JPS642889B2 - - Google Patents

Info

Publication number
JPS642889B2
JPS642889B2 JP4420182A JP4420182A JPS642889B2 JP S642889 B2 JPS642889 B2 JP S642889B2 JP 4420182 A JP4420182 A JP 4420182A JP 4420182 A JP4420182 A JP 4420182A JP S642889 B2 JPS642889 B2 JP S642889B2
Authority
JP
Japan
Prior art keywords
sample gas
port
side port
switching valve
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4420182A
Other languages
Japanese (ja)
Other versions
JPS58160849A (en
Inventor
Ryuzo Kano
Kenji Hirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP4420182A priority Critical patent/JPS58160849A/en
Publication of JPS58160849A publication Critical patent/JPS58160849A/en
Publication of JPS642889B2 publication Critical patent/JPS642889B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/37Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using pneumatic detection

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 この発明はガス濃度測定装置に関し、特に1台
の非分散形赤外線ガス分析計で2つの試料ガス中
の特定成分絶対濃度と濃度差とを簡単な切換操作
によつて測定できるようにしたガス濃度測定装置
を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas concentration measuring device, and particularly to a gas concentration measuring device that can measure the absolute concentration of a specific component in two sample gases and the concentration difference by a simple switching operation using a single non-dispersive infrared gas analyzer. The present invention provides a gas concentration measuring device capable of measuring gas concentration.

例えば植物の炭酸同化作用や生物の呼吸作用等
の研究においては、それらに供給される試料ガス
と供給後排出される試料ガスにおけるそれぞれの
中の炭酸ガス絶対濃度及びそれらの濃度差の両測
定が重要である。
For example, in research on carbon dioxide assimilation in plants and respiration in living organisms, it is necessary to measure both the absolute concentration of carbon dioxide in the sample gas supplied to them and the sample gas discharged after supply, as well as the difference in concentration between them. is important.

従来は絶対濃度測定の場合、比較セルに窒素ガ
スを導入し試料セルにそれぞれの試料ガスを導入
して行ない、濃度差測定の場合、両セルにそれぞ
れの試料ガスを導入して行なつていた。
Conventionally, for absolute concentration measurements, nitrogen gas was introduced into the comparison cell and each sample gas was introduced into the sample cell, and for concentration difference measurements, each sample gas was introduced into both cells. .

前者の測定には窒素ガスが必要であり、窒素ガ
スを使用すると水分干渉の影響がある赤外分析計
で比較セルにだけ水分を含まない窒素ガスが導入
されることになり正確な測定ができなかつた。ま
た両者の測定の選択を簡単な操作で行なうことが
できなかつた。
The former measurement requires nitrogen gas, and if nitrogen gas is used, the infrared analyzer is affected by moisture interference, and nitrogen gas that does not contain moisture is introduced only into the comparison cell, making accurate measurements impossible. Nakatsuta. Furthermore, it was not possible to select between the two measurements with a simple operation.

更に上記のごとき従来の装置では、空気中の炭
酸ガス濃度測定時において、分析計内の光源、測
定セル及び比較セル、検出器等の光学系の隙間が
空気で占められ、従つて空気中の炭酸ガス濃度が
大きく変化した場合、その影響を受けて測定値に
誤差が生じるという問題があつた。
Furthermore, in conventional devices such as those described above, when measuring the carbon dioxide concentration in the air, air occupies the gaps between the light source, the measurement cell, the comparison cell, the detector, etc. in the optical system in the analyzer. There was a problem in that when the carbon dioxide concentration changed significantly, errors occurred in the measured values due to the influence.

