JPS643372B2 - - Google Patents

Info

Publication number
JPS643372B2
JPS643372B2 JP56074301A JP7430181A JPS643372B2 JP S643372 B2 JPS643372 B2 JP S643372B2 JP 56074301 A JP56074301 A JP 56074301A JP 7430181 A JP7430181 A JP 7430181A JP S643372 B2 JPS643372 B2 JP S643372B2
Authority
JP
Japan
Prior art keywords
circuit
signal
timing
output
polarity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56074301A
Other languages
Japanese (ja)
Other versions
JPS57190415A (en
Inventor
Botaro Hirosaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56074301A priority Critical patent/JPS57190415A/en
Priority to CA000402991A priority patent/CA1180416A/en
Priority to US06/379,408 priority patent/US4423518A/en
Publication of JPS57190415A publication Critical patent/JPS57190415A/en
Publication of JPS643372B2 publication Critical patent/JPS643372B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0054Detection of the synchronisation error by features other than the received signal transition
    • H04L7/0062Detection of the synchronisation error by features other than the received signal transition detection of error based on data decision error, e.g. Mueller type detection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K9/00Demodulating pulses which have been modulated with a continuously-variable signal
    • H03K9/02Demodulating pulses which have been modulated with a continuously-variable signal of amplitude-modulated pulses

