JPS642875B2 - - Google Patents

Info

Publication number
JPS642875B2
JPS642875B2 JP9571679A JP9571679A JPS642875B2 JP S642875 B2 JPS642875 B2 JP S642875B2 JP 9571679 A JP9571679 A JP 9571679A JP 9571679 A JP9571679 A JP 9571679A JP S642875 B2 JPS642875 B2 JP S642875B2
Authority
JP
Japan
Prior art keywords
spouted bed
forming section
bed forming
cyclone
temperature gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9571679A
Other languages
Japanese (ja)
Other versions
JPS5620987A (en
Inventor
Takeshi Murataka
Shizuo Tsuchida
Yoshimasa Hayashi
Katsuo Oono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Cement Co Ltd
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP9571679A priority Critical patent/JPS5620987A/en
Publication of JPS5620987A publication Critical patent/JPS5620987A/en
Publication of JPS642875B2 publication Critical patent/JPS642875B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】 本発明は、粉粒体予熱装置に関する。さらに詳
しくは、セメント原料の如き粉粒体を効率良く予
熱するサスペンジヨンプレヒーター型の粉粒体予
熱装置に関する。 従来、ロータリーキルンでセメント原料を予熱
する場合、第1図に示す様に、ロータリーキルン
1に多段サイクロン型のサスペンジヨンプレヒー
ター2を付設し、該プレヒーター2によつてセメ
ント原料を予熱した後、該原料をキルン1内で焼
成している。かかる従来の予熱装置において、セ
メント原料は給養ロータリーフイーダー3により
接続ダクト4内に供給され、該ダクト4内で2段
サイクロン5から流れてくる高温ガスと向流接触
し、熱交換して該高温ガスと共に1段サイクロン
6に流入し、該1段サイクロン6の底部から接続
ダクト7に供給される。以下同様にして接続ダク
ト7から2段サイクロン5へ、2段サイクロン5
から接続ダクト8へ、接続ダクト8から3段サイ
クロン9へ、3段サイクロン9から接続ダクト1
0へ、接続ダクト10から4段サイクロン11
へ、4段サイクロン11からロータリーキルン1
へ供給される。なお、図において12は排風機、
13は接続ダクト、14はバーナー、15はクリ
ンカクーラーである。 即ち、図示した従来のサスペンジヨンプレヒー
ター型粉粒体予熱装置においては、粉粒体と高温
ガスとの熱交換の大部分が各サイクロン間の接続
ダクト4,7,8およびロータリーキルンと4段
サイクロン11間の接続ダクト10内で行なわれ
ており、その中でも上記各接続ダクト4,7,
8,10内で粉粒体と高温ガスが向流接続してか
ら高温ガスの流れに乗るまでの区間、即ち助走区
間での熱交換が大部分である。換言すれば、一旦
高温ガスの流れに乗つた粉粒体はその後殆んど熱
交換は行なわれない。従つて、上記の如き従来の
サスペンジヨンプレヒーター型粉粒体予熱装置で
は、粉粒体と高温ガスとが効率的に熱交換される
向流接触は各接続ダクト4,7,8,10内にお
いて各1回づつしか発生せず、しかもその向流接
触の時間が非常に短く、かつ原料の分散が完全で
ないので全体として熱交換率が低く、この熱交換
率を改善するためにはより多数のサイクロンを付
設しなければならないという欠点があつた。 本発明の目的は、上記事情に鑑み、各サイクロ
ン間の接続ダクトあるいはキルンとサイクロン間
の接続ダクトのうち少なくとも1つのダクトに噴
流層形成部を設け、該噴流層形成部内で高温ガス
の噴流層を形成させることにより粉粒体と高温ガ
スとの向流接触の回数および時間を増大せしめ、
もつて熱交換率の向上、使用熱量の低減を図るこ
とができる粉粒体予熱装置を提供することにあ
る。 以下、図面に示す実施例を参照しながら本発明
を詳細に説明する。 第2図は本発明に係る粉粒体予熱装置の一実施
例を示す概念図であり、該装置は、基本的には第
1図に示した装置と同様、キルンに付設した1個
あるいは複数個のサイクロンを備えてなるサスペ
ンジヨンプレヒーター型の粉粒体予熱装置であ
り、図中の附番のうち第1図と同じ附番は第1図
と同じものを示している。本装置と第1図に示し
た装置との違いは、キルン1と4段サイクロン1
1との間の接続ダクト10および3段サイクロン
9と4段サイクロン11との間の接続ダクト8に
噴流層形成部8a,10aを設けたことにある。
本実施例における噴流層形成部8a,10aは各
接続ダクト8,10をふくらませ、高温ガスの通
路断面積を途中で拡大すべく形成してある。かか
る噴流層形成部8a,10a内で高温ガスが噴流
層になるためには、噴流層形成部8a,10aの
最大部の半径をr2、高温ガス導入部の半径をr1
高さをlとすると、 最大部の断面積πr22/導入部の断面積πr21≧2 高さl/導入部の直径2r1≧1.5 であることが好ましい。なお、上記両式は下限値
を限定するものであり、上限値は限定されていな
いが、かかる上限値は接続ダクトの長さによつて
自から限定される。 上記噴流層形成部8a,10aの形状は、要す
るに高温ガスの噴流層が形成されるべく高温ガス
の通路の断面積を途中で拡大し、しかも上記両式
を満足するものであれば好適であり、その態様は
第2図に示すものに限らず、たとえば第3図a,
b,c,dに示す様なものであつても良い。 上記の如く構成された粉粒体予熱装置において
は、粉粒体は、第1図に示す装置の場合と同様、
給養ロータリーフイーダー3からサスペンジヨン
プレヒーター2内を通つてキルン1内に供給され
るが、その際高温ガスは噴流層形成部8a,10
a内で噴流層となるので、高温ガスと粉粒体とは
この噴流層形成部8a,10a内で向流接触し、
かつ粉粒体が分散する。従つて、第1図の様に噴
流層形成部を設けない場合に比べ、本装置におい
ては高温ガスと粉粒体との向流接触の回数および
時間が長くなり、粉粒体が分散されるので充分な
熱交換が行なわれ、熱交換率の向上および使用熱
量たとえばセメントクリンカ焼成用熱量の低減を
図ることができる。 なお、上記噴流層形成部は、キルンとサイクロ
ン間の接続ダクト10あるいは各サイクロン間の
接続ダクト4,7,8のいづれかにあるいは全部
に、必要に応じて任意に設ければ良い。また、本
発明における噴流層形成部としては、要するに上
記接続ダクト内で高温ガスの噴流層を形成させる
ものであればよく、上記実施例に示したもの以
外、たとえば別個の噴流層形成手段を設けたもの
であつても良い。 次に、第1図に示す従来装置と第2図に示す本
装置とのセメント原料予熱比較試験結果を、第4
図および第1表に示す。第4図は上記両装置にお
ける高温ガスの4段サイクロン11の出口温度と
窯入セメント原料の脱炭酸率の関係を示す。この
図から分かる様に、本装置によれば高温ガスの出
口温度は従来装置よりも低下し、脱炭酸率は向上
している。また、下記第1表は、両装置における
各サイクロン出口のガス温度およびクリンカ1Kg
を焼成するのに必要な熱量を示すものであり、こ
の表から分かる様に、本装置によれば従来装置よ
りも各サイクロン出口のガス温度は低下し、クリ
ンカ焼成用熱量原単位は40Kg/Kcal低下してい
る。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a powder preheating device. More specifically, the present invention relates to a suspension preheater type powder preheating device that efficiently preheats powder such as cement raw materials. Conventionally, when preheating cement raw materials in a rotary kiln, as shown in FIG. Raw materials are fired in kiln 1. In such a conventional preheating device, the cement raw material is supplied into the connecting duct 4 by the feeding rotary feeder 3, and in the duct 4 comes into countercurrent contact with the high-temperature gas flowing from the two-stage cyclone 5, and exchanges heat. It flows into the first-stage cyclone 6 together with the high-temperature gas, and is supplied to the connecting duct 7 from the bottom of the first-stage cyclone 6 . Similarly, from the connecting duct 7 to the two-stage cyclone 5, the second-stage cyclone 5
