JPS643285B2 - - Google Patents

Info

Publication number
JPS643285B2
JPS643285B2 JP55159053A JP15905380A JPS643285B2 JP S643285 B2 JPS643285 B2 JP S643285B2 JP 55159053 A JP55159053 A JP 55159053A JP 15905380 A JP15905380 A JP 15905380A JP S643285 B2 JPS643285 B2 JP S643285B2
Authority
JP
Japan
Prior art keywords
mold
optical fiber
insulating coating
present
molding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55159053A
Other languages
Japanese (ja)
Other versions
JPS5781209A (en
Inventor
Kyoshi Hani
Shigeru Kubota
Norimoto Moriwaki
Shohei Eto
Osamu Fujisawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP55159053A priority Critical patent/JPS5781209A/en
Publication of JPS5781209A publication Critical patent/JPS5781209A/en
Publication of JPS643285B2 publication Critical patent/JPS643285B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • B29D11/00875Applying coatings; tinting; colouring on light guides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/798Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing urethdione groups

Description

【発明の詳細な説明】 本発明は、例えば光伝送部材の外周等に任意の
形状の絶縁被覆処理を施す方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of applying insulation coating treatment to an arbitrary shape on, for example, the outer periphery of an optical transmission member.

以下、この発明を光伝送部材に適用する場合に
ついて説明する。
Hereinafter, a case where the present invention is applied to an optical transmission member will be described.

最近、光フアイバー、フオトダイオード等の応
用範囲は増加の一途をたどり、各種電気機器ある
いは装置への利用が行なわれている。例えば光フ
アイバーの高圧電気機器への一応用例として、電
気機器本体が、セラミツク又は樹脂碍子等で絶縁
された架台の上部に設置される電力用コンデンサ
ー等の故障検出装置への応用がある。
Recently, the range of applications of optical fibers, photodiodes, etc. has been increasing, and they are being used in various electrical devices and devices. For example, one example of the application of optical fibers to high-voltage electrical equipment is the application to failure detection devices such as power capacitors, in which the electrical equipment body is installed on top of a pedestal insulated with ceramic or resin insulators.

応用例を第1図で具体的に説明する。 An example of application will be specifically explained with reference to FIG.

第1図で1は、電力用コンデンサ等の絶縁架台
を使用した電気機器、2は電気機器本体、3は絶
縁用碍子、4,5は絶縁架台のそれぞれ上枠、下
枠6は電気機器本体2の異常発生を電気的に検出
し、その信号を光信号に変換する機能を有する保
護装置発生部、7はその信号を受け電気接点を動
作させる保護装置受光部、8は6,7間を連結す
る光伝送部材(以下、光フアイバーコードとい
う)である。
In Figure 1, 1 is an electrical device using an insulating stand such as a power capacitor, 2 is the main body of the electrical device, 3 is an insulator for insulation, 4 and 5 are the upper and lower frames of the insulating stand, and 6 is the main body of the electrical device. 2 is a protection device generating section that has a function of electrically detecting the occurrence of an abnormality and converting the signal into an optical signal; 7 is a protection device light receiving section that receives the signal and operates an electrical contact; 8 is a connection between 6 and 7. This is an optical transmission member (hereinafter referred to as an optical fiber barcode) to be connected.

通常、光フアイバーコードはポリエチレン等の
フルキシブルな有機材料で被覆された円柱状のコ
ードであり、沿面耐電圧を考慮した絶縁被覆、例
えばヒダ状の被覆を施したコードなどは全く市販
されていないのが現状であり、また、ヒダ状のよ
うな凹凸のある被覆を施す場合、押出成形などに
よる連続生産は、ほとんど不可能である。
Optical fiber barcodes are usually cylindrical cords coated with flexible organic materials such as polyethylene, and there are no commercially available cords with insulation coatings that take creepage voltage into consideration, such as cords with pleated coatings. This is the current situation, and when applying a coating with irregularities such as pleats, continuous production by extrusion molding or the like is almost impossible.

しかし、前述したような高圧電気機器に光フア
イバーコードを応用した場合、光フアイバーコー
ドの両端間に絶えず対地電圧が印加されるため、
被覆表面の汚損劣化あるいは降雨時の沿面絶縁破
壊等から保護するために第2図に示したような絶
縁処理を施し使用されているのが実情である。
However, when optical fiber barcodes are applied to high-voltage electrical equipment such as those mentioned above, ground voltage is constantly applied between both ends of the optical fiber barcodes.
In reality, insulation treatment as shown in FIG. 2 is applied to protect the coating surface from staining and deterioration or creeping dielectric breakdown during rain.