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、パルス振幅変調(PAM)信号の受
信部で使用されるタイミング抽出回路に関する。 一般に離散的なL個の振幅値を有するLレベル
のPAM信号を受信する場合は、受信信号を正し
いタイミング時点でサンプルして、タイミング時
点の振幅レベルを判定する必要がある。この場
合、正しいサンプル位置を決めるためのタイミン
グ信号が必要となる。タイミング信号は、通常受
信信号自身から何らかの形で抽出する自己タイミ
ング方式によつて得られる。従来の自己タイミン
グ方式の1つに、非線形抽出法がある。これは、
受信されたPAM信号に2乗操作等の非線形操作
を施すとクロツク周波数位置に輝線スペクトルが
生ずるという性質を利用してタイミング抽出する
ものである。このため、非線形操作を行なう非線
形回路を必要とし、さらにクロツク周波数位置に
生じた輝線スペクトルを通過させる帯域フイルタ
および輝線スペクトルのレベル変動を除去するた
めの振幅制限回路が必要である。このため、回路
が複雑であるという欠点がある。また、上述の非
線形回路および振幅制限回路等は、高周波領域で
は動作不全を起こし易い。そのため、抽出された
タイミング信号に不必要な位相雑音が混入しやす
いという欠点がある。 従来のもう1つの自己タイミング方式に、最尤
検出法がある。この方式は、受信PAM信号を微
分して微分波形の零交叉点にタイミング位置が来
るようにタイミング信号発生回路を制御するもの
である。この方式は、前述のような非線形回路を
必要とせず、しかも、タイミング信号発生部には
通常電圧制御発振器が使用されるため、常に一定
振幅のタイミング信号が得られ、振幅制限に伴な
う余分な位相雑音が混入してこないという特徴が
ある。しかし、微分回路および微分波形のサンプ
ル値(あるいはサンプル値の極性信号)を保持す
るサンプルホールド回路が必要であるため、回路
規模が大でかつ複雑となる欠点がある。さらに、
微分波形のサンプル値は、受信波形の波形変動に
敏感であるため、伝送路における波形劣化を極力
小さくする必要がある。すなわち、高価な伝送路
を必要とする欠点がある。 本発明の目的は、従来の自己タイミング方式に
おける上述の従来の欠点を解決し、受信波形の劣
化に対しても安定に動作し、しかも回路規模が著
しく小さいタイミング抽出回路を提供することに
ある。 本発明のタイミング抽出回路は、パルス振幅変
調信号の受信部におけるタイミング抽出回路にお
いて、受信信号と受信信号を1クロツク遅延させ
た信号との差を出力する遅延差分回路と、制御電
圧によつて発振周波数が制御されたタイミング信
号を発生する電圧制御発振回路と、該電圧制御発
振回路の出力するタイミング信号により受信信号
と所定のしきい値との差の極性を判定する極性判
定回路と、該極性判定回路の出力信号に応じて前
記遅延差分回路の出力信号をそのまま又は極性反
転させて出力するゲート回路と、該ゲート回路の
出力を平滑するフイルタとを有し、該フイルタの
出力により前記電圧制御発振回路の発振周波数を
制御することを特徴とする。 次に、本発明について、図面を参照して詳細に
説明する。 第1図は、本発明の一実施例を示すブロツク図
である。すなわち、入力端子1から入力した受信
PAM信号y(t)を遅延差分回路2および極性判
定回路3に入力させる。遅延差分回路2は、入力
信号y(t)と、1クロツクTだけの前の入力信
号y(t−T)との差をとつて差分信号を出力す
る回路であり、例えば差動増幅器と遅延回路によ
つて構成される。極性判定回路3は、電圧制御発
振回路6の出力するタイミング信号により、入力
信号y(t)と所定のしきい値との差の極性を判
定する。すなわち、サンプル時点において、受信
信号y(t)がしきい値より大であるときは“+
1”を出力し、受信信号がしきい値に満たないと
きは“−1”を出力する。ゲート回路4は、極性
判定回路3の出力信号が“+1”のときは前記遅
延差分回路2の出力する差分信号をそのままルー
プフイルタ5に入力させ、極性判定回路3の出力
信号が“−1”のときは前記差分信号の極性を反
転させてループフイルタ5に入力させる。例え
ば、利得1の増幅器と、反転回路とを極性判定回
路3の出力によつて切替接続するように構成すれ
ば良い。または、リング変調器と同様な接続によ
つて構成することもできる。そして、ゲート回路
4の出力信号は、ループフイルタ5によつて平滑
され電圧制御発振回路6に制御電圧として供給さ
れる。電圧制御発振回路6は、該制御電圧によつ
て発振周波数が制御されたタイミング信号を発生
し、該タイミング信号によつて前記極性判定回路
3の極性判定タイミングを得る。 次に、第1図および第2図を参照して本実施例
の動作の一例により本発明の原理を説明する。受
信PAM信号y(t)は、 y(t)=k=-∞ akg(t−kT) …(1) と表わすことができる。但しg(t)は単位受信
波形であり、{a〓}は、一般に多値符号系列で0,
1,2,…,L−1のL個のレベルのうちある値
を取る。簡単のため{a〓}を1,0の2値系列と
した場合は、受信信号y(t)は第2図aに示す
ような波形になる。 次に、遅延差分回路2の出力、すなわち1クロ
ツク遅延差分信号x(t)は、 x(t)=y(t)−y(t−T)=k=-∞ (a〓−a〓-1)g(t−kT) …(2) となる。第2図aに対する遅延差分信号x(t)
は、第2図bに示すような波形となる。 今電圧制御発振回路6の出力するタイミング信
号が、第2図cに示すように、正しいタイミング
位置からΔtだけずれて発生する場合を考えると、
受信信号y(t)を上記タイミングにより、しき
い値(L−1)/2に対して正負を判定して得ら
れる極性判定回路3の出力信号d(t)は、Δtが
小さい範囲では、 d(t)=k=-∞ b〓u(t−kT−Δt) …(3) と表わすことができる。但し、b〓は〔a〓−(L−
1)/2〕が正のとき+1となる値をとり、〔a〓
−(L−1)/2〕が負のとき−1なる値をとる
2値系列であり、u(t)は0≦t≦Tで1とな
りそれ以外では0となる矩形波である。第2図a
に示す受信信号に対して、第2図cに示すタイミ
ング信号により極性判定した出力信号d(t)は
第2図dに示すようになる。また第2図c′に示す
ように、正しいタイミング位置よりΔt′だけ進ん
だタイミング信号によつて極性判定した場合は第
2図d′に示すような判定出力信号となる。 次に、ゲート回路4の出力信号z(t)は、 z(t)= 〓nm (ao−ao-1)bng(t−nT)u(t−mT−Δt) …(4) 例えば、第2図dに示した判定出力信号d(t)
の場合のゲート回路4の出力信号z(t)は、第
2図eに示すようになり、第2図d′に示した判定
出力信号d′によつては、第2図e′に示すような出
力信号が得られる。これらの図から理解されるよ
うに、第2図eの場合の平均値は負であり、第2
図e′の場合の平均値は正であるから、ループフイ
ルタ5の出力により電圧制御発振回路6の発振周
波数を制御することによつて、正しいタイミング
位置からのずれΔtが小さいタイミング信号を得
ることができる。 上記信号z(t)の平均値()は、{ao}が
互に独立な定常ランダム系列である場合は、 ()= 〓nmoo-1)bng(t−nT)u(t−mT−Δt) = 〓n 〓 〓mo oδo.n on(1−δon)−o-1 o-1δ
o-1,no-1 n(1−δo-1,n)〕 ×g(t−nT)u(t−mT−Δt) …(5) ここでδo,nは、クロネツカデルタである(すな
わち、n=mのときδo,n=1,それ以外のとき
δo,n=0)。(5)式において、aoboおよびon
は、各々添字n,mに依存しないから、これらを
abおよびと表わすと、(5)式は次のように変
形することができる。 ()=(−) 〓 〓n g(t−nT)×〔u(t−nT−Δt)u(t−nT+T−
Δt)〕…(6) z(t)の直流成分をΔtの関数としてD(Δt)
と表わすと、D(Δt)は(6)式より、 と表わされる。ここでG(ω)およびU(ω)はそ
れぞれg(t)およびu(t)のフーリエ変換であ
り、U*(ω)はU(ω)の複素共役である。上記
(7)式は更に次の様に変形される。 ここで、g(t)およびu(t+T/2)は、それ ぞれt=0に関しほぼ偶対称な実関数であるか
ら、G(ω)および
The present invention relates to a timing extraction circuit used in a pulse amplitude modulation (PAM) signal receiver. Generally, when receiving an L-level PAM signal having L discrete amplitude values, it is necessary to sample the received signal at a correct timing to determine the amplitude level at the timing. In this case, a timing signal is required to determine the correct sample position. The timing signal is usually obtained by a self-timing method that is extracted in some way from the received signal itself. One of the conventional self-timing methods is the nonlinear extraction method. this is,
