JPS642632B2 - - Google Patents

Info

Publication number
JPS642632B2
JPS642632B2 JP13833382A JP13833382A JPS642632B2 JP S642632 B2 JPS642632 B2 JP S642632B2 JP 13833382 A JP13833382 A JP 13833382A JP 13833382 A JP13833382 A JP 13833382A JP S642632 B2 JPS642632 B2 JP S642632B2
Authority
JP
Japan
Prior art keywords
dye
parts
temperature
dispersion
creosote oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13833382A
Other languages
Japanese (ja)
Other versions
JPS5927960A (en
Inventor
Yukihiko Aida
Masayuki Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP13833382A priority Critical patent/JPS5927960A/en
Publication of JPS5927960A publication Critical patent/JPS5927960A/en
Publication of JPS642632B2 publication Critical patent/JPS642632B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coloring (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は分散染料組成物に関するものである。
更に詳しくは、本発明は分散染料の製品化の目的
で、染料ケーキを特定の界面活性剤を含む水媒体
中で微粒子化して均一な分散液状とした優れた微
粒化促進効果を発揮する分散染料組成物である。
更に、高温高圧染における染色浴において優れた
分散性を発揮し、又連続染色あるいは捺染におい
て分散不良によるスペツクを生じさせないアニオ
ン性界面活性剤を含む分散染料組成物に関するも
のである。 通常、分散染料の製品化は、染料ケーキをβ−
ナフタレンスルホン酸のホルムアルデヒド縮合物
のナトリウム塩(以下SNFと略称する)などの
界面活性剤を含む水媒体中で、1μ程度の染料粒
子径となるまで微粒子化し、均一分散液状とする
方法がよく行なわれている。しかし、微粒化促進
あるいは分散効果の不充分を補なうため多量の界
面活性剤を必要とし、なおかつ微粒子化時間が長
くかかる欠点がある。更に、このようにして得ら
れる分散染料を用いて染色する場合、このSNF
は60℃以下の比較的低水温において良好な分散性
を発揮するがなお60℃以上の比較的高い温度にて
は分散能が低下する欠点がある。この欠点解消の
一つの方法として、通常前記SNFのほかに、更
に2−ナフトール−6−スルホン酸とクレゾール
スルホン酸及びホルムアルデヒドとの縮合によつ
て得られ、微粒化促進能、高温分散能の優れた界
面活性剤(以下SNFと略称する)を併用するこ
とが行なわれている。しかしこのSNCFは、起泡
性が大きいため染料製造時の作業性が悪くなるこ
とや染色時においてもトラブル発生の原因となつ
たり、又、PHが低下すると染料製品がゲル化を起
こしたり、染色時の分散性が著しく低下し、更
に、水に不溶性の染料の可溶化力が大きいため、
染料の繊維に対する染着率を低下させるなどの欠
点があつて、このようなSNFとSNCFとを併用
した技術でもなお充分満足する効果を得ることが
できない。 最近、染料業界では染料製造時に優れた微粒化
促進能を発揮する界面活性剤及び染色時、特に高
温高圧染色において優れた高温分散能を発揮する
界面活性剤の出現が強く要望されていた。その理
由は、微粒子化時の界面活性剤の削減あるいは微
粒子化時間の短縮による生産性の向上、省資源、
省エネルギーを期待しているためである。更に、
分散染料による染色法の発達と共に大浴比−長時
間染色から小浴比−短時間染色に変つてきた。小
浴比−短時間染色では染色液の染料濃度の増大、
布循環方式から液循環方式による高速液流化及び
急速昇温などの染浴での分散破壊が起き易くなつ
ており、それによる染色トラブルが発生し易い状
況にある。高温分散能を有する界面活性剤が出現
すれば、染料製造業界においては染料製品の高濃
度化が可能となり、運搬及び貯蔵経費の低減が期
待され、染色業界においては界面活性剤の削減に
よる染色廃水負荷の低減と染着効率の向上による
染料の有効利用などが期待される。 本発明者らは、上述のような染料組成物を得る
べく鋭意研究した結果、クレオソート油の部分ス
ルホン化物の脂肪族アルデヒド縮合物塩であつ
て、スルホン基数が2.7〜3.4ミリモル/グラムで
あるアニオン性界面活性剤が上記目的によく適合
し、これらを分散染料製造時に使用すると極めて
優れた微粒化促進能を発揮し、更に、分散染料に
含有させると極めて高温分散能を発揮する分散染
料組成物が得られることを見い出し、本発明に到
達したものである。 本発明の有効成分であるアニオン性界面活性剤
は、クレオソート油の部分スルホン化物を脂肪族
アルデヒドで縮合させることにより、また、クレ
オソート油のスルホン化(又は部分スルホン化)
物にクレオソート油を加えたのち脂肪族アルデヒ
ドで縮合させることにより容易に製造することが
できる。更に、クレオソート油を硫酸酸性下で脂
肪族アルデヒドと縮合させた後、部分スルホン化
することによつても製造できる。 ここで使用されるクレオソート油とは日本工業
規格JIS K−2439(1978)に規定されているもの
で、石炭乾留タールより得られる多種化合物の混
合物で、分留したときの各温度における留出量に
よつて1号、2号、3号の三種に分類され、その
すべてを利用することができる。クレオソート油
の主な成分としてはナフタリン、メチルナフタリ
ン、ジメチルナフタリン、ジフエニール、アセナ
フテン、フルオレン、アントラセン、トリフエニ
ール、カルバゾール、ピレン、クリセン及びピツ
チ類である。本発明の実施にあたつて、上記クレ
オソート油をそのまま用いてもよいし、その分留
成分を用いてもよい。したがつて、上記クレオソ
ート油の概念にはクレオソート油およびクレオソ
ート油の分留留分が含まれる。従つて、実施例に
も示すようにクレオソート油にナフタレンを配合
することもできる。しかしながら本発明において
重要なことは、クレオソート油を構成する多種成
分の中でも特にアントラセンなどの3員環以上の
芳香族炭化水素化合物を含有することが重要で、
ベンゼン或はナフタレンなどの2員環以下の芳香
族炭化水素化合物のみでは本発明品が特徴とする
染料組成物が得られないので、クレオソート油の
割合は50重量パーセント以上、好ましくは70重量
%以上にすることが重要である。 又、脂肪族アルデヒドとしては、具体的にはホ
ルムアルデヒド、アセトアルデヒドのような低級
脂肪族アルデヒドが挙げられるが、中でもホルム
アルデヒドを使用するのが好ましい。 本発明に係るアニオン性界面活性剤の製造の一
例を示すと下記の通りである。 クレオソート油又はクレオソート油の分留留分
を先ず硫酸でスルホン化を行い、該原料のスルホ
ン化物又は部分スルホン化物を得る。次に、一定
量のクレオソート油又はクレオソート油の分留留
分を加えたのち、全仕込量に対し0.5〜1.0倍のモ
ルの脂肪族アルデヒドを添加し、硫酸酸性下で
100℃前後の温度で縮合反応を行う。得られた縮
合反応生成物は、炭酸カルシウム又は水酸化カル
シウムで中和し、析出した硫酸カルシウムを別
した後、液に炭酸ナトリウム又は炭酸アンモニ
ウムを加えてナトリウム塩又はアンモニウム塩と
する(ライミングソーデイシヨン)か、縮合反応
生成物を直接炭酸ナトリウム、水酸化ナトリウム
又は炭酸アンモニウムで中和して縮合物をナトリ
ウム塩又はアンモニウム塩とした後、濃縮又は濃
縮乾固して製品とする。 本発明に係るアニオン性界面活性剤は、それに
含有されるスルホン基のバロメーターであるスル
ホン基数が2.7〜3.4ミリモル/グラムの範囲にあ
ることが重要である。スルホン基数が上記範囲よ
り大きい場合は、微粒化促進能及び高温分散能が
小さいので好ましくない。又、逆にスルホン基数
が上記範囲より小さい場合は、水に対する溶解性
が小さく、実用上好ましくない。 スルホン基数とは試料単位重量当りに含まれる
結合スルホン基のモル数を意味し、次式で表わさ
れる。 スルホン基数(ミリモル/グラム) =結合したスルホン基のモル数/反応生成物の分子量
×1000 尚、結合したスルホン基の量は、全スルホン基
の量から硫酸ナトリウムのスルホン基を差引いた
値である。 本発明に係るアニオン性界面活性剤は、分散染
料製造時で染料ケーキの微粒子化に際し、優れた
微粒化促進能を発揮し、得られた分散液は極めて
良好な分散安定性を示す。又、高温高圧染色のよ
うな比較的高い温度においても優れた分散能を発
揮する。更に、PH依存性が小さいため、PHが低下
しても分散染料製品のゲル化は起きず、染浴での
分散低下は極めて小さい。又起泡性が小さいた
め、染料製造時の作業性に影響が小さく、染色時
の泡によるトラブルも極めて少ない。このように
優れた界面活性剤の出現によつて、染料製造時の
界面活性剤の削減、微粒化時間の短縮による生産
性の向上、省資源、省エネルギー及び染料製品中
の界面活性剤の削減による染料製品の小型化、そ
れによる運搬、貯蔵経費の低減、染色廃負荷の減
少及び染着率の向上による染料有効利用など工業
的価値の高い分散染料組成物を得ることができ
る。 本発明においては、分散染料組成物に用いられ
るアニオン性界面活性剤としてクレオソート油の
部分スルホン化物の脂肪族アルデヒド縮合物塩の
うちスルホン基数が2.7〜3.4ミリモル/グラムで
あるものを限定して用いたことに特徴がある。こ
のようにスルホン基数を限定して用いたことによ
り、従来解決することのできなかつた染料の高温
分散性を著しく高めることが可能になり、微粒化
促進能を著しく増大せしめることが可能になつた
のである。この効果の大きさは実施例にも示した
如く公知の染料用分散剤では発現し得ないもので
ある。たとえば実施例2においては本発明に係る
アニオン性界面活性剤と共に、公知のナフタレン
スルホン酸のホルムアルデヒド縮合物(SNF)、
公知のクレオソート油スルホン酸のホルムアルデ
ヒド縮合物(SCF)、および公知の2−ナフトー
ル−6−スルホン酸とクレゾールスルホン酸とホ
ルムアルデヒドとの縮合物(SNCF)について、
高温分散性の評価の結果を示してあるが、第4表
に見られるとおり、実施例2に示される高温にお
いては従来公知の染料用分散剤はゲル化してしま
うか又はゲル化しない場合においてもその分散性
は著しく低いものである。このことは、本発明に
係るアニオン性界面活性剤のみが高温分散性を発
現し得て、高温高圧染色の技術に適用されうるも
のであることを示しているのである。又、本発明
にかかるアニオン性界面活性剤は高温分散性能に
おいて著効を示すという効果のほかに、微粒化促
進能が大きいという別の効果を発現する。実施例
1に公知の染色用分散剤と共に本発明にかかるア
ニオン性界面活性剤の微粒化促進能が評価されて
いるが、公知の染料用分散剤のいずれよりも本発
明にかかるアニオン性界面活性剤は微粒子促進能
が大きく、一般的な染料用分散剤に要求される性
能においても、公知のものよりすぐれていること
を示している。 本発明に係るアニオン性界面活性剤の配合量は
特に限定されないが染料に対するアニオン性界面
活性剤の割合が重量比で1:0.5〜5が適当であ
る。又、本発明の分散染料組成物は前記SNF、
SNCF或いはリグニンスルホン酸塩などの界面活
性剤を併用することもできる。 以下本発明を、本発明染料組成物に含有させる
アニオン性界面活性剤の製造例と実施例により更
に詳細に説明するが、本発明はその要旨を越えな
い限り以下によつて制約されるものではない。
尚、例中「部」とあるのはすべて重量部を示すも
のである。 製造例 1 クレオソート油164部を80℃に加熱し、撹拌下
に濃硫酸157部を80〜100℃で1時間を要し添加
後、100〜200mmHgの減圧下で脱水しながら110〜
120℃で5時間反応を行なつてクレオソート油の
スルホン化を行なつた。次いでこれに水100部を
加え90℃に昇温し、37%ホルマリン43部を90〜
100℃を保ちながら3時間を要し添加し、100〜
105℃で12時間縮合反応を行なつた。次いでこれ
に水200部を加え、室温下で水酸化カルシウム44
部及び炭酸カルシウム25部を添加し約30分撹拌し
た後、生成した硫酸カルシウムを別した。この
液に炭酸ナトリウム64部を添加してPH8〜10と
し、約30分撹拌して生成した炭酸カルシウムを
別(以下上記のホルマリン縮合以後の処理をライ
ミングソーデイシヨンと略称する)後液を濃縮
乾固して、スルホン基数3.34の生成物261部を得
た。 製造例 2 クレオソート油164部を80℃に加熱し、濃硫酸
127部を80〜100℃で1時間を要し添加後、100〜
200mmHgの減圧下で脱水しながら110〜120℃で5
時間反応を行なつてクレオソート油のスルホン化
を行つた。次いでこれにクレオソート油25部及び
水100部を加え90℃に昇温し、37%ホルマリン49
部を90〜100℃で2時間を要し添加し、100〜105
℃で15時間縮合反応を行なつた。次いでこれに水
250部を加え、製造例1と同様にしてライミング
ソーデイシヨンを行ない、液を濃縮乾固して、
スルホン基数3.21の生成物275部を得た。 製造例 3 クレオソート油164部を80℃に加熱し、濃硫酸
127部を80〜100℃で1時間を要し添加後、100〜
200mmHgの減圧下で脱水しながら120〜130℃で7
時間反応を行なつてクレオソート油のスルホン化
を行なつた。次いでこれにナフタリン38部及び水
150部を加え90℃に昇温し、37%ホルマリン80部
を90〜100℃で4時間を要し添加し、100〜105℃
で20時間縮合反応を行なつた。次いでこれに水
300部を加え、製造例1と同様にしてライミング
ソーデイシヨンを行ない、液を濃縮乾固して、
スルホン基数3.13の生成物284部を得た。 製造例 4 クレオソート油を分留して得た250℃迄の留分