to connecting duct 8, from connecting duct 8 to three-stage cyclone 9, from three-stage cyclone 9 to connecting duct 1
0, from the connecting duct 10 to the 4-stage cyclone 11
From 4-stage cyclone 11 to rotary kiln 1
supplied to In addition, in the figure, 12 is an exhaust fan,
13 is a connection duct, 14 is a burner, and 15 is a clinker cooler. That is, in the conventional suspension preheater type powder and granular material preheating device shown in the figure, most of the heat exchange between the powder and granular material and the high-temperature gas occurs through the connection ducts 4, 7, and 8 between the cyclones, the rotary kiln, and the four-stage cyclone. This is carried out within the connecting duct 10 between the connecting ducts 4, 7, and 11.
Most of the heat exchange occurs in the section from when the granular material and the high-temperature gas are connected in countercurrent in 8 and 10 until they ride the flow of the high-temperature gas, that is, the run-up section. In other words, once the granular material has been carried by the flow of high-temperature gas, almost no heat exchange is performed thereafter. Therefore, in the conventional suspension preheater type powder preheating device as described above, countercurrent contact between the powder and the high temperature gas for efficient heat exchange occurs in each of the connecting ducts 4, 7, 8, and 10. This occurs only once each time, and the countercurrent contact time is very short, and the raw materials are not completely dispersed, so the overall heat exchange rate is low. In order to improve this heat exchange rate, it is necessary to The drawback was that a cyclone had to be attached. In view of the above circumstances, an object of the present invention is to provide a spouted layer forming section in at least one of the connecting ducts between each cyclone or the connecting duct between a kiln and a cyclone, and to create a spouted layer of high temperature gas within the spouted layer forming section. By forming
The object of the present invention is to provide a powder preheating device that can improve the heat exchange rate and reduce the amount of heat used. Hereinafter, the present invention will be explained in detail with reference to embodiments shown in the drawings. FIG. 2 is a conceptual diagram showing an embodiment of a powder preheating device according to the present invention, which is basically the same as the device shown in FIG. This is a suspension preheater type powder preheating device comprising two cyclones, and among the numbered numbers in the figure, the same numbered parts as in FIG. 1 indicate the same ones as in FIG. The difference between this device and the device shown in Figure 1 is the kiln 1 and the 4-stage cyclone 1.
The spouted bed forming portions 8a and 10a are provided in the connecting duct 10 between the three-stage cyclone 9 and the four-stage cyclone 11, and in the connecting duct 8 between the three-stage cyclone 9 and the four-stage cyclone 11.
The spouted bed forming portions 8a, 10a in this embodiment are formed to inflate the respective connecting ducts 8, 10 and expand the passage cross-sectional area of the high temperature gas midway. In order for the high temperature gas to become a spouted layer in the spouted layer forming sections 8a and 10a, the radius of the maximum part of the spouted layer forming sections 8a and 10a is r 2 , the radius of the high temperature gas introduction section is r 1 ,
