JPS642482B2 - - Google Patents

Info

Publication number
JPS642482B2
JPS642482B2 JP1237780A JP1237780A JPS642482B2 JP S642482 B2 JPS642482 B2 JP S642482B2 JP 1237780 A JP1237780 A JP 1237780A JP 1237780 A JP1237780 A JP 1237780A JP S642482 B2 JPS642482 B2 JP S642482B2
Authority
JP
Japan
Prior art keywords
tube
alumina
ceramic
molding
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1237780A
Other languages
Japanese (ja)
Other versions
JPS56109710A (en
Inventor
Kazuo Kobayashi
Mamoru Furuta
Yoshio Maeno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1237780A priority Critical patent/JPS56109710A/en
Priority to US06/229,503 priority patent/US4387067A/en
Priority to AU66710/81A priority patent/AU528293B2/en
Priority to HU24481A priority patent/HU184375B/en
Priority to CA000370146A priority patent/CA1164038A/en
Priority to DE8181300508T priority patent/DE3160859D1/en
Priority to EP81300508A priority patent/EP0034056B1/en
Priority to PL1981229570A priority patent/PL131086B1/en
Publication of JPS56109710A publication Critical patent/JPS56109710A/en
Priority to US06/436,372 priority patent/US4503356A/en
Publication of JPS642482B2 publication Critical patent/JPS642482B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/003Apparatus or processes for treating or working the shaped or preshaped articles the shaping of preshaped articles, e.g. by bending
    • B28B11/008Blow moulding, e.g. with or without the use of a membrane

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

【発明の詳細な説明】 この発明は、金属蒸気放電灯用セラミツクチユ
ーブ製造法に関し、ここに金属蒸気放電灯という
のは、メタルハライドランプ、高圧ナトリウムラ
ンプ等である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a ceramic tube for a metal vapor discharge lamp, and the metal vapor discharge lamp herein refers to a metal halide lamp, a high pressure sodium lamp, etc.

これらの放電灯に用いられている発光管用セラ
ミツクチユーブとしては、近年開発されている透
光性多結晶アルミナセラミツクが放電発光物質で
あるナトリウムガスや金属ハロゲンガスに耐蝕性
を有しているので、このアルミナセラミツクを用
いた金属蒸気放電灯の実用化及びそのランプ効率
が高く省エネルギーの観点から注目されている。
As the ceramic tube for the arc tube used in these discharge lamps, the recently developed translucent polycrystalline alumina ceramic is resistant to corrosion by sodium gas and metal halogen gas, which are discharge luminous substances. The practical application of metal vapor discharge lamps using this alumina ceramic and their high lamp efficiency are attracting attention from the viewpoint of energy saving.

しかしながら、透光性アルミナセラミツクの発
光管に発光物質を封入して気密封着する際アルミ
ナセラミツクは、水銀ランプに使用されている石
英ガラス発光管のごとき高温加熱だけで溶着封止
され得るような熱的展性がないため、従来主とし
て次のような封着方法をとらざるを得なかつた。
However, when enclosing a luminescent substance in a translucent alumina ceramic arc tube and sealing it hermetically, the alumina ceramic cannot be welded and sealed only by high-temperature heating, such as the quartz glass arc tube used in mercury lamps. Due to the lack of thermal malleability, the following sealing methods have traditionally been used.

その一例は第1図に示すように、両端が開放さ
れて形成焼成した透光性アルミナセラミツク発光
管(以下アルミナチユーブと記す)1に、そのア
ルミナチユーブとほぼ熱膨脹が等しい耐熱金属、
例えばニオブのような金属材料、あるいはアルミ
ナチユーブと同一もしくは類似のアルミナセラミ
ツクからなるキヤツプ2を嵌合しガラスフリツト
を用いて封着し、次いでそのキヤツプ2の中央孔
に封入発光物質の導入を兼ねた耐熱金属製電極3
を同じくガラスフリツト4で封着する工程を、高
温真空下で行う封着方法である。
An example of this is shown in FIG. 1, where a translucent alumina ceramic arc tube (hereinafter referred to as alumina tube) 1 is formed and fired with both ends open, and a heat-resistant metal whose thermal expansion is approximately equal to that of the alumina tube is used.
For example, a cap 2 made of a metal material such as niobium, or an alumina ceramic that is the same as or similar to the alumina tube, is fitted and sealed using a glass frit, and then the cap 2's central hole also serves as the introduction of the luminescent substance enclosed. Heat-resistant metal electrode 3
This is a sealing method in which the step of sealing the glass frit 4 with the same glass frit 4 is performed under high temperature vacuum.