143部を80℃に加熱し、濃硫酸108部を100〜120℃
で1時間を要し添加後、100〜200mmHgの減圧下
で脱水しながら120〜130℃で7時間反応を行なつ
て、250℃迄の留分のスルホン化を行なつた。次
いでこれにナフタリン26部及び水150部を加え90
℃に昇温し、37%ホルマリン40部を90〜100℃で
2時間を要し添加し、100〜105℃で12時間縮合反
応を行なつた。次いでこれに水200部を加え、製
造例1を同様にライミングソーデイシヨンを行な
い、液を濃縮乾固して、スルホン基数3.38の生
成物261部を得た。 製造例 5 製造例4とは逆に、250℃以上の留分182部を80
℃に加熱し、濃硫酸108部を90〜110℃で1時間を
要し添加後、100〜200mmHgの減圧下で脱水しな
がら110〜120℃で5時間反応を行なつて250℃以
上の留分のスルホン化を行つた。次いでこれにナ
フタリン26部及び水150部を加え90℃に昇温し、
37%ホルマリン40部を90〜100℃で2時間を要し
添加し、100〜105℃で12時間縮合反応を行なつ
た。次いでこれに水200部を加え、製造例1と同
様にライミングデイシヨンを行ない、液を濃縮
乾固して、スルホン基数2.90の生成物297部を得
た。 製造例 6(比較品) クレオソート油164部を80℃に加熱し、濃硫酸
98部を80〜90℃で1時間を要し添加後、100〜200
mmHgの減圧下で脱水しながら120〜130℃で7時
間反応を行なつてクレオソート油のスルホン化を
行なつた。次いでこれにクレオソート油66部及び
水100部を加え90℃に昇温し、37%ホルマリン49
部を90〜100℃で2時間を要し添加し、100〜105
℃で15時間縮合反応を行なつた。この生成物は水
に対する溶解性が悪いためライミングソーデイシ
ヨンは行なわず、20%水酸化ナトリウム水溶液で
直接中和し、次いで濃縮乾固し、生成物307gを
得た。この生成物のスルホン基数は2.51であつ
た。尚、本生成物は水に対する溶解性が悪く、染
料組成物としては不適当であつた。 実施例 1 前記製造例で製造した界面活性剤を用いて分散
染料ケーキを下記要量にて微粒化し、得られた分
散液の微粒化状態を調べ微粒化促進能を判定し
た。 配合条件
The present invention relates to disperse dye compositions.
More specifically, the present invention aims to commercialize disperse dyes by atomizing a dye cake in an aqueous medium containing a specific surfactant to form a uniform dispersion liquid, which exhibits an excellent atomization promoting effect. It is a composition.
Furthermore, the present invention relates to a disperse dye composition containing an anionic surfactant that exhibits excellent dispersibility in a dye bath during high-temperature, high-pressure dyeing, and does not cause specks due to poor dispersion during continuous dyeing or printing. Normally, the commercialization of disperse dyes involves converting the dye cake into β-
A commonly used method is to micronize the dye to a particle size of approximately 1μ in an aqueous medium containing a surfactant such as sodium salt of a formaldehyde condensate of naphthalene sulfonic acid (hereinafter abbreviated as SNF), and then form a uniformly dispersed liquid. It is. However, this method requires a large amount of surfactant to promote atomization or compensate for insufficient dispersion effects, and has the disadvantage that it takes a long time to form particles. Furthermore, when dyeing using the disperse dye obtained in this way, this SNF
Although it exhibits good dispersibility at relatively low water temperatures of 60°C or lower, it still has the disadvantage that its dispersibility decreases at relatively high temperatures of 60°C or higher. As one method to overcome this drawback, in addition to the above-mentioned SNF, it is usually obtained by condensing 2-naphthol-6-sulfonic acid with cresolsulfonic acid and formaldehyde, which has excellent atomization promotion ability and high-temperature dispersion ability. The combined use of surfactants (hereinafter abbreviated as SNF) has been carried out. However, this SNCF has a high foaming property, which impairs workability during dye production and causes trouble during dyeing.Also, when the pH decreases, dye products may gel, and dyeing In addition, the solubilizing power of water-insoluble dyes is large,
There are drawbacks such as a reduction in the dye adhesion rate to the fibers, and even such a technique that uses SNF and SNCF in combination still cannot achieve a sufficiently satisfactory effect. Recently, in the dye industry, there has been a strong demand for surfactants that exhibit excellent atomization promotion ability during dye production and surfactants that exhibit excellent high-temperature dispersion ability during dyeing, especially high-temperature and high-pressure dyeing. The reasons for this are improved productivity by reducing the amount of surfactant used during atomization or shortening the atomization time, resource conservation,
This is because they expect energy savings. Furthermore,
With the development of dyeing methods using disperse dyes, there has been a shift from large bath ratio/long-time dyeing to small bath ratio/short time dyeing. Small bath ratio - for short-time dyeing, increase in dye concentration of the dye solution;
Dispersion failure is becoming more likely to occur in dye baths due to high-speed liquid flow and rapid temperature rise due to the liquid circulation method instead of the cloth circulation method, and the situation is such that dyeing troubles are likely to occur due to this. If a surfactant with high-temperature dispersion ability appears, it will be possible for the dye manufacturing industry to increase the concentration of dye products and reduce transportation and storage costs. It is expected that dyes will be used more effectively by reducing load and improving dyeing efficiency. As a result of intensive research in order to obtain a dye composition as described above, the present inventors found that the dye composition is an aliphatic aldehyde condensate salt of partially sulfonated creosote oil, and the number of sulfone groups is 2.7 to 3.4 mmol/g. A disperse dye composition in which anionic surfactants are well suited for the above purpose, and when used in the production of disperse dyes, exhibit extremely excellent ability to promote atomization, and furthermore, when incorporated into disperse dyes, exhibit extremely high temperature dispersion ability. The inventors have discovered that a product can be obtained, and have arrived at the present invention. The anionic surfactant, which is the active ingredient of the present invention, can be obtained by condensing a partially sulfonated product of creosote oil with an aliphatic aldehyde.
It can be easily produced by adding creosote oil to a product and then condensing it with an aliphatic aldehyde. Furthermore, it can also be produced by condensing creosote oil with an aliphatic aldehyde under acidic sulfuric acid, followed by partial sulfonation. The creosote oil used here is specified in the Japanese Industrial Standard JIS K-2439 (1978), and is a mixture of various compounds obtained from coal carbonization tar, and is a mixture of various compounds obtained from coal carbonized tar. It is classified into three types depending on the amount: No. 1, No. 2, and No. 3, and all of them can be used. The main components of creosote oil are naphthalene, methylnaphthalene, dimethylnaphthalene, diphenyl, acenaphthene, fluorene, anthracene, triphenyl, carbazole, pyrene, chrysene, and pitches. In carrying out the present invention, the above creosote oil may be used as it is, or its fractionated components may be used. Therefore, the concept of creosote oil includes creosote oil and fractionated fractions of creosote oil. Therefore, as shown in the examples, naphthalene can also be blended with creosote oil. However, in the present invention, it is important that among the various components that make up creosote oil, it contains an aromatic hydrocarbon compound having three or more membered rings such as anthracene.