Timing is extracted by utilizing the property that when a received PAM signal is subjected to a nonlinear operation such as a squaring operation, an emission line spectrum is generated at the clock frequency position. Therefore, a nonlinear circuit that performs nonlinear operation is required, and a bandpass filter for passing the bright line spectrum generated at the clock frequency position and an amplitude limiting circuit for eliminating level fluctuations in the bright line spectrum are also required. Therefore, there is a drawback that the circuit is complicated. Further, the above-mentioned nonlinear circuit, amplitude limiting circuit, etc. tend to malfunction in a high frequency region. Therefore, there is a drawback that unnecessary phase noise is likely to be mixed into the extracted timing signal. Another conventional self-timing method is the maximum likelihood detection method. This method differentiates the received PAM signal and controls the timing signal generation circuit so that the timing position is at the zero crossing point of the differentiated waveform. This method does not require the nonlinear circuit described above, and since a voltage-controlled oscillator is usually used in the timing signal generation section, a timing signal with a constant amplitude is always obtained, and the unnecessary It has the characteristic that no phase noise is mixed in. However, since a differential circuit and a sample hold circuit for holding sample values of the differential waveform (or polarity signals of the sample values) are required, there is a drawback that the circuit scale is large and complicated. moreover,
Since the sample value of the differential waveform is sensitive to waveform fluctuations of the received waveform, it is necessary to minimize waveform deterioration in the transmission path. That is, it has the disadvantage of requiring an expensive transmission line. SUMMARY OF THE INVENTION An object of the present invention is to provide a timing extraction circuit which solves the above-mentioned drawbacks of the conventional self-timing method, operates stably even in the face of deterioration of a received waveform, and has a significantly small circuit scale. The timing extraction circuit of the present invention includes a delay difference circuit that outputs a difference between a received signal and a signal delayed by one clock, and a delay difference circuit that outputs a difference between a received signal and a signal delayed by one clock, and a timing extraction circuit in a receiving section of a pulse amplitude modulation signal. a voltage controlled oscillation circuit that generates a timing signal with a controlled frequency; a polarity determination circuit that determines the polarity of a difference between a received signal and a predetermined threshold based on the timing signal output from the voltage controlled oscillation circuit; It has a gate circuit that outputs the output signal of the delay difference circuit as it is or with its polarity inverted according to the output signal of the determination circuit, and a filter that smoothes the output of the gate circuit, and controls the voltage based on the output of the filter. It is characterized by controlling the oscillation frequency of the oscillation circuit. Next, the present invention will be explained in detail with reference to the drawings. FIG. 1 is a block diagram showing one embodiment of the present invention. In other words, the reception input from input terminal 1
The PAM signal y(t) is input to the delay difference circuit 2 and the polarity determination circuit 3. The delay difference circuit 2 is a circuit that calculates the difference between the input signal y(t) and the previous input signal y(t-T) by one clock T and outputs a difference signal. It is composed of circuits. The polarity determination circuit 3 determines the polarity of the difference between the input signal y(t) and a predetermined threshold value based on the timing signal output from the voltage controlled oscillation circuit 6. That is, when the received signal y(t) is greater than the threshold at the sampling time, “+