この発明はこれらの事情に鑑みなされたもので
あり、その具体的構成は光源、対向する測定セル
及び比較セル、検出器等を備えた非分散形赤外線
ガス分析計と、測定セルに試料ガスを導入できる
第1試料ガス導入路と、比較セルに他の試料ガス
を導入できる第2試料ガス導入路と、これらの試
料ガス導入路にそれぞれ介接された第1・第2切
換弁とを備え、 第1切換弁が測定セル側ポートを試料ガス入口
側ポートと第2切換弁の試料入口側導入路に通じ
るよう設けられた連結路のポートとに切換可能に
構成され、第2切換弁が比較セル側ポートを試料
ガス入口側ポートと特定成分吸収器を介して前記
連結路に通じるよう設けられた吸収路のポートと
に切換可能に構成され、 (i) 第1切換弁の試料ガス入口側ポートと測定セ
ル側ポートとを連結させると共に第2切換弁の
試料ガス入口側ポートと比較セル側ポートとを
連通させると、両試料ガス中の特定成分の濃度
差を測定でき、 (ii) 第1切換弁を(i)の連通状態にして第2切換弁
の比較セル側ポートと前記吸収路のポートとを
連結させると、第1試料ガスの絶対濃度を測定
でき、 (iii) 第2切換弁を(ii)の連通状態にして第1切換弁
の前記連結路のポートと測定セル側ポートとを
連通させると、第2試料ガスの絶対濃度を測定
できるガス濃度測定装置である。
This invention was made in view of these circumstances, and its specific configuration includes a non-dispersive infrared gas analyzer equipped with a light source, opposing measurement and comparison cells, a detector, etc., and a sample gas analyzer in which a sample gas is introduced into the measurement cell. A first sample gas introduction path that can introduce another sample gas into the comparison cell, a second sample gas introduction path that can introduce another sample gas into the comparison cell, and first and second switching valves that are respectively interposed in these sample gas introduction paths. , the first switching valve is configured to be able to switch the measurement cell side port between the sample gas inlet side port and a port of a connecting path provided to communicate with the sample inlet side introduction path of the second switching valve, and the second switching valve The comparison cell side port is configured to be switchable between a sample gas inlet side port and a port of an absorption path provided to communicate with the connection path via a specific component absorber, (i) a sample gas inlet of the first switching valve; By connecting the side port and the measurement cell side port and communicating the sample gas inlet side port of the second switching valve with the comparison cell side port, it is possible to measure the concentration difference of a specific component in both sample gases, (ii) When the first switching valve is in the communication state (i) and the comparison cell side port of the second switching valve is connected to the port of the absorption path, the absolute concentration of the first sample gas can be measured; The gas concentration measuring device is capable of measuring the absolute concentration of the second sample gas when the switching valve is placed in the communicating state (ii) and the port of the connection path of the first switching valve communicates with the measurement cell side port.

すなわち、この発明は、非分散形赤外線ガス分
析計の測定セルと比較セルのそれぞれに試料ガス
導入路を設け、更に両試料ガス導入路にそれぞれ
切換弁を介接すると共に両試料ガス導入路の連結
路と比較セル側試料ガス導入路に特定成分吸収路
とを切換弁に関連して付設することによつて、2
つの試料ガス中の特定成分の濃度差及び絶対濃度
を測定できるようにするものであり、1台の分析
計のみを用い簡単な切換操作にて、実際の使用目
的(例えば研究)に適した測定が可能になる。も
ちろん標準ガスとしての高価な窒素ガスが不要に
なる効果もある(比較セル導入用窒素ガス、分析
計のパージガス用窒素ガスが不要)。
That is, the present invention provides a sample gas introduction path in each of the measurement cell and the comparison cell of a non-dispersive infrared gas analyzer, further interposes a switching valve in each of both sample gas introduction paths, and connects both sample gas introduction paths. By attaching a specific component absorption path to the comparison cell side sample gas introduction path in conjunction with the switching valve, 2.
This enables the measurement of the concentration difference and absolute concentration of specific components in two sample gases, and allows measurement suitable for the actual purpose of use (for example, research) by using only one analyzer and simple switching operations. becomes possible. Of course, this also has the effect of eliminating the need for expensive nitrogen gas as a standard gas (nitrogen gas for introducing the comparison cell and nitrogen gas for purge gas of the analyzer are unnecessary).

この発明は更に第2試料ガス導入路から特定成
分吸収器を介して分析計の光学系の隙間にパージ
ガスを供給できるようにすることによつて、雰囲
気ガスの影響を受けない正確で高感度の濃度測定
を可能にする。
This invention further provides an accurate and highly sensitive system that is unaffected by atmospheric gas by supplying purge gas from the second sample gas introduction path to the gap in the optical system of the analyzer via the specific component absorber. Enables concentration measurements.

