JPS643170B2 - - Google Patents

Info

Publication number
JPS643170B2
JPS643170B2 JP55050733A JP5073380A JPS643170B2 JP S643170 B2 JPS643170 B2 JP S643170B2 JP 55050733 A JP55050733 A JP 55050733A JP 5073380 A JP5073380 A JP 5073380A JP S643170 B2 JPS643170 B2 JP S643170B2
Authority
JP
Japan
Prior art keywords
porous
globulin
adsorption
albumin
immunoglobulin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55050733A
Other languages
Japanese (ja)
Other versions
JPS56147710A (en
Inventor
Toshihide Nakajima
Masao Tanihara
Koichi Takakura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP5073380A priority Critical patent/JPS56147710A/en
Priority to US06/250,630 priority patent/US4384954A/en
Priority to GB8111578A priority patent/GB2075362B/en
Priority to DE3115608A priority patent/DE3115608C2/en
Priority to FR8107714A priority patent/FR2480606B1/fr
Publication of JPS56147710A publication Critical patent/JPS56147710A/en
Priority to US06/383,137 priority patent/US4421684A/en
Publication of JPS643170B2 publication Critical patent/JPS643170B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は免疫グロブリン吸着剤に関する。 免疫グロブリンとは、生体内へ侵入した異種抗
原、あるいは体内で発生した自己抗原を攻撃する
ためにリンパ球から産生される抗体であり、生体
の防禦機構において重要な役割を果しているが、
自己免疫疾患、臓器移植後の拒絶反応などの面か
らみると免疫グロブリンの産生がかえつて好まし
くない場合がある。従来このような疾患の治療に
は免疫抑制剤の投与が主として行なわれてきた
が、免疫抑制剤はリンパ球の機能を低下させる細
胞毒性物質であり、その副作用は大きな問題点で
あつた。また最近、分画分子量の異なる複数の膜
を組合せて、分子の大きさの違いにより免疫グロ
ブリンを除去する試みも行なわれているが、まだ
充分臨床に用い得るものは開発されていない。 本発明者らはこれらの事情に鑑み種々研究の結
果、ある種の吸着剤が免疫グロブリンを選択的に
吸着すること、および、さらに該吸着剤を化学処
理することにより、この効果が更に増大すること
を見出し、本発明に到つた。 即ち、血液蛋白中から免疫グロブリンを選択的
に吸着するには、吸着剤である多孔体の孔径が一
定で狭い範囲に分布していることが重要であり、
具体的には細孔容積が0.5c.c./g以上で、細孔の
90%以上が孔径500〜1000Åの範囲内にあること
が重要である。このような条件を満足する多孔体
としては、特に多孔質ガラス、多孔質シリカ、多
孔質磁器が望ましい。多孔質ガラスは、不均質な
微細相分離構造を有するアルカリホウケイ酸ガラ
スを熱処理及び酸処理することによつて得られ
る。多孔質シリカはケイ酸ナトリウム水溶液の酸
処理で、又多孔質磁器は、磁器系の骨材とガラス
系の結合材を焼結して製造される。これらの無機
多孔体、特に多孔質ガラスは孔径分布が均一であ
り、本発明の目的に適している。 孔径が500Å以下の場合はグロブリンの吸着率
が低下し、逆にアルブミンの吸着率が増大するの
で本発明の目的に適しない。又孔径が1000Å以上
の場合はアルブミン、グロブリンともに吸着率が
低下する。従つて孔径は500〜1000Å、とくに700
Å前後が最適である。 又、本発明者らはさらに研究の結果、多孔体へ
の蛋白の吸着は孔径の他、多孔体表面の電荷にも
影響されることを見出した。即ち、多孔質ガラス
をたとえばγ―アミノプロピルトリエトキシシラ
ンでアミノシラン化処理してアミノ基を導入する
と、グロブリンの吸着性が低下し、逆にアルブミ
ンの吸着性が増大する。さらに化学処理により多
孔体の表面に酸性基を導入すると、グロブリンの
吸着性は未処理の多孔体に比べても増大し、アル
ブミンの吸着性は更に低下することがわかつた。
又、多孔体の細孔容積が0.5c.c./g未満ではグロ
ブリン吸着容量が低く、満足なグロブリン吸着容
量を得るためには細孔容積が0.5c.c./g以上の多
孔体を用いる必要がある。従つて本発明における
最も望ましい実施の態様は、細孔容積0.5c.c./g
以上で、細孔の90%以上が孔径500〜1000Åであ
る多孔体を、さらに表面が負荷電を有するように
処理したものである。表面負荷電処理としてはカ
ルボキシル化あるいはスルホン酸化が適当であ
り、たとえばカルボキシル化処理は、上記アミノ
シラン化ののち、無水コハク酸と反応させる方法
あるいはカルボジイミドの存在下、コハク酸と反
応させる方法などが用いられる。又、スルホン酸
化処理には、上記アミノシラン化処理後、グルタ
ルアルデヒドと酸性で処理してアルデヒド基を導
入し、さらにこれをアルカリ性でタウリンで処理
してスルホン酸基を末端に導入する方法などが用
いられる。 なお、本発明における多孔体は、その血液親和
性を向上させるため、親水性メタアクリレート系
又はアクリレート系極脂、たとえばヒドロキシエ
チルメタクリレートの重合体などの血液親和性樹
脂により、被覆処理を行なつてもよい。この場
合、グロブリンを吸着する細孔を閉塞しないよ
う、薄い被膜を生成させることが必要であるが、
多孔体の表面荷電に影響を与えないよう、血球に
直接接触する表面のみを被覆し、蛋白の大きさに
対応する細孔の内部までは被覆しないでおくこと
が重要である。 多孔体表面に負荷電を導入する他の方法として
は、多孔体をカルボキシル基あるいはスルホン酸
基等を有する高分子物質で被覆処理する方法があ
る。この場合、用いられる高分子物質としては、
たとえばポリアクリル酸、ポリメタクリル酸、ポ
リスチレンスルホン酸、マレイン酸単位を含有す
る重合体などがある。又、上記血液親和性の向上
と負荷電の導入を兼ねて、たとえばヒドロキシエ
チルメタクリレートとメタクリル酸の共重合体の
ような、血液親和性がすぐれ、かつカルボキシル
基を有する重合体で被覆することもできる。 本発明の免疫グロブリン吸着剤は、免疫グロブ
リンの増加によつて引き起される免疫異常疾患の
予防または治療のため、血液、血漿、血清、その
他の体液を接触させる方法に用いられる。又、血
液、血漿等の輸注の際、望ましくない免疫グロブ
リンの体内移行を防止する目的にも用いられる。 以下、実施例により説明する。 実施例1,2、比較例1,2 エレクトロ・ニユークレオニクス社製多孔質ガ
ラス「CPG」の孔径240Å(細孔容積1.34c.c./
g)、500Å(0.87c.c./g)、700Å(1.25c.c./g)