1", and when the received signal does not meet the threshold value, it outputs "-1". When the output signal of the polarity determination circuit 3 is "+1", the gate circuit 4 outputs the signal of the delay difference circuit 2. The output difference signal is input as is to the loop filter 5, and when the output signal of the polarity determination circuit 3 is "-1", the polarity of the difference signal is inverted and input to the loop filter 5. For example, an amplifier with a gain of 1 The output of the gate circuit 4 may be configured to be switched and connected to the inverting circuit according to the output of the polarity determination circuit 3. Alternatively, the configuration may be configured using a connection similar to that of a ring modulator. The signal is smoothed by the loop filter 5 and supplied as a control voltage to the voltage controlled oscillation circuit 6. The voltage controlled oscillation circuit 6 generates a timing signal whose oscillation frequency is controlled by the control voltage. The polarity determination timing of the polarity determination circuit 3 is obtained by the timing signal.Next, the principle of the present invention will be explained by an example of the operation of this embodiment with reference to FIGS. 1 and 2.Received PAM signal y(t) can be expressed as y(t)= k=-∞ a k g(t-kT)...(1) However, g(t) is a unit received waveform, and {a〓 } is generally a multilevel code sequence of 0,
A certain value is taken among L levels of 1, 2, . . . , L-1. For simplicity, if {a} is a binary series of 1 and 0, the received signal y(t) will have a waveform as shown in FIG. 2a. Next, the output of the delay difference circuit 2, that is, the one-clock delay difference signal x(t), is expressed as-1 )g(t-kT)...(2) Delayed difference signal x(t) for FIG. 2a
has a waveform as shown in FIG. 2b. Now consider the case where the timing signal output from the voltage controlled oscillator circuit 6 is generated with a deviation of Δt from the correct timing position, as shown in FIG. 2c.
The output signal d(t) of the polarity determining circuit 3 obtained by determining whether the received signal y(t) is positive or negative with respect to the threshold value (L-1)/2 at the above timing is as follows in the range where Δt is small: It can be expressed as d(t)= k=-∞ b〓u(t-kT-Δt)...(3). However, b〓 is [a〓−(L−
1)/2] is positive, it takes a value of +1, and [a〓
-(L-1)/2] is a binary series that takes a value of -1 when it is negative, and u(t) is a rectangular wave that is 1 when 0≦t≦T and 0 otherwise. Figure 2a
With respect to the received signal shown in FIG. 2, the output signal d(t) whose polarity is determined by the timing signal shown in FIG. 2c becomes as shown in FIG. 2d. Further, as shown in FIG. 2 c', when polarity is determined using a timing signal that is advanced by Δt' from the correct timing position, the determined output signal is as shown in FIG. 2 d'. Next, the output signal z(t) of the gate circuit 4 is as follows . (4) For example, the judgment output signal d(t) shown in Fig. 2d
In this case, the output signal z(t) of the gate circuit 4 becomes as shown in FIG. 2 e, and depending on the judgment output signal d' shown in FIG. An output signal like this is obtained. As can be understood from these figures, the average value in the case of Figure 2e is negative, and the average value in the case of Figure 2e is negative.
Since the average value in the case of Figure e' is positive, by controlling the oscillation frequency of the voltage controlled oscillation circuit 6 using the output of the loop filter 5, a timing signal with a small deviation Δt from the correct timing position can be obtained. I can do it. The average value ( ) of the above signal z( t ) is () = 〓 nm ( oo-1 ) b n g (t- nT) u(t-mT-Δt) = 〓 n 〓 〓 m [ o o δ on on (1−δ o , n ) − o-1 o-1 δ
o-1,no-1 n (1−δ o-1,n )] ×g(t−nT)u(t−mT−Δt) …(5) Here, δ o,n is the Kuronetsuka delta (that is, δ o,n =1 when n=m, δ o,n =0 otherwise). In equation (5), a o b o and on
do not depend on the subscripts n and m, respectively, so these can be written as
When expressed as ab and, equation (5) can be transformed as follows. ()=(-) 〓 〓 n g(t-nT)×[u(t-nT-Δt)u(t-nT+T-
Δt)]...(6) D(Δt) using the DC component of z(t) as a function of Δt
Then, D(Δt) is given by equation (6), It is expressed as Here G(ω) and U(ω) are the Fourier transforms of g(t) and u(t), respectively, and U * (ω) is the complex conjugate of U(ω). the above
Equation (7) can be further transformed as follows. Here, since g(t) and u(t+T/2) are real functions that are almost even symmetric with respect to t=0, G(ω) and