この発明に係るガス濃度測定装置で測定可能な
成分(特定成分)としては。例えば炭酸ガス
(CO2)、一酸化炭素(CO)、亜硫酸ガス(SO2)、
一酸化窒素(NO)等が挙げられる。
Components (specific components) that can be measured with the gas concentration measuring device according to the present invention include: For example, carbon dioxide (CO 2 ), carbon monoxide (CO), sulfur dioxide (SO 2 ),
Examples include nitric oxide (NO).

従つて炭酸ガス濃度測定の場合には、植物の炭
酸同化作用、小動物の呼吸作用などの実験研究
や、大気中又は室内の炭酸ガス濃度の連続測定な
どに好適に利用できる。
Therefore, in the case of measuring carbon dioxide concentration, it can be suitably used for experimental research on carbon dioxide assimilation in plants, respiration in small animals, and continuous measurement of carbon dioxide concentration in the atmosphere or indoors.

この発明に係るガス濃度測定装置において、使
用される特定成分吸収器の吸収剤としては、特定
成分が炭酸ガスの場合、ソーダ石灰、アスカライ
ト(商標、水酸化ナトリウムと石綿で製造したも
の)などが好ましいものとして挙げられる。
In the gas concentration measuring device according to the present invention, when the specific component is carbon dioxide, the absorbent used in the specific component absorber includes soda lime, ascarite (trademark, made from sodium hydroxide and asbestos), etc. are listed as preferred.

以下図に示す実施例に基づいてこの発明を詳述
する。なお、これによつてこの発明が限定される
ものではない。
The present invention will be described in detail below based on embodiments shown in the figures. Note that this invention is not limited to this.

第1図において、炭酸ガス濃度測定装置1は、
非分散形赤外線ガス分析計2と、この分析計の測
定セル3及び比較セル4にそれぞれ測定ガスを前
処理して導入できる第1・第2試料ガス導入路
5,6とから主として構成されている。なお、7
は分析計の光源、8は両セル3,4の炭酸ガス濃
度差を出力できる検出器、9はチヨツパである。
In FIG. 1, the carbon dioxide concentration measuring device 1 is
It mainly consists of a non-dispersive infrared gas analyzer 2, and first and second sample gas introduction paths 5 and 6 that can pre-process and introduce the measurement gas into the measurement cell 3 and comparison cell 4 of this analyzer, respectively. There is. In addition, 7
8 is a light source of an analyzer, 8 is a detector capable of outputting the difference in carbon dioxide concentration between both cells 3 and 4, and 9 is a chopper.

第1試料ガス導入路5は、試料ガス注入口1
0、除湿を行なう電子クーラ11、第1切換弁1
2、流量調整用ニードル弁13、ポンプ14、フ
イルタ15及び流量計16をこの順に連接して構
成されている。なお、17はドレンポツトであ
る。一方第2試料ガス導入路6も同様の構成を備
えると共にフイルタ15aと流量計16aとの間
から分岐路18を付設している。
The first sample gas introduction path 5 includes the sample gas inlet 1
0, electronic cooler 11 that dehumidifies, first switching valve 1
2. It is constructed by connecting a needle valve 13 for flow rate adjustment, a pump 14, a filter 15, and a flow meter 16 in this order. Note that 17 is a drain pot. On the other hand, the second sample gas introduction path 6 also has a similar configuration and is provided with a branch path 18 between the filter 15a and the flow meter 16a.

第1・第2切換弁12,12aは、いずれも第
5ポートを第1〜4ポートにそれぞれ切換えられ
るよう構成されている。
The first and second switching valves 12 and 12a are each configured to switch the fifth port to the first to fourth ports, respectively.