Since the dye composition characterized by the product of the present invention cannot be obtained using only an aromatic hydrocarbon compound having two or fewer members such as benzene or naphthalene, the proportion of creosote oil is 50% by weight or more, preferably 70% by weight. It is important to do the above. Further, specific examples of the aliphatic aldehyde include lower aliphatic aldehydes such as formaldehyde and acetaldehyde, and among them, it is preferable to use formaldehyde. An example of the production of the anionic surfactant according to the present invention is as follows. Creosote oil or a fractionated fraction of creosote oil is first sulfonated with sulfuric acid to obtain a sulfonated product or a partially sulfonated product of the raw material. Next, after adding a certain amount of creosote oil or a fractionated fraction of creosote oil, 0.5 to 1.0 times the mole of aliphatic aldehyde based on the total amount of charge was added, and the mixture was heated under acidic sulfuric acid.
The condensation reaction is carried out at a temperature of around 100℃. The resulting condensation reaction product is neutralized with calcium carbonate or calcium hydroxide, and after separating the precipitated calcium sulfate, sodium carbonate or ammonium carbonate is added to the liquid to make the sodium salt or ammonium salt (liming soda). Alternatively, the condensation reaction product is directly neutralized with sodium carbonate, sodium hydroxide, or ammonium carbonate to form the condensate into a sodium salt or ammonium salt, and the product is then concentrated or concentrated to dryness. It is important that the anionic surfactant according to the present invention has a number of sulfone groups, which is a barometer of the number of sulfone groups contained therein, in the range of 2.7 to 3.4 mmol/g. If the number of sulfone groups is larger than the above range, the ability to promote atomization and the ability to disperse at high temperatures will be unfavorable. On the other hand, if the number of sulfone groups is smaller than the above range, the solubility in water will be low, which is not preferred in practice. The number of sulfone groups means the number of moles of bonded sulfone groups contained per unit weight of a sample, and is expressed by the following formula. Number of sulfone groups (mmol/gram) = Number of moles of bonded sulfone groups/molecular weight of reaction product x 1000 The amount of bonded sulfone groups is the value obtained by subtracting the sulfone groups of sodium sulfate from the amount of all sulfone groups. . The anionic surfactant according to the present invention exhibits an excellent ability to promote atomization of a dye cake during the production of disperse dyes, and the resulting dispersion exhibits extremely good dispersion stability. Furthermore, it exhibits excellent dispersion ability even at relatively high temperatures such as in high-temperature and high-pressure dyeing. Furthermore, because the pH dependence is small, gelation of disperse dye products does not occur even if the pH decreases, and the decrease in dispersion in the dye bath is extremely small. In addition, since the foaming property is low, there is little effect on workability during dye production, and troubles caused by bubbles during dyeing are extremely small. With the advent of such excellent surfactants, it has been possible to reduce the amount of surfactants used in dye production, improve productivity by shortening atomization time, save resources and energy, and reduce the amount of surfactants in dye products. It is possible to obtain a disperse dye composition with high industrial value, such as miniaturization of dye products, reduction in transportation and storage costs, reduction in dyeing waste load, and effective use of dyes by improving dyeing rate. In the present invention, the anionic surfactant used in the disperse dye composition is limited to aliphatic aldehyde condensate salts of partially sulfonated creosote oil, which have a sulfone group number of 2.7 to 3.4 mmol/g. It is distinctive in its use. By limiting the number of sulfone groups in this way, it has become possible to significantly improve the high-temperature dispersibility of the dye, which was previously impossible, and it has become possible to significantly increase the ability to promote atomization. It is. As shown in the Examples, this effect cannot be achieved by known dispersants for dyes. For example, in Example 2, in addition to the anionic surfactant according to the present invention, a known formaldehyde condensate of naphthalene sulfonic acid (SNF),
Regarding the known formaldehyde condensate of creosote oil sulfonic acid (SCF) and the known condensate of 2-naphthol-6-sulfonic acid, cresol sulfonic acid, and formaldehyde (SNCF),
The results of high-temperature dispersibility evaluation are shown, and as can be seen in Table 4, at the high temperatures shown in Example 2, conventionally known dye dispersants gel or even when they do not gel. Its dispersibility is extremely low. This shows that only the anionic surfactant according to the present invention can exhibit high-temperature dispersibility and can be applied to high-temperature and high-pressure dyeing techniques. Furthermore, in addition to the effect that the anionic surfactant according to the present invention exhibits a remarkable effect on high-temperature dispersion performance, it also exhibits another effect that it has a large ability to promote atomization. In Example 1, the ability of the anionic surfactant according to the present invention to promote atomization was evaluated together with known dispersants for dyeing, but the anionic surfactant according to the present invention was more effective than any of the known dispersants for dyes. The agent has a large ability to promote fine particles, and is superior to known agents in terms of the performance required of general dye dispersants. Although the amount of the anionic surfactant used in the present invention is not particularly limited, it is appropriate that the weight ratio of the anionic surfactant to the dye is 1:0.5 to 5. Further, the disperse dye composition of the present invention has the above-mentioned SNF,