【式】は各々ω= 0に関して偶対称な実関数となることが理解され
る。従つて(8)式の複積分関数の第1項すなわち、 はωに関する奇関数となり、この積分は0とな
る。故に、(8)式は更に簡略化されて、 となる。また(9)式より明かに、 D(Δt)=−D(−Δt) すなわち、D(Δt)はΔtに関する奇関数である。
従つて、例えば制御信号Dによつて電圧制御発振
器の出力周波数を制御し、Δtが正のとき発振周
波数を上昇させ、Δtが負のときは発振周波数を
低下させることにより、常に正しいタイミング位
置を示すタイミング信号を抽出することができ
る。 また、単位波形g(t)は通常高域側(ωTが
2πに近い周波数領域)での歪を受け易いため、
G(ω)はこれに応じて理想状態からずれてくる。
しかし、(9)式から理解されるように、ωT=2π近
傍の周波数成分はsinωT/2によつて抑圧されるた め、Dの値はg(t)の歪の影響を受け難いとい
う効果がある。換言すれば、伝送路の伝送特性が
劣悪な場合においても正しいタイミング信号を抽
出することができる。 以上のように、本発明においては、受信信号の
1クロツク遅延差分信号の極性を、受信信号をタ
イミング信号によつて識別した信号によつて正、
逆転させた信号を平滑して前記タイミング信号の
周波数を制御するように構成したから、受信波形
の劣化による影響を受け難いという効果がある。
すなわち、伝送特性が劣悪な場合にも使用するこ
とができる。なお、伝送路で受けた歪を例えば等
化増幅器によつて等化した信号を入力すればさら
に良好な結果が得られることは勿論である。な
お、本発明の構成は簡単であり、回路規模も小で
ある。また遅延差分回路は通常の差動増幅器など
で簡単に構成され、ゲート回路には市販のアナロ
グマルチプレクサ等を用いることができる。ま
た、これらは高周波まで安定して動作することが
できるという利点もある。例えば、小さな消費電
力が要求されるPCM中継器等に適しており、実
用上の効果はすこぶる大である。
It is understood that each of the equations is a real function with even symmetry with respect to ω=0. Therefore, the first term of the compound integral function in equation (8), that is, is an odd function with respect to ω, and this integral becomes 0. Therefore, equation (8) can be further simplified as becomes. Furthermore, it is clear from equation (9) that D(Δt)=−D(−Δt), that is, D(Δt) is an odd function with respect to Δt.
Therefore, for example, by controlling the output frequency of the voltage controlled oscillator using the control signal D, increasing the oscillation frequency when Δt is positive, and decreasing the oscillation frequency when Δt is negative, it is possible to always maintain the correct timing position. The timing signal shown can be extracted. Also, the unit waveform g(t) is usually on the high frequency side (ωT is
Because it is susceptible to distortion in the frequency range (close to 2π),
G(ω) deviates from the ideal state accordingly.
However, as can be understood from equation (9), the frequency components near ωT = 2π are suppressed by sinωT/2, so the value of D is less affected by the distortion of g(t). be. In other words, a correct timing signal can be extracted even when the transmission characteristics of the transmission path are poor. As described above, in the present invention, the polarity of the one-clock delay difference signal of the received signal can be changed to positive or
Since the frequency of the timing signal is controlled by smoothing the inverted signal, there is an effect that it is not easily affected by deterioration of the received waveform.
That is, it can be used even when transmission characteristics are poor. It goes without saying that even better results can be obtained by inputting a signal in which the distortion received in the transmission line has been equalized, for example, by an equalizing amplifier. Note that the configuration of the present invention is simple and the circuit scale is small. Further, the delay differential circuit can be easily constructed using a normal differential amplifier, and a commercially available analog multiplexer or the like can be used as the gate circuit. They also have the advantage of being able to operate stably up to high frequencies. For example, it is suitable for PCM repeaters that require low power consumption, and the practical effect is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロツク図で
あり、第2図は上記実施例の動作を説明するため
の主要各部における信号の一例を示す波形図であ
る。 図において、2……遅延差分回路、3……極性
判定回路、4……ゲート回路、5……ループフイ
ルター、6……電圧制御発振回路。
FIG. 1 is a block diagram showing one embodiment of the present invention, and FIG. 2 is a waveform diagram showing an example of signals in each main part for explaining the operation of the above embodiment. In the figure, 2... delay difference circuit, 3... polarity determination circuit, 4... gate circuit, 5... loop filter, 6... voltage controlled oscillation circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 パルス振幅変調信号の受信部におけるタイミ
ング抽出回路において、受信信号と受信信号を1
クロツク遅延させた信号との差を出力する遅延差
分回路と、制御電圧によつて発振周波数が制御さ
れたタイミング信号を発生する電圧制御発振回路
と、該電圧制御発振回路の出力するタイミング信
号により受信信号と所定のしきい値との差の極性
を判定する極性判定回路と、該極性判定回路の出
力信号に応じて前記遅延差分回路の出力信号をそ
のまま又は極性反転させて出力するゲート回路
と、該ゲート回路の出力を平滑するフイルタとを
有し、該フイルタの出力により前記電圧制御発振
回路の発振周波数を制御することを特徴とするタ
イミング抽出回路。
1 In the timing extraction circuit in the receiving section of the pulse amplitude modulation signal, the received signal and the received signal are
A delay difference circuit outputs the difference between the clock and the clock-delayed signal; a voltage-controlled oscillation circuit generates a timing signal whose oscillation frequency is controlled by a control voltage; and a timing signal output from the voltage-controlled oscillation circuit a polarity determination circuit that determines the polarity of the difference between the signal and a predetermined threshold; and a gate circuit that outputs the output signal of the delay difference circuit as is or with the polarity inverted according to the output signal of the polarity determination circuit; A timing extraction circuit comprising: a filter for smoothing the output of the gate circuit; and controlling the oscillation frequency of the voltage controlled oscillation circuit by the output of the filter.
JP56074301A 1981-05-19 1981-05-19 Timing extracting circuit Granted JPS57190415A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP56074301A JPS57190415A (en) 1981-05-19 1981-05-19 Timing extracting circuit
CA000402991A CA1180416A (en) 1981-05-19 1982-05-14 Timing recovery circuit
US06/379,408 US4423518A (en) 1981-05-19 1982-05-18 Timing recovery circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56074301A JPS57190415A (en) 1981-05-19 1981-05-19 Timing extracting circuit