この封着方法は、1300℃〜1400℃の高温に加え
て真空条件が必要なため、封着操作が困難である
ばかりでなく、アルミナチユーブ1の全内周およ
びキヤツプ2の中央孔の内周にわたるガラス封着
面積が大きいために、その封着部がランプの点
灯・消灯の繰り返しによる熱衝撃および点灯時の
高温にさらされた場合その封着部からランプの発
光物質が漏洩するおそれがあり、特に高効率及び
高演色性ランプでは高温、高圧に対する機械的強
度および耐蝕性が要求されるためこの方法で得ら
れる発光管は信頼性に欠けるものである。
This sealing method requires vacuum conditions in addition to a high temperature of 1300°C to 1400°C, which not only makes the sealing operation difficult, but also the entire inner periphery of the alumina tube 1 and the inner periphery of the center hole of the cap 2. Because the area covered by the glass seal is large, if the sealed part is exposed to thermal shock due to repeated lighting and extinguishing of the lamp and the high temperature during lighting, there is a risk that the luminescent material of the lamp may leak from the sealed part. In particular, high-efficiency and high-color-rendering lamps require mechanical strength and corrosion resistance against high temperatures and pressures, so arc tubes obtained by this method lack reliability.

また、金属やセラミツク製のキヤツプを用いる
ため部品点数が多くなりしかもその寸法精度が高
いものが要求されるため経済的でない欠点を有し
ている。
Furthermore, since the cap is made of metal or ceramic, the number of parts is large, and high dimensional accuracy is required, making it uneconomical.

その他、上記のような欠点を解決する一つの方
法として、アルミナチユーブの両端部にセラミツ
クキヤツプをアルミナチユーブの焼成時に同時に
焼結し一体化する発光管(通称セミクローズドタ
イプアルミナチユーブと言われている)を得る方
法が知られている。この方法は焼成収縮率を厳密
に管理したアルミナ質成形用坏土を用いて両端部
開放のチユーブを形成し、さらにこのチユーブよ
りも焼成収縮率が小さいアルミナ質原料によりキ
ヤツプを形成し、これらの成形品を嵌合した後真
空中または水素雰囲気にて焼成して端部にキヤツ
プをチユーブと一体化する方法である。
In addition, one method to solve the above-mentioned drawbacks is to create an arc tube (commonly known as a semi-closed type alumina tube) in which ceramic caps are sintered and integrated at both ends of the alumina tube at the same time as the alumina tube is fired. ) is known. In this method, a tube with both ends open is formed using alumina molding clay whose firing shrinkage rate is strictly controlled, and a cap is formed from an alumina raw material whose firing shrinkage rate is smaller than that of the tube. This is a method in which the molded products are fitted together and then fired in a vacuum or hydrogen atmosphere to integrate the cap and the tube at the end.

この方法は成形したチユーブとキヤツプを生素
地の状態にてはめ合わせる必要があるので、成形
体の損傷を招きやすく、さらにチユーブとキヤツ
プの焼成収縮の管理が困難でありそのため端部に
クラツクが発生したり、チユーブとキヤツプとの
焼結封着が不充分であつたりして封入発光物質の
漏洩を引き起す原因となる不利がある。
This method requires the molded tube and cap to be fitted together in their green state, which can easily cause damage to the molded product.Furthermore, it is difficult to control firing shrinkage of the tube and cap, resulting in cracks at the ends. There are also disadvantages in that the sintering seal between the tube and the cap is insufficient, causing leakage of the encapsulated luminescent material.

さらに、アルミナチユーブとキヤツプを同材質
で一体に成形する発光管の製造法として、特開昭
50−14171号公報等に記載されているように、所
定の外形と低融点の金属もしくは有機物質の中子
とを組合せた成形型を用いて、セラミツク成形原
料をその中子の周囲に充填した後、外型より加圧
してアルミナチユーブとキヤツプとが一体になつ
た形状に成形し、次いでその成形体を加熱して中
子を溶融流出除去して発光管を得る方法が提案さ
れている、しかしながら、この方法ではセラミツ
ク成形原料が中子に圧着されるため成形体が中子
に泥染されたり、またこの中子を溶融したとき成
形体にしみこんだり、流出した際の跡が残る欠点
があるため実際の適用には技術的な困難がある。
Furthermore, we developed a method for manufacturing arc tubes in which the alumina tube and cap are integrally molded from the same material.
As described in Publication No. 50-14171, etc., a mold with a predetermined external shape and a core of a low melting point metal or organic material is used, and a ceramic molding raw material is filled around the core. A method has been proposed in which the alumina tube and cap are then molded into an integrated shape by applying pressure from an outer mold, and then the molded body is heated to melt and remove the core to obtain an arc tube. However, in this method, the ceramic molding raw material is pressed onto the core, so the molded body may be dyed with mud, and when the core is melted, it may seep into the molded body, or it may leave traces when it flows out. Therefore, there are technical difficulties in actual application.