A surfactant such as SNCF or lignin sulfonate may also be used in combination. The present invention will be explained in more detail below with reference to production examples and examples of anionic surfactants to be included in the dye composition of the present invention, but the present invention is not limited by the following unless it exceeds the gist thereof. do not have.
In addition, all "parts" in the examples indicate parts by weight. Production example 1 164 parts of creosote oil was heated to 80°C, 157 parts of concentrated sulfuric acid was added with stirring at 80 to 100°C for 1 hour, and then heated to 110 to 100°C while being dehydrated under reduced pressure of 100 to 200 mmHg.
The creosote oil was sulfonated by reaction at 120°C for 5 hours. Next, add 100 parts of water to this, raise the temperature to 90℃, and add 43 parts of 37% formalin to 90~
Addition takes 3 hours while maintaining the temperature at 100°C.
The condensation reaction was carried out at 105°C for 12 hours. Next, add 200 parts of water to this, and add 44 parts of calcium hydroxide at room temperature.
After adding 25 parts of calcium carbonate and stirring for about 30 minutes, the produced calcium sulfate was separated. Add 64 parts of sodium carbonate to this solution to adjust the pH to 8 to 10, stir for about 30 minutes, separate the produced calcium carbonate (hereinafter the process after formalin condensation is referred to as liming sodation), and then concentrate the solution. The mixture was dried to obtain 261 parts of a product having 3.34 sulfonic groups. Production example 2 164 parts of creosote oil was heated to 80℃, and concentrated sulfuric acid was added.
After adding 127 parts at 80~100℃ for 1 hour, 100~
5 at 110-120℃ while dehydrating under 200mmHg vacuum.
Creosote oil was sulfonated by a time reaction. Next, 25 parts of creosote oil and 100 parts of water were added to this, the temperature was raised to 90°C, and 37% formalin 49
100-105 parts was added over 2 hours at 90-100°C.
The condensation reaction was carried out at ℃ for 15 hours. Then add water to this
Add 250 parts, perform liming sodation in the same manner as in Production Example 1, concentrate the liquid to dryness,
275 parts of a product having 3.21 sulfone groups was obtained. Production example 3 164 parts of creosote oil was heated to 80℃, and concentrated sulfuric acid was added.
After adding 127 parts at 80~100℃ for 1 hour, 100~
7 at 120-130℃ while dehydrating under 200mmHg vacuum.
Sulfonation of creosote oil was carried out by a time reaction. Then add 38 parts of naphthalene and water to this.
Add 150 parts and raise the temperature to 90℃, add 80 parts of 37% formalin at 90 to 100℃ for 4 hours, and raise the temperature to 100 to 105℃.
The condensation reaction was carried out for 20 hours. Then add water to this
Add 300 parts, perform liming sodation in the same manner as in Production Example 1, concentrate the liquid to dryness,
284 parts of a product having 3.13 sulfone groups was obtained. Production example 4 Distillate up to 250℃ obtained by fractional distillation of creosote oil
Heat 143 parts to 80℃ and 108 parts of concentrated sulfuric acid to 100-120℃.
After the addition, which took 1 hour, the reaction was carried out at 120 to 130°C for 7 hours while dehydrating under reduced pressure of 100 to 200 mmHg to sulfonate the fraction up to 250°C. Next, add 26 parts of naphthalene and 150 parts of water to 90
The temperature was raised to .degree. C., 40 parts of 37% formalin was added at 90 to 100.degree. C. over 2 hours, and a condensation reaction was carried out at 100 to 105.degree. C. for 12 hours. Next, 200 parts of water was added thereto, liming sodation was carried out in the same manner as in Production Example 1, and the liquid was concentrated to dryness to obtain 261 parts of a product having 3.38 sulfone groups. Production Example 5 Contrary to Production Example 4, 182 parts of the distillate at 250°C or higher was mixed with 80
After adding 108 parts of concentrated sulfuric acid at 90-110°C for 1 hour, the reaction was carried out at 110-120°C for 5 hours while dehydrating under a reduced pressure of 100-200 mmHg. sulfonation was carried out. Next, 26 parts of naphthalene and 150 parts of water were added to this, and the temperature was raised to 90°C.
40 parts of 37% formalin was added over 2 hours at 90-100°C, and a condensation reaction was carried out at 100-105°C for 12 hours. Next, 200 parts of water was added thereto, liming was carried out in the same manner as in Production Example 1, and the liquid was concentrated to dryness to obtain 297 parts of a product having 2.90 sulfone groups. Production example 6 (comparative product) 164 parts of creosote oil was heated to 80℃, and concentrated sulfuric acid
After adding 98 parts at 80-90℃ for 1 hour, 100-200 parts
The creosote oil was sulfonated by carrying out a reaction at 120 to 130° C. for 7 hours while dehydrating under a reduced pressure of mmHg. Next, 66 parts of creosote oil and 100 parts of water were added to this, the temperature was raised to 90°C, and 37% formalin 49
100-105 parts was added over 2 hours at 90-100°C.
The condensation reaction was carried out at ℃ for 15 hours. Since this product had poor solubility in water, liming sodation was not performed, but it was directly neutralized with a 20% aqueous sodium hydroxide solution, and then concentrated to dryness to obtain 307 g of a product. The number of sulfone groups in this product was 2.51. Note that this product had poor solubility in water and was unsuitable as a dye composition. Example 1 A disperse dye cake was atomized using the surfactant produced in the above production example in the required amount below, and the atomization state of the resulting dispersion was examined to determine the ability to promote atomization. Mixing conditions