両試料ガス導入路5,6は、2つの連結路1
9,20で連結され、更に連結路19の途中から
第2試料ガス導入路6に延びる炭酸ガス吸収路2
1を備えている。連結路19は第1切換弁12の
第2ポートと、第2試料ガス導入路6の電子ク
ーラ11aと第2切換弁12aとの間aとを連結
し、その連結路19の途中bと第2切換弁12a
の第4ポートaとの間に炭酸ガス吸収路21を
連結している。なお、22は炭酸ガスを吸収する
吸収剤(例:ソーダ石灰)を充填した吸収器であ
る。一方連結路20は第1切換弁12の第3ポー
トと第2試料ガス導入路6のニードル弁13a
と第2切換弁12aとの間cとを連結している。
Both sample gas introduction paths 5 and 6 are connected to two connection paths 1
9 and 20, and further extends from the middle of the connecting path 19 to the second sample gas introduction path 6.
1. The connecting path 19 connects the second port of the first switching valve 12 and the gap a between the electronic cooler 11a and the second switching valve 12a of the second sample gas introduction path 6, and 2 switching valve 12a
A carbon dioxide absorption path 21 is connected between the fourth port a and the fourth port a. Note that 22 is an absorber filled with an absorbent (eg, soda lime) that absorbs carbon dioxide gas. On the other hand, the connection path 20 is connected to the third port of the first switching valve 12 and the needle valve 13a of the second sample gas introduction path 6.
and the second switching valve 12a are connected to each other.

分岐路18はニードル弁23と炭酸ガス(特定
成分)を吸収する前記吸収器22と同様の吸収器
24とを経て分析計2内に開口し、後述するごと
く光源7、両セル3,4、検出器8等の光学系の
隙間にパージガスを供給できるよう構成されてい
る。
The branch path 18 opens into the analyzer 2 via a needle valve 23 and an absorber 24 similar to the absorber 22 that absorbs carbon dioxide gas (specific component), and is connected to a light source 7, both cells 3 and 4, as described later. It is configured so that purge gas can be supplied to gaps in the optical system such as the detector 8.

次に以上の構成からなる炭酸ガス濃度測定装置
1の作動を説明する。
Next, the operation of the carbon dioxide concentration measuring device 1 having the above configuration will be explained.

(イ) 濃度差測定 第1・第2切換弁12,12a共第1ポート
,aと第5ポート,aとが連通するよ
う設定し、両試料ガス導入路5,6から試料ガ
スA,Bをそれぞれ非分散形赤外線ガス分析計
の測定セル3と比較セル4に導入すれば、両試
料ガスA,Bの濃度差が測定できる。例えばマ
ウスの呼吸作用を研究する場合は、マウスを入
れた部屋を通過したガスをA、マウスを入れた
部屋に供給した供給ガス自体をBとすれば、マ
ウスの呼吸状態(変化)が連続して測定でき
る。
(a) Concentration difference measurement Both the first and second switching valves 12 and 12a are set so that the first port, a and the fifth port, a communicate with each other, and sample gases A and B are supplied from both sample gas introduction paths 5 and 6. By introducing these into the measurement cell 3 and comparison cell 4 of a non-dispersive infrared gas analyzer, the concentration difference between both sample gases A and B can be measured. For example, when studying the respiratory effects of mice, let A be the gas that has passed through the room containing the mouse, and B be the gas supplied to the room containing the mouse, so that the respiratory state (changes) of the mouse can be continuously It can be measured by

(ロ) 絶対濃度測定 (イ)の状態から第2切換弁12aを操作し第4
ポートaと第5ポートaを連通させる。つ
まり、試料ガスBは連結路19を通り、その途
中から吸収路21を通つて炭酸ガスを除去され
第2切換弁12aにもどり、比較セル4へ向か
う。従つて比較セル4の試料ガスBの炭酸ガス
濃度はゼロとなり、両セル3,4の濃度差、つ
まり試料ガスAの炭酸ガス絶対濃度が検出器8
により出力される。
(b) Absolute concentration measurement From the state of (a), operate the second switching valve 12a and
Port a and fifth port a are communicated. In other words, the sample gas B passes through the connection path 19, passes through the absorption path 21 midway through the connection path, removes carbon dioxide gas, returns to the second switching valve 12a, and heads toward the comparison cell 4. Therefore, the carbon dioxide concentration of sample gas B in comparison cell 4 is zero, and the concentration difference between both cells 3 and 4, that is, the absolute carbon dioxide concentration of sample gas A, is detected by detector 8.
is output by