When the height is l, it is preferable that the following relationships are satisfied: cross-sectional area of the maximum part πr 2 / 2 / cross-sectional area of the introduction part πr 2 / 1 ≧2 height l / diameter of the introduction part 2r 1 ≧1.5. Note that both of the above equations limit the lower limit value, and do not limit the upper limit value, but the upper limit value is automatically limited by the length of the connecting duct. In short, the shape of the spouted layer forming portions 8a, 10a is suitable as long as it expands the cross-sectional area of the high-temperature gas passage midway in order to form a spouted layer of high-temperature gas, and satisfies both of the above equations. , its mode is not limited to that shown in FIG. 2, for example, FIG.
It may be as shown in b, c, and d. In the granular material preheating device configured as described above, the granular material is heated in the same way as in the device shown in FIG.
The high-temperature gas is supplied into the kiln 1 from the feeding rotary feeder 3 through the suspension preheater 2.
Since a spouted bed is formed in the spouted bed forming portions 8a and 10a, the high-temperature gas and the powder come into contact with each other in countercurrent flow within the spouted bed forming portions 8a and 10a.
And the powder particles are dispersed. Therefore, compared to the case where the spouted bed forming section is not provided as shown in Fig. 1, in this device, the number and time of countercurrent contact between the high temperature gas and the granular material are longer, and the granular material is dispersed. Therefore, sufficient heat exchange is carried out, and it is possible to improve the heat exchange rate and reduce the amount of heat used, for example, the amount of heat used for firing cement clinker. The spouted bed forming section may be arbitrarily provided in any or all of the connection duct 10 between the kiln and the cyclone, or the connection ducts 4, 7, and 8 between the cyclones, as required. In addition, the spouted layer forming section in the present invention may be any unit as long as it forms a spouted layer of high-temperature gas within the connection duct, and may include, for example, a separate spouted layer forming means other than those shown in the above embodiments. It may be something like that. Next, the results of the cement raw material preheating comparison test between the conventional device shown in Fig. 1 and the present device shown in Fig.
It is shown in the figure and Table 1. FIG. 4 shows the relationship between the outlet temperature of the high-temperature gas of the four-stage cyclone 11 and the decarboxylation rate of the cement raw material in the kiln in both of the above devices. As can be seen from this figure, according to this apparatus, the outlet temperature of high-temperature gas is lower than that of the conventional apparatus, and the decarboxylation rate is improved. In addition, Table 1 below shows the gas temperature at each cyclone outlet in both devices and the clinker 1Kg.
As can be seen from this table, with this device, the gas temperature at the outlet of each cyclone is lower than with conventional devices, and the unit heat consumption for clinker baking is 40Kg/Kcal. It is declining. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の粉粒体予熱装置を示す概念図、
第2図は本発明に係る粉粒体予熱装置の一例を示
す概念図、第3図a,b,c,dはそれぞれ噴流
層形成部の一例を示す断面概念図、第4図は従来
装置と本装置の比較試験結果を示す図である。 1……キルン、2……サスペンジヨンプレヒー
ター、4,7,8……各サイクロン間の接続ダク
ト、10……キルンとサイクロン間の接続ダク
ト、8a,10a……噴流層形成部。
Figure 1 is a conceptual diagram showing a conventional powder preheating device.
Fig. 2 is a conceptual diagram showing an example of a powder preheating device according to the present invention, Fig. 3 a, b, c, and d are cross-sectional conceptual diagrams showing an example of a spouted bed forming section, and Fig. 4 is a conventional device. It is a figure showing the comparative test result of this device. 1... Kiln, 2... Suspension preheater, 4, 7, 8... Connection duct between each cyclone, 10... Connection duct between kiln and cyclone, 8a, 10a... Spouted bed forming section.