【表】 微粒化条件 五ケ嵐製作所製サンドグラインダー 1500rpm×5〜10時間 上記の如く微粒化後、オツタワサンドを別し
染料分散液を得た。次いでその染料分散液を用い
下記方法にて微粒化促進能を判定した。 1−1 遠心分離法 上記染料分散液20gを採り、3000rpm×10分
間遠心分離を行ない、その後上澄液を静かに除
去し、沈降物を絶乾・秤量し、次式によつて沈
降率を求め微粒化促進能を判定した。 沈降率=沈降量/染料分散液の固形分×100 尚、比較のため他の界面活性剤単独で使用し
た場合の結果も併記した。その結果は第1表の
通りであつた。
[Table] Atomization conditions Sand grinder manufactured by Gokarashi Seisakusho 1500 rpm x 5 to 10 hours After atomization as described above, the Otsutawa sand was separated to obtain a dye dispersion. Next, the ability to promote atomization was determined using the dye dispersion liquid by the following method. 1-1 Centrifugation method Take 20 g of the above dye dispersion, centrifuge at 3000 rpm for 10 minutes, then gently remove the supernatant, bone dry the sediment, weigh it, and calculate the sedimentation rate using the following formula. The ability to promote atomization was determined. Sedimentation rate = Sedimentation amount/solid content of dye dispersion x 100 For comparison, results when other surfactants were used alone are also shown. The results were as shown in Table 1.