続いて第1切換弁12を操作し、第2ポート
と第5ポートを連通させると、比較セル3
にはそのまま試料ガスBの炭酸ガス濃度ゼロの
ものが導入されるが、測定セル3には試料ガス
Aに代つて試料ガスBが連結路19を通じて導
入される。かくして、両セル3,4の濃度差、
つまり測定セル3の試料ガスBの炭酸ガス絶対
濃度が検出器8により出力される。なお、従来
では比較セルに窒素ガス(乾燥状態)を用いて
いたので、測定セルの試料ガス中の水分の干渉
による誤差がさけられなかつたが、上記方法で
は誤差がキヤンセルできる。
Subsequently, when the first switching valve 12 is operated to connect the second port and the fifth port, the comparison cell 3
Sample gas B with a carbon dioxide concentration of zero is introduced into the measurement cell 3 as it is, but sample gas B is introduced into the measurement cell 3 through the connection path 19 instead of the sample gas A. Thus, the concentration difference between both cells 3 and 4,
That is, the absolute carbon dioxide concentration of the sample gas B in the measurement cell 3 is outputted by the detector 8. In the past, since nitrogen gas (dry state) was used in the comparison cell, errors due to interference of moisture in the sample gas of the measurement cell were unavoidable, but the above method can cancel the errors.

(ハ) ゼロ調整 (i) 試料ガスによる濃度差ゼロ調整 第1切換弁12を第3ポートと第5ポー
トとが連通するよう操作し、第2切換弁1
2aを第4ポートと第5ポートaとが連
通するよう操作すると、比較セル4と共に連
結路19を介して測定セル3にも同じ試料ガ
スBが導入される。従つて検出器8からは濃
度差ゼロが出力されるべきであり、ゼロ調整
が可能となる。
(c) Zero adjustment (i) Zero adjustment of concentration difference due to sample gas Operate the first switching valve 12 so that the third port and the fifth port communicate with each other, and then
When 2a is operated so that the fourth port and the fifth port a communicate with each other, the same sample gas B is introduced into the measurement cell 3 as well as the comparison cell 4 via the connection path 19. Therefore, the detector 8 should output a concentration difference of zero, making zero adjustment possible.

(ii) 標準ガスによる濃度差ゼロ・スパン調整 第2切換弁12aを第2ポートaと第5
ポートaとが連通するよう操作し、標準ガ
ス(350ppmの低濃度CO2)をSTDLより流
入させ、一方第1切換弁12を第3ポート
と第5ポートとが連通するよう操作する。
かくしてガス分析計の測定セル3と比較する
4に同じ350ppmのCO2が流れこの状態で濃
度差のメータメモリをゼロに調整できる。
(ii) Zero concentration difference and span adjustment using standard gas The second switching valve 12a is connected to the second port a and the fifth port
Port a is operated to communicate with the port a, and standard gas (350 ppm low concentration CO 2 ) is allowed to flow in from STDL, while the first switching valve 12 is operated so that the third port and the fifth port are communicated with each other.
In this way, the same 350 ppm of CO 2 flows into measurement cell 3 and comparison cell 4 of the gas analyzer, and in this state, the meter memory of the concentration difference can be adjusted to zero.

次に上記の状態から第1切換弁12を第4
ポートと第5ポートとが連通するよう操
作し、標準ガス(400ppmの高濃度CO2)を
STDHから流入させ、分析計の濃度差の指
示が+50ppmを指すようにスパンボリユウム
を調整する。なお、測定セル4には400ppm
のCO2、一方比較セル4には350ppmのCO2
がそれぞれ流れている。
Next, from the above state, switch the first switching valve 12 to the fourth
Operate the port so that it communicates with the 5th port, and supply standard gas (high concentration CO 2 of 400ppm).
Flow in from STDH and adjust the span volume so that the concentration difference reading on the analyzer points to +50 ppm. In addition, measurement cell 4 contains 400ppm.
of CO 2 , while comparison cell 4 had 350 ppm CO 2
are flowing respectively.

以上の構成により標準ガスによる濃度差測
定レンジの校正が可能になる。
The above configuration makes it possible to calibrate the concentration difference measurement range using the standard gas.