さらに従来工業的に行われている発光管の製造
法は押し出し成形法によつているので、発光管の
肉厚は発光部および端部、すなわち放電用電極を
保持する部分とも同一である。したがつて透光性
を向上するため肉厚を小さくすると端部の機械的
強度が劣化するため透光性の向上には限界があつ
た。
Further, since the conventional industrial method for manufacturing arc tubes is based on extrusion molding, the wall thickness of the arc tube is the same as that of the light emitting portion and the end portion, that is, the portion holding the discharge electrode. Therefore, if the wall thickness is reduced in order to improve the translucency, the mechanical strength of the end portion deteriorates, so there is a limit to the improvement of the translucency.

この発明は上記したような発光管としてのアル
ミナ質セラミツクチユーブの製造時に端部の気密
封着が容易簡便かつ確実で、リークの発生原因と
なるような封着箇所の少ない一体成形構造体にお
いて特に中子による方法の不利を回避し、しかも
ランプの発光効率を放電用電極支持部の機械的強
度を劣化することなく向上し安価に製造できる技
術を提供するためになされたもので、金属蒸気放
電灯の発光管に用いるアルミナ質セラミツクチユ
ーブの製造法において、最終焼成で透光性アルミ
ナ磁器となる組成としてアルミナ微粉末に焼結助
剤、可塑剤および混合助剤を加えた成形用坏土を
調整する段階と、次にこのチユーブ形状素材に押
圧成形する段階と、次にこのチユーブ形状素材を
内面が紡鐘形をなす外型のキヤビテイ内で該素材
の内側に流体圧力を適用して所定の発光管に対応
する長さの素材管の中央部分でその端部よりも大
きく管径を押拡げ形づけ段階、およびこの形づけ
段階を経て該素材管を外型から取外しその後焼成
に供する段階の順序結合に成る金属蒸気放電灯用
セラミツクチユーブ製造法である。
This invention makes it easy, simple, and reliable to airtightly seal the ends when producing an alumina ceramic tube as an arc tube as described above, and is particularly useful for an integrally molded structure with few sealing points that can cause leaks. This was developed in order to avoid the disadvantages of the method using a core, and to provide a technology that can improve the luminous efficiency of the lamp without deteriorating the mechanical strength of the discharge electrode support, and can be manufactured at low cost. In the manufacturing method of alumina ceramic tubes used for light bulbs, a molding clay made by adding sintering aids, plasticizers, and mixing aids to fine alumina powder is used to create translucent alumina porcelain in the final firing. a step of conditioning, a step of press-forming the tube-shaped material, and a step of press-forming the tube-shaped material into a predetermined shape by applying fluid pressure to the inside of the material within a cavity of an outer mold having a bell-shaped inner surface. a step of expanding the tube diameter at the center of the material tube with a length corresponding to the arc tube than at the ends; and a step of removing the material tube from the outer mold after this shaping step and then subjecting it to firing. This is a method for manufacturing ceramic tubes for metal vapor discharge lamps, which consists of the sequential combination of

さてこの発明によるセラミツクチユーブの製造
には、最終焼成によつて、所望の透光性を呈する
アルミナセラミツクが得られるように高純度で活
性なアルミナ微粉末と必要な焼結助剤、そして予
備焼成により、分解もしくは揮発する熱可塑性有
機物を主成分とする可塑剤、および混合助剤例え
ば水を所定の割合に秤量し、湿式で十分混合し、
ついで後述する成形に十分な可塑性をもつように
乾燥もしくは混練して成形用坏土を用意すること
が必要である。
Now, in order to produce the ceramic tube according to the present invention, a high-purity active alumina fine powder and a necessary sintering aid are used, and a pre-baking process is required to obtain an alumina ceramic exhibiting the desired translucency in the final firing. A plasticizer whose main component is a thermoplastic organic substance that decomposes or volatilizes, and a mixing aid such as water are weighed in a predetermined proportion and thoroughly mixed in a wet manner.
Next, it is necessary to prepare a clay for molding by drying or kneading it so that it has sufficient plasticity for molding, which will be described later.