第2図において3は貫通穴を有するセラミツク
ス又は樹脂碍子であり、8は碍子3を貫通する光
フアイバーコードである。9はコロナ防止または
防水のため注入された樹脂である。
In FIG. 2, 3 is a ceramic or resin insulator having a through hole, and 8 is an optical fiber bar cord that passes through the insulator 3. 9 is resin injected for corona prevention or waterproofing.

第2図のような絶縁処理を施された光フアイバ
ーコードは、光フアイバーコードの長さや径に応
じた碍子が、その都度必要になり、特にセラミツ
ク碍子の場合、地震やその他の振動によつてクラ
ツクが生じ易いため、十分な防振対策が必要であ
る。
Optical fiber barcodes that have been insulated as shown in Figure 2 require insulators depending on the length and diameter of the optical fiber barcode, and in the case of ceramic insulators, they are particularly susceptible to earthquakes and other vibrations. Since cracks are likely to occur, sufficient anti-vibration measures are required.

また、光フアイバーコードを挿入した後、碍子
貫通穴のエアーギヤツプを埋めることと、防水を
目的とした樹脂の注入が必要となる。
Furthermore, after inserting the optical fiber barcode, it is necessary to fill the air gap in the insulator through hole and inject resin for waterproofing purposes.

上述のような従来の絶縁被覆方法は、製作期間
が長くなり、コストも高く、防水も十分とは言え
ない。
The conventional insulation coating method described above takes a long time to manufacture, is expensive, and is not sufficiently waterproof.

さらに、光フアイバーコードの接続は常に重量
物である碍子がついてまわることにより電気機器
などの組立時の作業性を著しく低下させていた。
さらには、光フアイバーコードを曲がつた状態で
接続することも不可能であつた。
Furthermore, the connection of optical fiber barcodes is always accompanied by heavy insulators, which significantly reduces work efficiency when assembling electrical equipment.
Furthermore, it was also impossible to connect the optical fiber bar cord in a bent state.

本発明は上記欠点に鑑みなされたもので、例え
ば光伝送路を高圧電気機器に組込むなどの際に極
めて簡便でかつ信頼性の高い絶縁被覆方法を提供
しようとするものである。
The present invention has been made in view of the above-mentioned drawbacks, and it is an object of the present invention to provide an extremely simple and highly reliable insulation coating method when, for example, an optical transmission line is incorporated into high-voltage electrical equipment.

すなわち、本発明は、融点が40〜130℃でかつ
常温で固形のポリヒドロキシブタジエン重合体の
水素添加物とイソシアネート化合物よりなる末端
水酸基を有するプレポリマーおよび式(): で示される2,4−トルエンジイソシアネート・
ダイマーよりなる成形材料を所定の形状にプリフ
オームし、該プリフオームしてえられた成形物と
被絶縁被覆体とを金型に配置して加熱溶融し、つ
いで硬化せしめる絶縁被覆方法に関するものであ
る。
That is, the present invention provides a prepolymer having a terminal hydroxyl group consisting of a hydrogenated product of a polyhydroxybutadiene polymer having a melting point of 40 to 130°C and a solid at room temperature and an isocyanate compound, and the formula (): 2,4-toluene diisocyanate represented by
The present invention relates to an insulating coating method in which a molding material made of dimer is preformed into a predetermined shape, the preformed molded product and an insulating coating are placed in a mold, heated and melted, and then hardened.

本発明において用いる成形材料の主剤であるポ
リヒドロキシブタジエン重合体の水素添加物2.0
〜2.5モルに対しイソシアネート化合物1モルと
を反応させて末端水酸基を有するプレポリマーは
熱硬化性樹脂であり、この主剤と硬化剤である式
()で示される2,4−トルエンジイソシアネ
ート・ダイマーとの比率は、主剤の水酸基のモル
数に対して硬化剤のイソシアネート基のモル数が
NCO/OH=0.8〜1.2の割合であるのが好適であ
る。
Hydrogenated product 2.0 of polyhydroxybutadiene polymer, which is the main ingredient of the molding material used in the present invention
A prepolymer having a terminal hydroxyl group by reacting ~2.5 moles with 1 mole of an isocyanate compound is a thermosetting resin, and the base resin and the 2,4-toluene diisocyanate dimer represented by the formula (), which is a curing agent, are The ratio is the number of moles of isocyanate groups in the curing agent to the number of moles of hydroxyl groups in the base agent.
A ratio of NCO/OH=0.8 to 1.2 is preferred.