【表】 1−2 紙展開法 規定のガラス板にはさんだ紙中央に、前記
染料分散液を用いて調製した0.5%染料溶液を
所定量注入し、その時の拡がり度、残存度を調
べ微粒化促進能を判定した。 (a) 東洋紙No.5Aの場合 紙2枚重、ガラス板(15×15×0.5cm)2
枚、0.5%染料溶液0.8ml (b) 東洋紙No.5Cの場合 紙1枚、ガラス板(20×20×1cm)2枚、
0.5%染料溶液0.5ml 尚、拡がり度は次式より求め、数値が大きい程
微粒化促進能は良好である。 拡がり度(%)=染料の展開距離/水及び染料の展開距
離×100 又、残存度は染料溶液注入点における粗大染料
粒子の残存割合を示すもので、5段階評価で数値
が大きい程良好である。 上記要領で行なつた微粒化結果は第2、第3表
の通りであつた。尚、第2表にはCI.
DisperseBlue202:界面活性剤=100:100で微粒
化時間10時間の結果を第3表にはCI.
DisperseRed60:界面活性剤=100:100で微粒化
時間7時間の結果を示した。
[Table] 1-2 Paper spreading method Pour a specified amount of 0.5% dye solution prepared using the dye dispersion into the center of the paper sandwiched between specified glass plates, check the degree of spreading and residual amount, and atomize. The promoting ability was determined. (a) For Toyo Paper No. 5A, 2 sheets of paper, 2 glass plates (15 x 15 x 0.5 cm)
0.8ml of 0.5% dye solution (b) For Toyo Paper No. 5C, 1 sheet of paper, 2 glass plates (20 x 20 x 1 cm),
0.5ml of 0.5% dye solution The degree of spreading is determined by the following formula, and the larger the value, the better the ability to promote atomization. Spreading degree (%) = Spreading distance of dye / Spreading distance of water and dye × 100 In addition, the residual degree indicates the remaining percentage of coarse dye particles at the injection point of the dye solution, and the higher the value is on a 5-level evaluation, the better. be. The results of atomization performed in the above manner are shown in Tables 2 and 3. In addition, Table 2 shows CI.
DisperseBlue202: Surfactant = 100:100, atomization time 10 hours, results are shown in Table 3 CI.
The results show that DisperseRed60:surfactant=100:100 and atomization time was 7 hours.