(iii) 標準ガスによる絶対濃度ゼロ・スパン調整 上記濃度差ゼロ調整終了後次の絶対濃度ゼ
ロ・スパン調整を行う。まず第2切換弁12
aを第3ポートaと第5ポートaとが連
通するよう操作し、N2ガス入口よりN2を流
入させ、第1切換弁12を第3ポートと第
5ポートとが連通するよう操作する。かく
してガス分析計の両セルにN2が導入される。
この状態で絶対濃度のメータ目盛のゼロ調整
が可能になる。
(iii) Absolute concentration zero/span adjustment using standard gas After completing the above concentration difference zero adjustment, perform the next absolute concentration zero/span adjustment. First, the second switching valve 12
a so that the third port a and the fifth port a communicate with each other, N2 is introduced from the N2 gas inlet, and the first switching valve 12 is operated so that the third port and the fifth port communicate with each other. . N 2 is thus introduced into both cells of the gas analyzer.
In this state, the absolute concentration meter scale can be zero-adjusted.

続いて上記状態から第1切換弁12を第4
ポートと第5ポートとが連通するよう操
作し、STBHから標準ガス(400ppmのCO2
を流入させる。かくして分析計の指示を
400ppm(スパン点)になるようスパンボリユ
ウムで合わせる。なお、この時の測定側には
400ppmのCO2、一方比較側にはN2がそれぞ
れ流れている。かくして絶対濃度測定レンジ
の標準ガスによる校正が可能になる。
Subsequently, from the above state, the first switching valve 12 is switched to the fourth switching valve.
Operate the port so that it communicates with the 5th port, and supply standard gas (400ppm CO 2 ) from the STBH.
inflow. Thus, the spectrometer instructions
Adjust with span volume to make it 400ppm (span point). In addition, on the measurement side at this time,
400 ppm of CO 2 is flowing on the comparison side, while N 2 is flowing on the comparison side. In this way, it becomes possible to calibrate the absolute concentration measurement range using the standard gas.

(ニ) パージ 分岐路18を通じて炭酸ガスを含まない試料
ガスを分析計2の光学系の隙間に供給する。な
お、パージガスは流量をできるだけ少なくする
ために上述のごとく、分析計の光源7、両セル
3,4、検出器8等の光学系の隙間のみに供給
されるのが望ましい。
(d) Purge A sample gas that does not contain carbon dioxide is supplied to the gap in the optical system of the analyzer 2 through the branch path 18. In order to reduce the flow rate as much as possible, the purge gas is desirably supplied only to the gaps between the optical system of the analyzer, such as the light source 7, both cells 3 and 4, and the detector 8, as described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明のガス濃度測定装置の一実施
例を示す構成説明図である。 1……炭酸ガス濃度測定装置、3……測定セ
ル、4……比較セル、5……第1試料ガス導入
路、6……第2試料ガス導入路、7……光源、8
……検出器、10……試料ガス注入口、12……
第1切換弁、18……分岐路、19……連結路、
21……炭酸ガス吸収路。
FIG. 1 is a configuration explanatory diagram showing an embodiment of the gas concentration measuring device of the present invention. DESCRIPTION OF SYMBOLS 1... Carbon dioxide concentration measuring device, 3... Measurement cell, 4... Comparison cell, 5... First sample gas introduction path, 6... Second sample gas introduction path, 7... Light source, 8
...Detector, 10...Sample gas inlet, 12...
First switching valve, 18... Branch road, 19... Connecting road,
21...Carbon dioxide absorption path.

Claims (1)