成形材料に用いる熱硬化性樹脂は融点が前記範
囲内にあり、主剤と硬化剤よりなる成形材料が室
温または0℃以下の低温で保存することにより1
カ月以上の可使時間(融点温度により流動するこ
と)を有するものである。
The thermosetting resin used for the molding material has a melting point within the above range, and when the molding material consisting of the main resin and curing agent is stored at room temperature or a low temperature below 0°C,
It has a pot life of more than a month (flows depending on the melting point temperature).

本発明において用いるポリヒドロキシブタジエ
ン重合体の水素添加物の融点が40℃より低いばあ
いは常温で流動しやすくプリフオームされた形状
を保つことができない。また粘着性を有するため
作業性が著しく低下する。一方130℃より高いと
きには成形時の溶融温度が高温になるため、溶融
中にゲル化反応が起り、樹脂欠落部やボイドが残
るなどの外観不良が生じるため、いずれも好まし
くない。
If the melting point of the hydrogenated polyhydroxybutadiene polymer used in the present invention is lower than 40°C, it will tend to flow at room temperature and cannot maintain its preformed shape. Furthermore, since it is sticky, workability is significantly reduced. On the other hand, when the temperature is higher than 130°C, the melting temperature during molding becomes high, so a gelation reaction occurs during melting, resulting in poor appearance such as resin missing parts and voids, which is not preferable.

本発明におけるプリフオームされた成形物は被
絶縁被覆体の全部または一部(所望部分)を覆う
ように金型内部に配置されて加熱硬化される。ま
た加熱硬化の際、内部にボイドが生じないよう
に、プリフオームされた成形物と被絶縁被覆体の
容積の和を金型に中空部の容積と等しいかまたは
大きくすることが望ましい。
The preformed molded article of the present invention is placed inside a mold so as to cover all or a portion (desired portion) of the insulating coating, and is heated and hardened. Further, during heat curing, it is desirable that the sum of the volumes of the preformed molded product and the insulating coating be equal to or larger than the volume of the hollow part of the mold so that voids do not occur inside.

金型は被絶縁被覆体を被覆するためのプリフオ
ームされた成形材料をその内部に配置して加熱し
さえすればよいので、その構造は比較的簡単なも
ので充分である。
Since the mold only needs to be heated by placing a preformed molding material therein for covering the insulating coating, a relatively simple structure is sufficient.

以下、第3図、第4図を参照して本発明の一実
施例を説明する。
An embodiment of the present invention will be described below with reference to FIGS. 3 and 4.

第3図は、本発明に用いるプリフオームされた
成形物を得るための製造装置の一例を挙げたもの
であり、10は通常の真空撹拌装置を示し、11
は上記説明した融点が40〜130℃の範囲にある熱
硬化性樹脂の主剤、及びその硬化剤を主成分とす
る混合物からなる成形材料を示す。12はプリフ
オームのための金型であるが例えば離型性のすぐ
れたプラスチツクケースなどを用いることもでき
る。真空撹拌装置10によつて上記成形材料の融
点以上の温度で十分真空脱泡した熱硬化性樹脂の
混合物を金型12に注入した後、室温まで冷却し
金型を取りはずせばプリフオームされた成形物1
3を容易に得ることができる。
FIG. 3 shows an example of a manufacturing apparatus for obtaining a preformed molded product used in the present invention, where 10 indicates a normal vacuum stirring apparatus, and 11
indicates a molding material consisting of a mixture whose main components are a thermosetting resin main ingredient having a melting point in the range of 40 to 130°C as described above, and a curing agent thereof. Reference numeral 12 denotes a mold for the preform, but a plastic case with excellent mold releasability, for example, can also be used. After injecting the thermosetting resin mixture, which has been thoroughly degassed under vacuum at a temperature above the melting point of the molding material using the vacuum stirring device 10, into the mold 12, it is cooled to room temperature and the mold is removed, resulting in a preformed molding. Thing 1
3 can be easily obtained.

なお、この実施例では、成形材料11として主
剤のポリヒドロキシブタジエン重合体の水素添加
物2.3モルと4,4′−ジフエニルメタンジイソシ
アネート1モルとを反応させた末端水酸基を有す
るプレポリマーの水酸基のモル数に対して硬化剤
のモル数が等しくなるように調整されている。
In this example, as the molding material 11, 2.3 moles of a hydrogenated polyhydroxybutadiene polymer as a main ingredient and 1 mole of 4,4'-diphenylmethane diisocyanate were reacted to form a prepolymer having terminal hydroxyl groups. The number of moles of the curing agent is adjusted to be equal to the number of moles.