【表】【table】

【表】 上記第1、2、3表から明らかなように、分散
染料ケーキの微粒化において、本発明の染料粗成
物はSNFや本発明の類似品を使用した場合と比
較して少量の界面活性剤量及び短時間で優れた微
粒化促進能を示す。 実施例 2 実施例1で得られた微粒化後の染料分散液を硫
酸又は水酸化ナトリウムの希薄溶液でPH7〜8と
した後、70℃で4時間熱処理を行ない、比較的濃
厚系における染料分散液の熱安定性を調べた。評
価は熱又はPHの変化による状態の変化及び染料粒
子の凝集状態を実施例1で用いた紙展開法より
判定した。その結果は第4表の通りであつた。
尚、第4表はCI.DisperseBlue202:界面活性剤=
100:100の混合比で10時間微粒化して得られた染
料分散液の結果を示すものであり、第2表の紙
No.5Aの結果と対比することにより安定性の変化
を知ることができる。
[Table] As is clear from Tables 1, 2, and 3 above, in the atomization of disperse dye cake, the dye crude product of the present invention produces a small amount of particles compared to the case of using SNF or similar products of the present invention. Shows excellent ability to promote atomization with a small amount of surfactant and in a short period of time. Example 2 The atomized dye dispersion obtained in Example 1 was adjusted to pH 7 to 8 with a dilute solution of sulfuric acid or sodium hydroxide, and then heat treated at 70°C for 4 hours to disperse the dye in a relatively concentrated system. The thermal stability of the liquid was investigated. The evaluation was made by determining the state change due to heat or PH change and the agglomeration state of dye particles using the paper development method used in Example 1. The results were as shown in Table 4.
In addition, Table 4 shows CI.DisperseBlue202: Surfactant =
This shows the results of the dye dispersion obtained by atomization for 10 hours at a mixing ratio of 100:100, and the paper in Table 2
Changes in stability can be seen by comparing with the results of No. 5A.

【表】 上記第4表から明らかなように、本発明の染料
組成物は比較的濃厚な染料分散液において、
SNF或は他の界面活性剤を使用した場合に比較
して優れた分散安定性を示す。 実施例 3 実施例1に基づいて下記の配合比で微粒化を行
ない各種の染料分散液を調製した。
[Table] As is clear from Table 4 above, the dye composition of the present invention, in a relatively concentrated dye dispersion,
Shows superior dispersion stability compared to when SNF or other surfactants are used. Example 3 Based on Example 1, various dye dispersions were prepared by atomization at the following blending ratios.

【表】 次いで上記染料分散液を下記要領にて染色を行
ない、高温高圧下における分散能を調べた。 3−1 ケーシングスポツト法による高温分散性 上記染料分散液を用い下記染色条件にて高温
分散性を調べた。 装置 高温高圧染色機(中央理化器製作所) 染色条件 染料 1.5(染料純分)0wf 被染布 ポリエステル加工糸織物 浴比 1:10 PH 4.5 温度 110、120、130℃ 判定は染色布表面に発生したスポツトの有無
にて行ない、5段階表価で数値が大きい程分散
性は良好である。その結果は第5表の通りであ
る。
[Table] Next, the above dye dispersion liquid was dyed in the following manner, and the dispersion ability under high temperature and high pressure was examined. 3-1 High-temperature dispersibility by casing spot method Using the above dye dispersion, high-temperature dispersibility was investigated under the following dyeing conditions. Equipment High-temperature and high-pressure dyeing machine (Chuo Rikaki Seisakusho) Dyeing conditions Dye 1.5 (dye purity) 0wf Fabric to be dyed Polyester processed yarn fabric Bath ratio 1:10 PH 4.5 Temperature 110, 120, 130℃ Judgment was made on the surface of the dyed fabric The test is conducted with or without spots, and the higher the value, the better the dispersibility. The results are shown in Table 5.

