑み、精留器からの塔
頂蒸気が吸収ヒートポンプの発生器及び蒸発器に
おいて加熱源として使用されてドレンとなつたも
のをそのまま直接還流槽に導くようにし、かつ、
該還流槽に導かれたドレンの一部即ち還流槽から
液ポンプによつて吐出される留出液で吸収ヒート
ポンプの発生器から吸収器へ送られる吸収液即ち
濃液を昇温する構成を採ることにより、化学プロ
セス等の設備から得られる熱を有効利用し、効率
良く塔頂蒸気温度以上の被加熱流体を取り出す吸
収ヒートポンプ装置を提供したものである。
(c) Means to solve the problem In view of the above problems, the present invention is a system in which the top vapor from the rectifier is used as a heating source in the generator and evaporator of an absorption heat pump and becomes a drain. directly into the reflux tank, and
A configuration is adopted in which a part of the drain led to the reflux tank, that is, a distillate discharged from the reflux tank by a liquid pump, is used to raise the temperature of the absorption liquid, that is, the concentrated liquid, sent from the generator of the absorption heat pump to the absorber. This provides an absorption heat pump device that effectively utilizes heat obtained from equipment such as chemical processes and efficiently extracts a fluid to be heated that has a temperature equal to or higher than the top steam temperature.

(ニ) 実施例 第2図は、本考案の実施例を示した図で、第1
図に示した構成要素と同様のものは同一の図番を
付している。第2図において22′は前記留出液
管25と濃液管13とを熱交換関係に配設した熱
回収器である。
(d) Embodiment Figure 2 is a diagram showing an embodiment of the present invention.
Components similar to those shown in the figures are given the same reference numbers. In FIG. 2, 22' is a heat recovery device in which the distillate pipe 25 and concentrated liquid pipe 13 are arranged in a heat exchange relationship.

斯る構成の吸収ヒートポンプ装置においては、
発生器3から吸収器6へ送られる吸収液即ち濃液
を液ポンプ24で吐出される留出液で昇温するよ
うに熱回収器22′を配設しているので、該熱回
収器は第1図に示した前記ドレン熱回収器22よ
りも伝熱面積を大きくでき、かつ留出液の流動状
態も乱流状態になるので、伝熱性能も良い。その
結果、留出液の熱即ち化学プロセスから得られる
熱を吸収ヒートポンプ2に有効に回収される。
In an absorption heat pump device with such a configuration,
Since the heat recovery device 22' is disposed so that the absorption liquid, that is, the concentrated liquid sent from the generator 3 to the absorber 6 is heated by the distillate discharged by the liquid pump 24, the heat recovery device Since the heat transfer area can be made larger than that of the drain heat recovery device 22 shown in FIG. 1, and the flow state of the distillate becomes turbulent, the heat transfer performance is also good. As a result, the heat of the distillate, that is, the heat obtained from the chemical process, is effectively recovered to the absorption heat pump 2.

また、還流槽19から液ポンプ24によつて吐
出される留出液の温度はドレン温度即ち蒸発器5
の熱源管16内での塔頂蒸気凝縮温度と略同レベ
ルにあり、熱回収器22′の伝熱面積を適当に選
定することにより、吸収器6に送られる濃液の温
度を、蒸発器5内の飽和蒸気圧言い代えれば吸収
器6内の濃液の飽和蒸気圧に相当する飽和温度近
くに昇温できるので、吸収熱の濃液昇温に費やさ
れる分が殆んど熱回収器22′によつて回収され
る結果、吸収器6から得られる被加熱流体熱量が
多くなつて吸収ヒートポンプ2の熱出力が向上即
ち効率が向上する。
Further, the temperature of the distillate discharged from the reflux tank 19 by the liquid pump 24 is the drain temperature, that is, the temperature of the evaporator 5.
By appropriately selecting the heat transfer area of the heat recovery device 22', the temperature of the concentrated liquid sent to the absorber 6 can be adjusted to the same level as the top vapor condensation temperature in the heat source tube 16. In other words, the temperature can be raised close to the saturated temperature corresponding to the saturated vapor pressure of the concentrated liquid in the absorber 6, so most of the absorbed heat spent on heating the concentrated liquid is transferred to the heat recovery device. As a result of being recovered by 22', the amount of heat of the heated fluid obtained from the absorber 6 is increased, and the heat output of the absorption heat pump 2 is improved, that is, the efficiency is improved.