次にこの実施例に用いた2分割の簡易金型の一
部断面図を第4図に示した。14aは上金型の本
体であり、14bは下金型の本体を示す。何れも
図示しない加熱装置を備えている。15は型締を
行なう締具を示し、16は光フアイバーコードを
固定する締具を示し、18は成形材料である熱硬
化性樹脂を示した。
Next, FIG. 4 shows a partial sectional view of the two-part simple mold used in this example. 14a is the main body of the upper mold, and 14b is the main body of the lower mold. Both are equipped with a heating device (not shown). Reference numeral 15 indicates a fastener for clamping the mold, 16 indicates a fastener for fixing the optical fiber bar code, and 18 indicates a thermosetting resin as a molding material.

成形を行なうには、まず上金型14a及び下金
型14bを開いた状態でそれぞれにプリフオーム
された成形物を収容し、該成形物の溶融温度に加
熱する。次に光フアイバーコード8を下金型14
bの上面に載置して締具16a,16bにより金
型に固定し、次いで上金型14aを合わせて締具
15により金型の型締を行ない、所定温度で保持
する(例えば140〜160℃で1〜2時間)ことによ
り硬化させる。そして冷却後型を開いて成形品を
取り出す。
In order to perform molding, first, the upper mold 14a and the lower mold 14b are opened, a preformed molded product is placed in each molded product, and the molded product is heated to the melting temperature of the molded product. Next, insert the optical fiber barcode 8 into the lower mold 14.
b and fixed to the mold using fasteners 16a and 16b, then the upper mold 14a is placed together and the mold is clamped using the fastener 15, and maintained at a predetermined temperature (for example, 140 to 160°C). Cure for 1-2 hours). After cooling, the mold is opened and the molded product is taken out.

第5図は脱型後の光フアイバーコードの絶縁被
覆部を示す断面図である。18は硬化後の絶縁被
覆であり、8a,8bは光フアイバーコード8の
両端部にそれぞれ設けられた感光素子等への接続
端子を示す。
FIG. 5 is a sectional view showing the insulating coating of the optical fiber bar code after demolding. Reference numeral 18 indicates an insulating coating after curing, and reference numerals 8a and 8b indicate connection terminals to photosensitive elements, etc. provided at both ends of the optical fiber bar code 8, respectively.

上記本発明の方法によれば第2図に示した従来
法のような碍子の貫通穴に光フアイバーコードを
通した後、樹脂を注入するなどの作業は全く不要
で、しかも、簡便な金型で被覆処理ができ、さら
に光フアイバーコードの端部に接続端子などを設
けた後でも絶縁被覆の形成が可能であり、しかも
加熱源(電気ヒータなど)さえあれば現地で作業
が可能であるというすぐれた特徴を有する。また
防水性も従来法に比べ一体モールド部品になるた
め極めてすぐれるなどの効果がある。金型の型締
力は例えば指で締めつける程度のもの、あるいは
上金型の自重のみで、特に締付具を用いないもの
など極端に低いものでも十分である。
According to the method of the present invention, unlike the conventional method shown in FIG. 2, there is no need to inject resin after passing an optical fiber bar code through the through hole of the insulator, and moreover, it is possible to use a simple mold. Furthermore, it is possible to form an insulating coating even after connecting terminals are provided at the end of the optical fiber barcode, and it can be done on-site as long as there is a heating source (such as an electric heater). It has excellent characteristics. Furthermore, compared to conventional methods, this method has extremely superior waterproof properties because it is an integrally molded part. The mold clamping force of the mold may be extremely low, for example, by tightening it with fingers, or by using only the weight of the upper mold, especially without using a clamping tool.

本発明による絶縁被覆法はあらゆる電気機器の
異電位間の伝送路の絶縁被覆等に好適であり、特
に超高圧部から大地電位までの信号伝送路の絶縁
被覆に適用すると安全性の面で大きな効果が得ら
れる。
The insulation coating method according to the present invention is suitable for insulation coating of transmission lines between different potentials of all kinds of electric equipment, and especially when applied to insulation coating of signal transmission lines from ultra-high voltage parts to ground potential, it has a large safety aspect. Effects can be obtained.

ところで上記説明ではこの発明を光伝送部材に
適用する場合について説明したがこれに限定され
ないことは勿論である。
Incidentally, in the above explanation, the case where the present invention is applied to an optical transmission member has been explained, but it goes without saying that the present invention is not limited to this.