【特許請求の範囲】 1 光源、対向する測定セル及び比較セル、検出
器等を備えた非分散形赤外線ガス分析計と、測定
セルに試料ガスを導入できる第1試料ガス導入路
と、比較セルに他の試料ガスを導入できる第2試
料ガス導入路と、これらの試料ガス導入路にそれ
ぞれ介接された第1・第2切換弁とを備え、 第1切換弁が測定セル側ポートを試料ガス入口
側ポートと第2切換弁の試料入口側導入路に通じ
るよう設けられた連結路のポートとに切換可能に
構成され、第2切換弁が比較セル側ポートを試料
ガス入口側ポートと特定成分吸収器を介して前記
連結路に通じるよう設けられた吸収路のポートと
に切換可能に構成され、 (i) 第1切換弁の試料ガス入口側ポートと測定セ
ル側ポートとを連結させると共に第2切換弁の
試料ガス入口側ポートと比較セル側ポートとを
連通させると、両試料ガス中の特定成分の濃度
差を測定でき、 (ii) 第1切換弁を(i)の連通状態にして第2切換弁
の比較セル側ポートと前記吸収路のポートとを
連結させると、第1試料ガスの絶対濃度を測定
でき、 (iii) 第2切換弁を(ii)の連通状態にして第1切換弁
の前記連結路のポートと測定セル側ポートとを
連通させると、第2試料ガスの絶対濃度を測定
できるガス濃度測定装置。 2 光源、対向する測定セル及び比較セル、検出
器等を備えた非分散形赤外線ガス分析計と、測定
セルに試料ガスを導入できる第1試料ガス導入路
と、比較セルに他の試料ガスを導入できる第2試
料ガス導入路と、これらの試料ガス導入路にそれ
ぞれ介接された第1・第2切換弁とを備え、 第1切換弁が測定セル側ポートを試料ガス入口
側ポートと第2切換弁の試料入口側導入路に通じ
るよう設けられた連結路のポートとに切換可能に
構成され、第2切換弁が比較セル側ポートを試料
ガス入口側ポートと特定成分吸収器を介して前記
連結路に通じるよう設けられた吸収路のポートと
に切換可能に構成され、 (i) 第1切換弁の試料ガス入口側ポートと測定セ
ル側ポートとを連結させると共に第2切換弁の
試料ガス入口側ポートと比較セル側ポートとを
連通させると、両試料ガス中の特定成分の濃度
差を測定でき、 (ii) 第1切換弁を(i)の連通状態にして第2切換弁
の比較セル側ポートと前記吸収路のポートとを
連結させると、第1試料ガスの絶対濃度を測定
でき、 (iii) 第2切換弁を(ii)の連通状態にして第1切換弁
の前記連結路のポートと測定セル側ポートとを
連通させると、第2試料ガスの絶対濃度を測定
でき、 更に第2切換弁より比較セル側の第2試料ガス
導入路から分岐し前記吸収路に介設された特定成
分吸収器とは異なるもう1つの特定成分吸収器を
介して前記非分散形赤外線ガス分析計内に開口す
る分岐路を付設し、その分析計内の光源、測定セ
ル及び比較セル、検出器等の光学系の〓間にパー
ジガスを供給できるガス濃度測定装置。
[Scope of Claims] 1. A non-dispersive infrared gas analyzer equipped with a light source, an opposing measurement cell, a comparison cell, a detector, etc., a first sample gas introduction path through which a sample gas can be introduced into the measurement cell, and a comparison cell. A second sample gas introduction path through which another sample gas can be introduced into the sample gas, and first and second switching valves respectively interposed in these sample gas introduction paths, and the first switching valve connects the measurement cell side port to the sample gas. The port is configured to be switchable between the gas inlet side port and the port of the connection path provided to communicate with the sample inlet side introduction path of the second switching valve, and the second switching valve identifies the comparison cell side port as the sample gas inlet side port. (i) connects the sample gas inlet side port of the first switching valve and the measurement cell side port; By communicating the sample gas inlet side port of the second switching valve with the comparison cell side port, the concentration difference of a specific component in both sample gases can be measured. (iii) When the comparison cell side port of the second switching valve is connected to the port of the absorption path, the absolute concentration of the first sample gas can be measured. A gas concentration measuring device capable of measuring the absolute concentration of a second sample gas by communicating the port of the connection path of the first switching valve with the measurement cell side port. 2. A non-dispersive infrared gas analyzer equipped with a light source, an opposing measurement cell, a comparison cell, a detector, etc., a first sample gas introduction path through which a sample gas can be introduced into the measurement cell, and another sample gas into the comparison cell. It is equipped with a second sample gas introduction path through which the sample gas can be introduced, and first and second switching valves respectively interposed in these sample gas introduction paths, and the first switching valve connects the measurement cell side port to the sample gas inlet side port and the second The second switching valve is configured to be able to switch between the comparison cell side port and the sample gas inlet side port via the specific component absorber. (i) connects the sample gas inlet side port of the first switching valve and the measurement cell side port, and connects the sample gas inlet side port of the first switching valve with the sample gas inlet port of the second switching valve; By connecting the gas inlet side port and the comparison cell side port, the concentration difference of a specific component in both sample gases can be measured. By connecting the comparison cell side port and the port of the absorption path, the absolute concentration of the first sample gas can be measured; When the port of the channel and the port on the measurement cell side are connected, the absolute concentration of the second sample gas can be measured, and furthermore, the second sample gas introduction channel on the comparison cell side is branched from the second switching valve and interposed in the absorption channel. A branch path is provided that opens into the non-dispersive infrared gas analyzer through another specific component absorber different from the specific component absorber that has been used, and a light source, a measurement cell and a comparison cell in the analyzer, A gas concentration measuring device that can supply purge gas between optical systems such as detectors.
JP4420182A 1982-03-18 1982-03-18 Measuring apparatus of gas concentration Granted JPS58160849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4420182A JPS58160849A (en) 1982-03-18 1982-03-18 Measuring apparatus of gas concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4420182A JPS58160849A (en) 1982-03-18 1982-03-18 Measuring apparatus of gas concentration