アルミナ微粉末および焼結助剤は従来から知ら
れているとおりのα−アルミナ、γ−アルミナ、
マグネシウム化合物、稀土類化合物等を透光率、
焼成条件、機械的特性等の所要条件により選択す
る。
Alumina fine powder and sintering aids are conventionally known α-alumina, γ-alumina,
Light transmittance of magnesium compounds, rare earth compounds, etc.
Selection is made depending on required conditions such as firing conditions and mechanical properties.

熱可塑性有機物は、ポリビニールアルコール、
メチルセルロース等が適しているが、その選択お
よび量は製品の形状、大きさにより、成形用坏土
が成形時に呈する可塑性の必要の度合から決めれ
ばよく、特定の条件に限定されるものではない。
なおポリプロピレン、ポリエチレン等の加熱分解
し難い熱可塑性の有機物は、その有機物を除去す
るための予備焼成時に再軟化して成形体を変形す
るおそれがあるので一部併用することは可能であ
るが、前記の熱可塑性有機物を添加可塑剤の主成
分とすることが重要である。
Thermoplastic organic substances include polyvinyl alcohol,
Methyl cellulose or the like is suitable, but its selection and amount may be determined depending on the shape and size of the product and the degree of plasticity required for the molding clay during molding, and is not limited to specific conditions.
Note that thermoplastic organic substances that are difficult to thermally decompose, such as polypropylene and polyethylene, may be softened again during pre-firing to remove the organic substances and deform the molded product, so it is possible to use some of them in combination. It is important that the thermoplastic organic substance mentioned above be the main component of the additive plasticizer.

混合助剤は混合物とよく濡れ、もしくは溶媒と
なるもので、後工程の乾燥、焼成で除去されるも
のであればよく、一般には水が用いられるが、成
形体の形状によつては非水溶剤も選択され得る。
The mixing aid can be one that wets the mixture well or acts as a solvent, and can be removed in the subsequent drying and baking process.Water is generally used, but depending on the shape of the molded product, non-aqueous additives may be used. Solvents may also be selected.

上記の主要原料配合において成形用坏土に必要
な可塑性を得るために、真空土練機を用いると坏
土中に空気が含まれないから有効である。
In order to obtain the necessary plasticity for the molding clay in the above-mentioned main raw material composition, it is effective to use a vacuum clay kneading machine because air is not contained in the clay.

このようにして用意した成形用坏土を用いて押
し出し成形機あるいは湿式プレス機により、まず
チユーブ形状素材5に成形するが、発光管に用い
られるセラミツクチユーブはチユーブ形に対して
長さが比較的長いものが要求されるので押し出し
成形がよい。
The molding clay prepared in this way is first formed into a tube-shaped material 5 using an extrusion molding machine or a wet press machine, but the ceramic tube used for the arc tube is relatively long in length compared to the tube shape. Since a long piece is required, extrusion molding is better.

この段階でチユーブの内径が最終焼成後の寸法
として放電灯の電極径とほぼ同一かやや大きめに
なるように形成することが望ましい。またチユー
ブ形状素材5の肉厚は後の工程でチユーブ形状素
材管の管径が押し拡げられる際薄くなるのでその
減少分を考慮して定める。
At this stage, it is desirable to form the tube so that its inner diameter after final firing is approximately the same as or slightly larger than the electrode diameter of the discharge lamp. Further, the wall thickness of the tube-shaped material 5 is determined in consideration of the reduction in thickness since the diameter of the tube-shaped material pipe becomes thinner when it is expanded in a later step.