2000Å(0.66c.c./g)のものを、それぞれ0.5g
ずつとり、牛血清アルブミン(BSA)および牛
血清γ―グロブリン(BSG)をリン酸塩緩衝食
塩液に濃度がそれぞれ2g/dlとなるように混合
して溶解した液3mlをそれぞれに加えて、37℃で
120回/分振盪した。この上清を経時的にサンプ
リングし、アルブミンをブロムクレゾールグリー
ン法、総蛋白をビウレツト法で定量し、グロブリ
ン濃度は総蛋白とアルブミンの差として測定し
た。多孔質ガラスの孔径とアルブミン、グロブリ
ンの吸着容量を表1に示す。この結果よりグロブ
リン吸着容量は孔径700Å付近のものが最も高く、
これより孔径が大きくても、小さくてもグロブリ
ン吸着容量は低下することがわかる。
The present invention relates to immunoglobulin adsorbents. Immunoglobulin is an antibody produced by lymphocytes to attack foreign antigens that have invaded the body or self-antigens that have occurred within the body, and plays an important role in the defense mechanism of the body.
From the standpoint of autoimmune diseases, rejection after organ transplantation, etc., production of immunoglobulin may even be unfavorable. Conventionally, immunosuppressants have been mainly administered to treat such diseases, but immunosuppressants are cytotoxic substances that reduce the function of lymphocytes, and their side effects have been a major problem. Recently, attempts have also been made to combine multiple membranes with different molecular weight cut-offs to remove immunoglobulins based on the differences in molecular size, but nothing that can be used clinically has yet been developed. In view of these circumstances, the present inventors have conducted various studies and found that a certain kind of adsorbent selectively adsorbs immunoglobulin, and that this effect can be further increased by chemically treating the adsorbent. They discovered this and arrived at the present invention. In other words, in order to selectively adsorb immunoglobulin from blood proteins, it is important that the pore size of the porous material used as the adsorbent be constant and distributed within a narrow range.
Specifically, the pore volume is 0.5cc/g or more, and the pore volume is 0.5cc/g or more.
It is important that 90% or more of the pores have a diameter within the range of 500 to 1000 Å. Porous glass, porous silica, and porous porcelain are particularly desirable as porous bodies that satisfy these conditions. Porous glass is obtained by heat-treating and acid-treating alkali borosilicate glass having a heterogeneous microphase-separated structure. Porous silica is produced by acid treatment with an aqueous sodium silicate solution, and porous porcelain is produced by sintering porcelain aggregate and glass binding material. These inorganic porous bodies, particularly porous glass, have a uniform pore size distribution and are suitable for the purpose of the present invention. If the pore diameter is less than 500 Å, the adsorption rate of globulin will decrease and, conversely, the adsorption rate of albumin will increase, which is not suitable for the purpose of the present invention. Moreover, when the pore diameter is 1000 Å or more, the adsorption rate of both albumin and globulin decreases. Therefore, the pore diameter is 500 to 1000 Å, especially 700 Å.
Around Å is optimal. Further, as a result of further research, the present inventors found that the adsorption of proteins onto porous bodies is affected not only by the pore diameter but also by the charge on the surface of the porous body. That is, when porous glass is subjected to aminosilanization treatment with, for example, γ-aminopropyltriethoxysilane to introduce amino groups, the adsorption of globulin decreases, and on the contrary, the adsorption of albumin increases. Furthermore, it was found that when acidic groups were introduced onto the surface of the porous material through chemical treatment, the adsorption of globulin increased compared to the untreated porous material, and the adsorption of albumin further decreased.
Furthermore, if the pore volume of the porous body is less than 0.5 cc/g, the globulin adsorption capacity will be low, and in order to obtain a satisfactory globulin adsorption capacity, it is necessary to use a porous body with a pore volume of 0.5 cc/g or more. Therefore, the most desirable embodiment of the present invention is a pore volume of 0.5cc/g.
As described above, the porous body in which 90% or more of the pores have a pore diameter of 500 to 1000 Å has been further treated so that the surface has a negative charge. Carboxylation or sulfonation is suitable as the surface negative charge treatment. For example, the carboxylation treatment may be performed by reacting with succinic anhydride after the above aminosilanization, or by reacting with succinic acid in the presence of carbodiimide. It will be done. In addition, for the sulfonation treatment, a method is used in which, after the above aminosilanization treatment, an aldehyde group is introduced by treating with glutaraldehyde in an acidic environment, and then this is treated with taurine in an alkaline environment to introduce a sulfonic acid group at the terminal. It will be done. In addition, in order to improve its blood affinity, the porous body in the present invention is coated with a blood-compatible resin such as a hydrophilic methacrylate-based or acrylate-based polar fat, for example, a polymer of hydroxyethyl methacrylate. Good too. In this case, it is necessary to generate a thin film so as not to block the pores that adsorb globulin.
In order not to affect the surface charge of the porous material, it is important to coat only the surface that directly contacts blood cells and not to coat the inside of the pores, which correspond to the size of the protein. Another method for introducing a negative charge onto the surface of a porous body is to coat the porous body with a polymeric substance having carboxyl groups, sulfonic acid groups, or the like. In this case, the polymeric substances used are:
Examples include polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid, and polymers containing maleic acid units. In addition, in order to improve the blood affinity and introduce a negative charge, it is also possible to coat with a polymer that has excellent blood affinity and has a carboxyl group, such as a copolymer of hydroxyethyl methacrylate and methacrylic acid. can. The immunoglobulin adsorbent of the present invention is used in a method of contacting blood, plasma, serum, and other body fluids for the prevention or treatment of immunopathological diseases caused by increased immunoglobulin levels. It is also used to prevent unwanted transfer of immunoglobulin into the body during transfusion of blood, plasma, etc. Examples will be explained below. Examples 1 and 2, Comparative Examples 1 and 2 Pore diameter of 240 Å (pore volume 1.34 cc/
g), 500Å (0.87cc/g), 700Å (1.25cc/g)
,
0.5g each of 2000Å (0.66cc/g)
Add 3 ml of a solution prepared by mixing bovine serum albumin (BSA) and bovine serum γ-globulin (BSG) in phosphate buffered saline to a concentration of 2 g/dl, and add 3 ml to each. at °C
It was shaken 120 times/min. The supernatant was sampled over time, albumin was quantified by the bromcresol green method, total protein was quantified by the Biuret method, and globulin concentration was measured as the difference between total protein and albumin. Table 1 shows the pore diameter of the porous glass and the adsorption capacity for albumin and globulin. These results show that the globulin adsorption capacity is highest for pores with a diameter of around 700 Å.
It can be seen that the globulin adsorption capacity decreases regardless of whether the pore size is larger or smaller.