【表】 3−2 ダイオメーター法による高温分散性前記
染料分散液を用い下記染色条件にて高温分散性
を調べた。 装置、高温高圧染色側色装置(スガ試験機製
作所) 染色条件 染料 1.5%(染料純分)0wf 被染物 ポリエステルスパン糸 詰め密度 0.3g/cm3 PH 4.5 浴比 1:20 判定は被染物表面に発生したタール状の染料
の有無にて行い、5段階評価で数値が大きい程
分散性は良好である。その結果は第6表の通り
である。
[Table] 3-2 High-temperature dispersibility determined by diometer method The high-temperature dispersibility was investigated using the above dye dispersion under the following dyeing conditions. Equipment, high temperature and high pressure dyeing side coloring device (Suga Test Instruments Manufacturing Co., Ltd.) Dyeing conditions Dye 1.5% (dye purity) 0wf Object to be dyed Polyester spun yarn Packing density 0.3 g/cm 3 PH 4.5 Bath ratio 1:20 Judgment is made on the surface of the dyed object The evaluation was conducted based on the presence or absence of generated tar-like dye, and the higher the value, the better the dispersibility in a 5-level evaluation. The results are shown in Table 6.

【表】 上記第5表及び第6表から明らかなように、本
発明の染料組成物は高温高圧染色のように比較的
厳しい分散条件下において、SNF或はSCFなど
の界面活性剤を使用した場合に比較して優れた分
散安定性を示す。
[Table] As is clear from Tables 5 and 6 above, the dye composition of the present invention can be used under relatively severe dispersion conditions such as high-temperature and high-pressure dyeing using a surfactant such as SNF or SCF. It shows superior dispersion stability compared to the case of

Claims (1)

【特許請求の範囲】[Claims] 1 クレオソート油の部分スルホン化物の脂肪族
アルデヒド縮合物塩であつて、スルホン基数が
2.7〜3.4ミリモル/グラムであるアニオン性界面
活性剤を含有することを特徴とする分散染料組成
物。
1 An aliphatic aldehyde condensate salt of partially sulfonated creosote oil, the number of sulfone groups being
A disperse dye composition characterized in that it contains 2.7 to 3.4 mmol/gram of anionic surfactant.
JP13833382A 1982-08-09 1982-08-09 Disperse dye composition Granted JPS5927960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13833382A JPS5927960A (en) 1982-08-09 1982-08-09 Disperse dye composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13833382A JPS5927960A (en) 1982-08-09 1982-08-09 Disperse dye composition

Publications (2)

Publication Number Publication Date
JPS5927960A JPS5927960A (en) 1984-02-14
JPS642632B2 true JPS642632B2 (en) 1989-01-18

Family

ID=15219452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13833382A Granted JPS5927960A (en) 1982-08-09 1982-08-09 Disperse dye composition

Country Status (1)

Country Link
JP (1) JPS5927960A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439531Y2 (en) * 1985-05-16 1992-09-16
JP7491913B2 (en) * 2019-05-23 2024-05-28 日本化薬株式会社 Colored dispersion, recording medium, and method for printing hydrophobic fibers

Also Published As

Publication number Publication date
JPS5927960A (en) 1984-02-14

Similar Documents

Publication Publication Date Title
US4308203A (en) Sulfonated lignin dispersants and dyestuffs
CN1183438A (en) Disperse dyestuff mixtures
US4195975A (en) Stabilized fuel slurry
JP4680265B2 (en) Navy and black color mixture, its manufacture and its use for dyeing hydroxyl-containing materials
JPS58122991A (en) Coal/water slurry composition
US4007004A (en) Dyestuff filler derived from kraft black liquor
JPS642632B2 (en)
US3775056A (en) Disperse dyes and sulfosuccinate semi esters of polyalkylene glyol ethers of alkylphenols or phenol-formaldehyde condensates
US5233012A (en) Production of novel condensates comprising bisphenols and aromatic aminosulfonic acids, condensates and dispersant, additive and water-reducing agent based thereon
Lin A New Lignosulfonate Dispersant for Dyes.
US4420310A (en) Use of oxyalkylated novolaks as preparation agents for disperse dyestuffs and preparations made with said agents
US5153299A (en) Production of novel condensates comprising bisphenols and aromatic aminosulfonic acids, condensates and dispersant, additive and water-reducing agent based thereon
US4749381A (en) Stable slurries of solid carbonaceous fuel and water
JPH02202508A (en) Preparation of condensate from arylsulfonic acid and formaldehyde, and dispersant comprising said condensate
JPH0621423B2 (en) Dye dispersant
JPS6186934A (en) Aqueous dispersant composition
US3993439A (en) Dispersing and stabilizing agents for dyestuffs
JPH0249071A (en) Dye-dispersing agent
JPS6218675B2 (en)
JPH0251566A (en) Dye dispersant
JP2002146028A (en) Modified lignosulfonate and application
US5762651A (en) Dustproofing agents
JPH08217507A (en) Dispersant for aqueous gypsum slurry
US4359321A (en) Dye compositions and method of using same
JP4131087B2 (en) Dye dispersant