尚、図示していないが、熱回収器22′を濃液
管13と罐出液管26と熱交換関係に配設するこ
とによつて濃液を昇温するようにしても良く、ま
た、原液や精留塔1底部の液を沸騰蒸発させるた
めに用いるリボイラーの熱源蒸気の凝縮ドレンで
濃液を昇温するようにしても良い。尚、罐出液や
リボイラーのドレン等留出液より高温の熱流体を
利用する場合には、熱回収22′を流れる熱流体
量を制御弁等で調節して濃液の温度上昇を飽和温
度以下にすることが望ましい。
Although not shown, the temperature of the concentrated liquid may be increased by arranging the heat recovery device 22' in a heat exchange relationship with the concentrated liquid pipe 13 and the canned liquid pipe 26. The temperature of the concentrated liquid may be raised by a condensation drain of heat source steam of a reboiler used to boil and evaporate the raw liquid or the liquid at the bottom of the rectification column 1. In addition, when using a hot fluid with a higher temperature than the distillate, such as canned liquid or reboiler drain, the amount of hot fluid flowing through the heat recovery 22' is adjusted with a control valve, etc. to keep the temperature rise of the concentrated liquid to the saturation temperature. It is desirable to do the following.

(ホ) 考案の効果 以上のように、本考案吸収ヒートポンプ装置
は、化学プロセス等の設備に用いられている精留
塔からの塔頂蒸気を、吸収ヒートポンプの発生器
と蒸発器とに並流させて熱源として使用し、塔頂
蒸気の凝縮した液の一部即ち留出液を液ポンプで
吐出しつつ前記吸収ヒートポンプの濃液を留出液
で昇温する熱回収器を配設したものであるから、
上記設備から得られる熱を有効利用し乍ら、塔頂
蒸気温度以上の被加熱流体を効率良く取り出すこ
とができ、また、塔頂蒸気を吸収ヒートポンプに
よつて凝縮させているので、還流槽から精留塔に
戻す液及び留出液を得るためのコンデンサーやク
ーラーも不要となる等、実用上有益な効果を奏す
る。
(e) Effects of the invention As described above, the absorption heat pump device of the invention allows the overhead vapor from the rectification column used in chemical process equipment to flow in parallel to the generator and evaporator of the absorption heat pump. A heat recovery device is installed to raise the temperature of the concentrated liquid of the absorption heat pump using the distillate while discharging a part of the liquid condensed from the tower top vapor, that is, the distillate, with a liquid pump. Because it is,
While making effective use of the heat obtained from the above equipment, it is possible to efficiently take out the heated fluid with a temperature higher than the tower top steam temperature.In addition, since the tower top steam is condensed by the absorption heat pump, it is possible to efficiently extract the heated fluid from the reflux tank. This has practical effects such as eliminating the need for a condenser or cooler for obtaining the liquid and distillate to be returned to the rectification column.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の吸収ヒートポンプ装置の回路
系統概略説明図、第2図は本考案実施例を示す吸
収ヒートポンプ装置の回路系統概略説明図であ
る。 1……精留塔、2……吸収ヒートポンプ、3…
…発生器、4……凝縮器、5……蒸発器、6……
吸収器、13……濃液管、15,16……熱源
管、19……還流槽、20……塔頂蒸気導管、2
1……ドレン管、24……液ポンプ、25……留
出液管、22′……熱回収器。
FIG. 1 is a schematic explanatory diagram of a circuit system of a conventional absorption heat pump device, and FIG. 2 is a schematic explanatory diagram of a circuit system of an absorption heat pump device showing an embodiment of the present invention. 1... Rectification column, 2... Absorption heat pump, 3...
... Generator, 4... Condenser, 5... Evaporator, 6...
Absorber, 13... concentrated liquid pipe, 15, 16... heat source tube, 19... reflux tank, 20... tower top steam conduit, 2
1... Drain pipe, 24... Liquid pump, 25... Distillate pipe, 22'... Heat recovery device.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 化学プロセス等の設備に用いられている精留塔
からの塔頂蒸気を、吸収ヒートポンプの発生器及
び蒸発器に並流させて吸収液からの冷媒分離と液
冷媒の気化作用との加熱源として使用した後、前
記設備に用いられている還流槽へ導く配管を設
け、かつ該還流槽から液ポンプによつて吐出され
る留出液で前記吸収ヒートポンプの発生器から吸
収器へ送られる吸収液を昇温する熱回収器を配設
し、前記吸収ヒートポンプの吸収器において蒸発
器からの気化冷媒を吸収液に吸収させる際に発生
する熱により塔頂蒸気温度以上の被加熱流体を取
り出すようにしたことを特徴とする吸収ヒートポ
ンプ装置。
The top vapor from a rectification column used in equipment such as chemical processes is passed through the generator and evaporator of an absorption heat pump in parallel to serve as a heating source for separating the refrigerant from the absorption liquid and vaporizing the liquid refrigerant. After use, an absorption liquid is provided with piping leading to a reflux tank used in the equipment, and the distillate discharged from the reflux tank by a liquid pump is sent from the generator of the absorption heat pump to the absorber. A heat recovery device is installed to raise the temperature of the absorption heat pump, and the heat generated when the vaporized refrigerant from the evaporator is absorbed into the absorption liquid in the absorber of the absorption heat pump is used to extract the fluid to be heated whose temperature is higher than the top vapor temperature. An absorption heat pump device characterized by:
JP1982128404U 1982-08-24 1982-08-24 Absorption heat pump device Granted JPS5931404U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1982128404U JPS5931404U (en) 1982-08-24 1982-08-24 Absorption heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1982128404U JPS5931404U (en) 1982-08-24 1982-08-24 Absorption heat pump device