【表】 実施例 3 実施例1,2と同じ多孔質ガラス「CPG」及
び孔径1000Å(細孔容積1.05c.c./gの「CPG」25
gを、γ―アミノプロピルトリエトキシシランの
5%トルエン溶液200mlに浸漬し、一夜還流加熱
してアミノ化処理した。処理済CPGをトルエン
で洗浄、乾燥したのち、次にこれを10gとり、無
水コハク酸の10%ジオキサン溶液100mlに浸漬し、
40℃で7時間振盪してカルボキシル化処理した。
処理済CPGをジオキサンで洗浄、乾燥した。得
られたカルボキシル化CPGを0.5gとり、実施例
1と同じ方法でアルブミン及びグロブリンの吸着
性を検討した。結果を表2に示す。表1と表2の
結果より、グロブリンの選択吸着性は孔径700Å
付近のCPGをカルボキシル化したものが最も高
いことがわかる。
[Table] Example 3 The same porous glass "CPG" as in Examples 1 and 2 and "CPG" with a pore diameter of 1000 Å (pore volume 1.05 cc/g)25
g was immersed in 200 ml of a 5% toluene solution of γ-aminopropyltriethoxysilane and heated under reflux overnight for amination treatment. After washing and drying the treated CPG with toluene, 10g of it was taken and immersed in 100ml of a 10% dioxane solution of succinic anhydride.
Carboxylation treatment was carried out by shaking at 40°C for 7 hours.
The treated CPG was washed with dioxane and dried. 0.5 g of the obtained carboxylated CPG was taken and the adsorption of albumin and globulin was examined in the same manner as in Example 1. The results are shown in Table 2. From the results in Tables 1 and 2, the selective adsorption of globulin is determined by the pore size of 700Å.
It can be seen that the carboxylated CPG in the vicinity has the highest concentration.