Claims (1)

【特許請求の範囲】 1 キルンに付設した1個あるいは複数個のサイ
クロンを備えて成るサスペンジヨンプレヒーター
型の粉粒体予熱装置において、キルンとサイクロ
ン間の接続ダクトまたは各サイクロン間の接続ダ
クトのうちの少なくとも1つのダクトに噴流層形
成部を設けたことを特徴とする粉粒体予熱装置。 2 上記噴流層形成部が、実質的に、 噴流層形成部の最大部断面積/噴流層形成部の導入
部断面積≧2 噴流層形成部の高さ/噴流層形成部の導入部直径≧
1.5 を満足すべく高温ガスの通路断面積を途中で拡大
して成る噴流層形成部であることを特徴とする特
許請求の範囲第1項に記載した粉粒体予熱装置。
[Claims] 1. In a suspension preheater type powder preheating device comprising one or more cyclones attached to a kiln, a connection duct between the kiln and the cyclone or a connection duct between each cyclone is provided. A powder preheating device characterized in that at least one of the ducts is provided with a spouted bed forming section. 2 The spouted bed forming section substantially satisfies the following: Maximum cross-sectional area of the spouted bed forming section/cross-sectional area of the introduction section of the spouted bed forming section≧2 Height of the spouted bed forming section/diameter of the introduction section of the spouted bed forming section≧
1.5. The granular material preheating device according to claim 1, wherein the spouted bed forming section is formed by enlarging the passage cross-sectional area of the high-temperature gas midway in order to satisfy the condition 1.5.
JP9571679A 1979-07-27 1979-07-27 Granular solid preheater Granted JPS5620987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9571679A JPS5620987A (en) 1979-07-27 1979-07-27 Granular solid preheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9571679A JPS5620987A (en) 1979-07-27 1979-07-27 Granular solid preheater

Publications (2)

Publication Number Publication Date
JPS5620987A JPS5620987A (en) 1981-02-27
JPS642875B2 true JPS642875B2 (en) 1989-01-18

Family

ID=14145201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9571679A Granted JPS5620987A (en) 1979-07-27 1979-07-27 Granular solid preheater

Country Status (1)

Country Link
JP (1) JPS5620987A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120492U (en) * 1990-03-22 1991-12-11

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120492U (en) * 1990-03-22 1991-12-11

Also Published As

Publication number Publication date
JPS5620987A (en) 1981-02-27

Similar Documents

Publication Publication Date Title
US4838782A (en) Burner with regenerative bed
WO2012126387A1 (en) Process and apparatus for calcining cement clinker with pre-heating and pre-decomposition at high solid-to-gas ratio
US4022568A (en) Method and apparatus for heat treating pulverous raw materials
CN1016993B (en) Method and regenerator for heating gases
JPS642875B2 (en)
US1992669A (en) Apparatus for treatment of vermiculite
SU1145228A2 (en) Furnace for roasting fine-grain material in fluidized bed
US4269266A (en) Recuperator tube construction
JPS593951B2 (en) Calcination method and kiln equipment for powdered or granular materials
CA1149610A (en) Preheating method and apparatus
US5049064A (en) Burner with regenerative bed
US1929953A (en) Manufacture of hydraulic cement
JPH0424394Y2 (en)
KR830008144A (en) Cement baking equipment
EP0257840B1 (en) Burner
JPS595715Y2 (en) Powder raw material calcination equipment
US1318806A (en) Ktlit
JPH0410552Y2 (en)
JPS6020672B2 (en) Powder raw material calcination equipment
JPS5911335B2 (en) How to modify the suspension preheater
SU551495A1 (en) Baking heat exchanger for preheating raw mix
SU872921A1 (en) Rotating furnace heat exchanger
JPS6039759Y2 (en) Spouted bed type fluidized firing furnace
US2305272A (en) Heat exchange apparatus
JPH0589428U (en) Packed bed cooler