Publications (2)

Publication Number Publication Date
JPS5931404U JPS5931404U (en) 1984-02-27
JPS643441Y2 true JPS643441Y2 (en) 1989-01-30

Family

ID=30291302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1982128404U Granted JPS5931404U (en) 1982-08-24 1982-08-24 Absorption heat pump device

Country Status (1)

Country Link
JP (1) JPS5931404U (en)

Also Published As

Publication number Publication date
JPS5931404U (en) 1984-02-27

Similar Documents

Publication Publication Date Title
US5314586A (en) Purifying and energy-saving water fountain capable of supplying icy, warm and hot distilled water
JP3078364B2 (en) High temperature hot water removal device in absorption chiller / heater
US2337439A (en) Refrigeration
JPS643441Y2 (en)
JPH029340Y2 (en)
JPH06137708A (en) Energy conservation type purified water storage vessel capable of supplying distilled cold water, warm water and hot water
CN216711640U (en) Overhead condensing device for water treatment distillation tower
JPS58219371A (en) Double effect absorption type heat pump
KR840000451B1 (en) Absorption refrigeration system
JPS6136137Y2 (en)
JPS6124956A (en) Discharger for noncondensable gas
JPH0355741B2 (en)
KR810002041Y1 (en) Congelation device of hot water accumulating tank for solar heating house
JP2899645B2 (en) Absorption refrigerator
JPS629487Y2 (en)
SU800527A1 (en) Absorption-type solar cooling plant
JPH0350373Y2 (en)
KR0184203B1 (en) Rectifier of ammonia absorptive refrigerator
JPS5842719Y2 (en) Low-temperature liquefied gas vaporization equipment
JPS6219201A (en) Absorption heat pump
JPS60178776U (en) Noncondensable gas evacuation device in absorption heat pump
JPS63210503A (en) Condensate reheat deaerator
GB415417A (en) Improvements in or relating to absorption refrigerating apparatus
JPH0441270B2 (en)
JPS59153077A (en) Bleeding device for absorption heat pump