【表】 実施例 4 実施例3で調製した孔径1000Åのカルボキシル
化CPGをヒドロキシエチルメタクリレート/メ
タクリル酸共重合体で被覆処理した(被覆率0.2
%)。これについて実施例1と同じ方法でアルブ
ミン及びグロブリンの吸着性を測定すると、3時
間後の吸着容量はアルブミン15.0mg/g、グロブ
リン75.0mg/gとなつた。従つてこの被覆処理は
カルボキシル化CPGのアルブミン吸着性を低下
させ、グロブリン吸着性を増大させることがわか
る。 実施例 5 実施例4と同じ多孔質ガラスCPG1000(孔径
1000Å)をポリアクリル酸で被覆処理し(被覆率
0.5%)、120℃で2時間熱処理した。これについ
て実施例1と同じ方法でアルブミン及びグロブリ
ンの吸着性を測定すると、3時間後の吸着容量は
アルブミン42.0mg/g、グロブリン60.0mg/gと
なつた。従つてカルボキシル基を有するポリマー
で被覆することによつても、CPGのグロブリン
吸着性を増大できることがわかる。 実施例 6 実施例1と同じ多孔質ガラスCPG500(孔径500
Å)を実施例3と同じ方法でアミノシラン化処理
し、これを5gとり、5%グルタルアルデヒドの
1N塩酸溶液50mlを加えて、室温で17時間振盪し
て反応させた。このCPGを充分水洗し、ついで
5%タウリンの1N水酸化ナトリウム溶液50mlを
加えて、室温で8時間振盪して反応させた。この
方法で末端にスルホン酸基を導入したスルホン酸
化CPGについて、実施例1と同じ方法でアルブ
ミン及びグロブリンの吸着性を測定すると、3時
間後の吸着容量はアルブミン25.8mg/g、グロブ
リン63.6mg/gとなつた。従つてカルボキシル化
よりもスルホン酸化の方がグロブリン選択吸着性
は増大することがわかる。 比較例 3 ケイ砂、硼酸、硝酸ナトリウム、アルミナを、
SiO266重量%、B2O325重量%、Na2O7重量%及
びAl2O32重量%となるように混合し、1400℃で
5時間加熱熔融後、急冷粉砕して原料ガラスと
し、さらにこれを560℃で4時間熱処理して分相
ガラスとした。 これを3N塩酸中に95℃で30時間浸漬して酸可
溶物を抽出除去し、水洗、アルカリ洗浄、水洗、
乾燥により、平均孔径600Å、細孔容積0.15c.c./
gの多孔質ガラスを得た。 この試料のタンパク吸着容量を実施例1と同じ
方法で測定したところ、グロブリン吸着容量が
4.2mg/g、アルブミン吸着容量が3.1mg/gであ
り、グロブリン吸着剤として不満足なものであつ
た。
[Table] Example 4 Carboxylated CPG with a pore size of 1000 Å prepared in Example 3 was coated with hydroxyethyl methacrylate/methacrylic acid copolymer (coverage rate 0.2).
%). When the adsorption properties of albumin and globulin were measured using the same method as in Example 1, the adsorption capacity after 3 hours was 15.0 mg/g for albumin and 75.0 mg/g for globulin. Therefore, it can be seen that this coating treatment reduces the albumin adsorption property of carboxylated CPG and increases the globulin adsorption property. Example 5 Porous glass CPG1000 (pore diameter
1000Å) with polyacrylic acid (coverage rate
0.5%) and heat treated at 120°C for 2 hours. When the adsorption properties of albumin and globulin were measured using the same method as in Example 1, the adsorption capacity after 3 hours was 42.0 mg/g for albumin and 60.0 mg/g for globulin. Therefore, it can be seen that the globulin adsorption ability of CPG can also be increased by coating it with a polymer having a carboxyl group. Example 6 The same porous glass CPG500 as in Example 1 (pore size 500
) was subjected to aminosilanization treatment in the same manner as in Example 3, and 5g of this was taken and treated with 5% glutaraldehyde.
50 ml of 1N hydrochloric acid solution was added, and the mixture was shaken and reacted at room temperature for 17 hours. This CPG was thoroughly washed with water, and then 50 ml of a 1N sodium hydroxide solution containing 5% taurine was added and reacted by shaking at room temperature for 8 hours. When the adsorption of albumin and globulin was measured using the same method as in Example 1 for sulfonated CPG with a sulfonic acid group introduced at its terminal using this method, the adsorption capacity after 3 hours was 25.8 mg/g for albumin and 63.6 mg/g for globulin. It became g. Therefore, it can be seen that the selective adsorption of globulin increases more with sulfonation than with carboxylation. Comparative Example 3 Silica sand, boric acid, sodium nitrate, alumina,
66% by weight of SiO 2 , 25% by weight of B 2 O 3 , 7% by weight of Na 2 O 3 and 2% by weight of Al 2 O 3 were mixed, heated and melted at 1400°C for 5 hours, then rapidly cooled and crushed to obtain raw glass. This was further heat-treated at 560°C for 4 hours to obtain a split-phase glass. This was immersed in 3N hydrochloric acid at 95℃ for 30 hours to extract and remove acid-soluble materials, washed with water, washed with alkali, washed with water,
After drying, the average pore diameter is 600Å and the pore volume is 0.15cc/
A porous glass of g was obtained. When the protein adsorption capacity of this sample was measured using the same method as in Example 1, the globulin adsorption capacity was found to be
The albumin adsorption capacity was 4.2 mg/g, and the albumin adsorption capacity was 3.1 mg/g, which was unsatisfactory as a globulin adsorbent.