Publications (2)

Publication Number Publication Date
JPS58160849A JPS58160849A (en) 1983-09-24
JPS642889B2 true JPS642889B2 (en) 1989-01-19

Family

ID=12684949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4420182A Granted JPS58160849A (en) 1982-03-18 1982-03-18 Measuring apparatus of gas concentration

Country Status (1)

Country Link
JP (1) JPS58160849A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8749789B2 (en) 2010-12-27 2014-06-10 Horiba, Ltd. Gas concentration measuring apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5221881B2 (en) * 2007-02-09 2013-06-26 大陽日酸株式会社 Gas analyzer
JP7521295B2 (en) * 2020-07-20 2024-07-24 株式会社島津製作所 Total organic carbon meter and method for measuring total organic carbon concentration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8749789B2 (en) 2010-12-27 2014-06-10 Horiba, Ltd. Gas concentration measuring apparatus

Also Published As

Publication number Publication date
JPS58160849A (en) 1983-09-24

Similar Documents

Publication Publication Date Title
US4271124A (en) Non-dispersive infrared gas analyzer for testing gases containing water-vapor
US10274457B2 (en) Gas component concentration measurement device and method for gas component concentration measurement
CA2429733C (en) Stable isotope measurement method and apparatus by spectroscopy
US4817013A (en) Multichannel gas analyzer and method of use
US5305630A (en) Process and apparatus for supplying gas to a very highly sensitive analyzer
CA2019571C (en) Method and apparatus for gas analysis
D'Ottavio et al. Determination of ambient aerosol sulfur using a continuous flame photometric detection system. II. The measurement of low-level sulfur concentrations under varying atmospheric conditions
JP2002286638A (en) Isotopic gas measuring device
US3166676A (en) Ultra-violet gas analysis apparatus to determine the relative gaseous concentration in an anesthetic system
US4803052A (en) Carbon monoxide detector
JPS6217183B2 (en)
JPS642889B2 (en)
GB1453938A (en) Monitoring of a gas stream
McCAMMON et al. An evaluation of a passive monitor for mercury vapor
Hochheiser Methods of measuring and monitoring atmospheric sulfur dioxide
CA1188128A (en) Carbon monoxide detector
JP2002350340A (en) Apparatus and method for measuring isotopic gas
JPH09243537A (en) Gas measuring apparatus
US3281595A (en) Apparatus and method for monitoring the quantity of a constituent of a gas stream
CN209432689U (en) Carbonomonoxide concentration detection device
Campbell et al. Effect of water and carbon dioxide in chemiluminescent measurement of oxides of nitrogen
GB2049182A (en) Method and apparatus for sensing respiration
Bryan Instrumentation for an ambient air animal exposure project
US3361661A (en) Apparatus for analyzing gases
CN109358005A (en) Content of nitrogen dioxide detection device and method