Publications (2)

Publication Number Publication Date
JPS57190415A JPS57190415A (en) 1982-11-24
JPS643372B2 true JPS643372B2 (en) 1989-01-20

Family

ID=13543165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56074301A Granted JPS57190415A (en) 1981-05-19 1981-05-19 Timing extracting circuit

Country Status (1)

Country Link
JP (1) JPS57190415A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10629240B2 (en) 2016-03-09 2020-04-21 Yamaha Corporation Recorded data processing method and recorded data processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10629240B2 (en) 2016-03-09 2020-04-21 Yamaha Corporation Recorded data processing method and recorded data processing device

Also Published As

Publication number Publication date
JPS57190415A (en) 1982-11-24

Similar Documents

Publication Publication Date Title
US4497060A (en) Self-clocking binary receiver
US5736875A (en) Discrimination circuit capable of automatically optimizing discrimination level and discrimination phase
EP1146644B1 (en) Method and circuit for correcting a duty-cycle of a signal
US4371974A (en) NRZ Data phase detector
JP2540377B2 (en) Automatic output power controller
US5432480A (en) Phase alignment methods and apparatus
US6546063B1 (en) Asynchronous clock for adaptive equalization
TW200937925A (en) Clock data recovery device
JP2760796B2 (en) Frequency locked loop
US4686385A (en) Waveform converter circuit
US7061995B2 (en) Apparatus and method to generate an adaptive slicer threshold for binary data
JP3122104B2 (en) Variable rate square matched filter
CA1180416A (en) Timing recovery circuit
JPH0216066B2 (en)
JPS643372B2 (en)
JP4954416B2 (en) Apparatus and method for data slicing
US5610952A (en) Synchronization signal generating device
JPS63114412A (en) Phase discriminator
US4584696A (en) Transmission response measurement
US20240030928A1 (en) Loop filter, timing recovery method and apparatus
US5706221A (en) Mehtod and apparatus for recovering digital data from baseband analog signal
GB2213026A (en) Control arrangement for a phase shift keying system
JP2754540B2 (en) Pulse counting type detector
KR890001387B1 (en) Phuse shift keying detector circuit
JPH03201819A (en) Pulse waveform distortion reducing circuit