Claims (1)

【特許請求の範囲】 1 細孔容積0.5c.c./g以上の多孔体であつて、
細孔の90%以上が孔径500〜1000Åの範囲内にあ
ることを特徴とする免疫グロブリン吸着剤。 2 多孔体が多孔質ガラス、多孔質シリカ、及び
多孔質磁器から選択された特許請求の範囲第1項
記載の免疫グロブリン吸着剤。 3 多孔体表面が負荷電を有する特許請求の範囲
第1項又は第2項記載の免疫グロブリン吸着剤。 4 多孔体表面にカルボキシル基又はスルホン酸
基を有する特許請求の範囲第1項〜第3項のいず
れか1項記載の免疫グロブリン吸着剤。
[Claims] 1. A porous body with a pore volume of 0.5 cc/g or more,
An immunoglobulin adsorbent characterized in that 90% or more of the pores have a pore diameter in the range of 500 to 1000 Å. 2. The immunoglobulin adsorbent according to claim 1, wherein the porous material is selected from porous glass, porous silica, and porous porcelain. 3. The immunoglobulin adsorbent according to claim 1 or 2, wherein the surface of the porous body has a negative charge. 4. The immunoglobulin adsorbent according to any one of claims 1 to 3, which has a carboxyl group or a sulfonic acid group on the surface of the porous body.
JP5073380A 1980-04-16 1980-04-16 Immunoglobulin adsorbent Granted JPS56147710A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP5073380A JPS56147710A (en) 1980-04-16 1980-04-16 Immunoglobulin adsorbent
US06/250,630 US4384954A (en) 1980-04-16 1981-04-03 Column for adsorption of blood proteins
GB8111578A GB2075362B (en) 1980-04-16 1981-04-13 Column for adsorption of blood proteins
DE3115608A DE3115608C2 (en) 1980-04-16 1981-04-16 Device for the adsorption of blood proteins
FR8107714A FR2480606B1 (en) 1980-04-16 1981-04-16
US06/383,137 US4421684A (en) 1980-04-16 1982-05-28 Column for adsorption of blood proteins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5073380A JPS56147710A (en) 1980-04-16 1980-04-16 Immunoglobulin adsorbent