以上説明した通り、本発明によれば高性能の絶
縁被覆が簡便に得られるという効果がある。
As explained above, according to the present invention, there is an effect that a high-performance insulation coating can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光伝送部材の一応用例を示す正面図、
第2図は従来法による絶縁被覆例を示す断面図、
第3図は本発明に用いるプリフオームされた成形
材料の製造例を示す図、第4図は本発明の一実施
例による製造例を示す断面図、第5図は本発明の
方法によつて得られた絶縁被覆を設けた光伝導部
材を示す断面図である。 図中、8は光伝送部材、13はプリフオームさ
れた成形材料、14は金型、18は絶縁被覆であ
る。なお、図中同一符号は同一または相当部分を
示す。
FIG. 1 is a front view showing an example of the application of the optical transmission member;
Figure 2 is a cross-sectional view showing an example of insulation coating using the conventional method.
FIG. 3 is a diagram showing an example of manufacturing a preformed molding material used in the present invention, FIG. 4 is a cross-sectional view showing an example of manufacturing according to an embodiment of the present invention, and FIG. FIG. 3 is a cross-sectional view showing a photoconductive member provided with an insulating coating. In the figure, 8 is a light transmission member, 13 is a preformed molding material, 14 is a mold, and 18 is an insulating coating. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 融点が40〜130℃でかつ常温で固形のポリヒ
ドロキシブタジエン重合体の水素添加物とイソシ
アネート化合物よりなる末端水酸基を有するプレ
プリマーおよび式(1): で示される2,4−トルエンジイソシアネート・
ダイマーよりなる成形材料を所定の形状にプリフ
オームし、該プリフオームしてえられた成形物と
被絶縁被覆体を金型に配置して加熱溶融し、つい
で硬化せしめることを特徴とする絶縁被覆方法。 2 被絶縁被覆体は光フアイバーコードであるこ
とを特徴とする特許請求の範囲第1項記載の絶縁
被覆方法。
[Scope of Claims] 1. A preprimer having a terminal hydroxyl group consisting of a hydrogenated product of a polyhydroxybutadiene polymer having a melting point of 40 to 130°C and solid at room temperature and an isocyanate compound, and formula (1): 2,4-toluene diisocyanate represented by
An insulating coating method comprising: preforming a molding material made of dimer into a predetermined shape, placing the preformed molded article and an insulating coating in a mold, heating and melting, and then curing. 2. The insulation coating method according to claim 1, wherein the insulation coating is an optical fiber bar code.
JP55159053A 1980-11-10 1980-11-10 Coating method for insulation Granted JPS5781209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55159053A JPS5781209A (en) 1980-11-10 1980-11-10 Coating method for insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55159053A JPS5781209A (en) 1980-11-10 1980-11-10 Coating method for insulation

Publications (2)

Publication Number Publication Date
JPS5781209A JPS5781209A (en) 1982-05-21
JPS643285B2 true JPS643285B2 (en) 1989-01-20

Family

ID=15685188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55159053A Granted JPS5781209A (en) 1980-11-10 1980-11-10 Coating method for insulation

Country Status (1)

Country Link
JP (1) JPS5781209A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519274U (en) * 1991-08-27 1993-03-09 株式会社東芝 Elevator entrance / exit device

Also Published As

Publication number Publication date
JPS5781209A (en) 1982-05-21

Similar Documents

Publication Publication Date Title
US4312123A (en) Methods of making high voltage electrical insulators and oil-less bushings
CN107033599B (en) Flame-retardant single-component moisture-cured silicone rubber and construction method and application thereof
US4505033A (en) Methods of making high voltage resistant members
EP0185058B1 (en) Encapsulating compound and articles comprising same
US3248472A (en) Sheathed cable with a fluid stop of a polyurethane polymer
FR2427673A1 (en) ELECTRICAL WINDING PRODUCTION PROCESS
EP0181337B1 (en) Heat curable polyglycidyl aromatic amine encapsulants
JPS643285B2 (en)
JPS643283B2 (en)
JPS60234415A (en) Insulated multicore cable
EP0351149A2 (en) A method for sealing a cable bundle in longitudinal direction
JPS643286B2 (en)
JPS643287B2 (en)
JPS643284B2 (en)
JPH0133886B2 (en)
JPH0680338U (en) Power cable termination
JP2001281291A (en) Pda joint including flexible joint part
JPS5944758B2 (en) Insulating treatment method for cable connections
JPS5938716B2 (en) Insulating treatment method for cable connections
JPS5938718B2 (en) Insulating treatment method for cable connections
JPS5938715B2 (en) Insulation treatment method for cable connections
JPS5938717B2 (en) Insulating treatment method for cable connections
JPS5938714B2 (en) Insulation treatment method for cable connections
US5525644A (en) Potted electrical components and methods of making the same
JPS6074A (en) Method of protecting cable connector