Publications (2)

Publication Number Publication Date
JPS56147710A JPS56147710A (en) 1981-11-16
JPS643170B2 true JPS643170B2 (en) 1989-01-19

Family

ID=12867042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5073380A Granted JPS56147710A (en) 1980-04-16 1980-04-16 Immunoglobulin adsorbent

Country Status (1)

Country Link
JP (1) JPS56147710A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756423A (en) * 1980-09-19 1982-04-05 Akio Hagiwara Agent for local administration
JPS5889272A (en) * 1981-11-20 1983-05-27 株式会社クラレ Immune reaction promotor
JPS59184134A (en) * 1983-03-31 1984-10-19 Kuraray Co Ltd Production of carrier for immobilizing physiologically active substance
AUPQ573300A0 (en) * 2000-02-21 2000-03-16 Australian Nuclear Science & Technology Organisation Controlled release ceramic particles, compositions thereof, processes of preparation and methods of use
TWI546122B (en) 2011-02-25 2016-08-21 東麗股份有限公司 Carrier for adsorbing blood ingredients and column for adsorbing blood ingredients

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045937B2 (en) * 1977-05-10 1985-10-12 旭化成株式会社 protein adsorbent
JPS5354186A (en) * 1976-10-28 1978-05-17 Asahi Chem Ind Co Ltd Protein adsorbent

Also Published As

Publication number Publication date
JPS56147710A (en) 1981-11-16

Similar Documents

Publication Publication Date Title
US5051185A (en) Absorbent of β2 -microglobulin
Ishihara et al. Reduced protein adsorption on novel phospholipid polymers
Denizli et al. Protein A immobilized polyhydroxyethylmethacrylate beads for affinity sorption of human immunoglobulin G
JP4224621B2 (en) Biological fluid purification membrane and biological purification method
KR910002543B1 (en) Berfahren zur bestimmung einer spozifisch bindefahigen substance
FR2480606A1 (en)
JP3081137B2 (en) A method for separating or purifying a biological macromolecule using an improved affinity carrier.
WO1992017502A1 (en) Adsorbed cellular fibronectin and process for separating and purifying fibronectins
WO1994007598A1 (en) Adsorbent for cellular fibronectin, separation and purification of fibronectin, and purification of blood
EP0306617B1 (en) Use of Adsorbent and of apparatus for removing autoantibodies
JPS643170B2 (en)
WO2018127099A1 (en) High-loading and alkali-resistant protein a magnetic bead and method of use thereof
WO1996020042A1 (en) ADSORBENT FOR ENDOTOXIN, TUMOR NECROSIS FACTOR-α OR INTERLEUKINS, METHOD FOR REMOVAL VIA ADSORPTION, AND ADSORBER
Denizli et al. Protein A-immobilized microporous polyhydroxyethylmethacrylate affinity membranes for selective sorption of human-immunoglobulin-G from human plasma
Brynda et al. Preparation of organized protein multilayers
JPH09506067A (en) Method for Coupling Ligand Inside Porous Support (PE Azlactone) and Method of Using the Same
JPS63236539A (en) Immunoglobulin selective adsorbent
JPH0587520B2 (en)
JPH01119264A (en) Adsorbent and removing device therewith
Men'shikova et al. Effect of the surface structure of poly (styrene-co-acrolein) microspheres and its modification by protein on electrosurface properties
JP4005338B2 (en) Antibody-immobilized carrier and method for producing the same
JP2665526B2 (en) β2-microglobulin adsorbent
JP3958478B2 (en) Coating method of carrier
JPH0126709B2 (en)
JPS59135887A (en) Support for immobilizing physiologically active substance and selective adsorbent