次に、第2図で示すように上記のチユーブ形状
素材5は内面形状が紡鐘形をなす成形型10のキ
ヤビテイ7内に導いてそのチユーブ形状素材5の
一端からその内部に流体圧力を適用する加圧機
(図示せず)の圧力注入端部材12を成形型10
に取り付け、他端にはチユーブ形状素材5の開口
を閉す端部材13を成形型10に取り付け、しか
るのち加圧機を作動して、所要の発光管に対応す
る長さの素材管の中央部分の管系を端部の管系よ
り大きく押し拡げた後、加圧機の作動を停止し、
図に仮想線で示した成形体6を圧力注入端部材お
よび端部材13から離して成形型10から取り出
すのであり、そしてこの取り出しを容易にするた
めに端部材13を図に添字a,bで区別したよう
に素材管の中央部で管軸方向と直角方向または管
軸方向に二分し、ここで嵌合部11を形成するよ
うに二分割すると、成形体の外面にできるバリが
小さく除去も容易であるので望ましい。この成形
型10は、第2図に示す単一成形体に対応する場
合だけに限られることなく、第3図に3個の例で
示したように、複数個の成形体を得る多連キヤビ
テイa,b,cをもつ型式としてももちろんよ
く、この場合成形態6は上に準じる成形の直後も
しくは後述の焼成を経た後に切断して個々の製品
にすればよい。成形型10の内面キヤビテイの形
状は、ランプ特性が満足されかつ成形体の取り出
しが容易な形状をつくり出すことができれば任意
でよく、この形状について紡鐘形と表現したが、
若干の変形が含まれることは説明するまでもな
い。
Next, as shown in FIG. 2, the tube-shaped material 5 is guided into the cavity 7 of the mold 10 having a bell-shaped inner surface, and fluid pressure is applied to the inside of the tube-shaped material 5 from one end. A pressure injection end member 12 of a pressurizing machine (not shown) is inserted into a mold 10.
At the other end, an end member 13 for closing the opening of the tube-shaped material 5 is attached to the mold 10, and then the pressurizer is activated to form a central portion of the material tube with a length corresponding to the required arc tube. After pushing the pipe system wider than the pipe system at the end, stop the operation of the pressurizer,
The molded body 6 shown in phantom lines in the figure is removed from the mold 10 by separating it from the pressure injection end member and the end member 13, and in order to facilitate this removal, the end member 13 is indicated by suffixes a and b in the figure. As mentioned above, if the material tube is divided into two at the center in a direction perpendicular to the tube axis direction or in the tube axis direction, and the fitting portion 11 is formed here, the burrs formed on the outer surface of the molded product can be reduced and removed. This is desirable because it is easy. This mold 10 is not limited to the case where it corresponds to a single molded body as shown in FIG. Of course, types having a, b, and c may also be used, and in this case, the molded form 6 may be cut into individual products immediately after molding as described above or after firing as described below. The shape of the inner cavity of the mold 10 may be any shape as long as it satisfies the lamp characteristics and makes it easy to take out the molded product, and this shape is described as bell-shaped.
It goes without saying that some modifications are included.

流体圧力の適用には通常空気が簡便であるが、
もちろん油圧を用いてもよく、ただこの場合の流
体がチユーブ形状素材を侵すことがないものを選
ぶのは勿論であつて、もしそのおそれがある場合
は、流体が直接チユーブ形状素材と接しないよう
に、例えばゴム製の薄い弾性膜を介在して成形す
ればよい。
Air is usually convenient for applying fluid pressure;
Of course, hydraulic pressure may be used, but in this case, it is of course necessary to select a fluid that will not attack the tube-shaped material, and if there is a risk of this, make sure that the fluid does not come into direct contact with the tube-shaped material. For example, a thin elastic membrane made of rubber may be interposed therebetween.

上記のようにして得られた成形体6はその成形
のために添加した可塑剤を除去するように、例え
ば空気中で予備焼成される。予備焼成の条件は可
塑剤の種類、製品の大きさによつて定めればよい
が、焼成温度は成形体の粉末の活性度が劣化しな
い範囲、すなわち1200℃以下が望ましい。
The molded body 6 obtained as described above is pre-fired, for example, in air so as to remove the plasticizer added for molding. The pre-firing conditions may be determined depending on the type of plasticizer and the size of the product, but the firing temperature is preferably within a range that does not deteriorate the activity of the powder of the compact, that is, 1200°C or less.

次に、予備焼成された成形体を高温で最終焼成
する。この最終焼成条件は原料組成、製品の大き
さ、要求される透光率、製品の機械的強度等の条
件によつて温度、時間、雰囲気を適宜に決定す
る。
Next, the pre-fired molded body is finally fired at a high temperature. The final firing conditions are determined by appropriately determining the temperature, time, and atmosphere depending on the raw material composition, the size of the product, the required light transmittance, the mechanical strength of the product, and other conditions.

上記の製造法で得られるアルミナ質セラミツク
チユーブの一例を第4図、第5図に示すが、セラ
ミツクチユーブの形状はこのような発光部が直管
状および楕円状に限られものではなく要求される
形状に沿つて成形、焼成される。
An example of an alumina ceramic tube obtained by the above manufacturing method is shown in FIGS. 4 and 5, but the shape of the ceramic tube is not limited to the shape of a straight tube or an ellipse, and the shape of the light emitting part is not limited to that required. It is molded and fired according to the shape.

このような方法によつて得られるアルミナ質セ
ラミツクチユーブは、チユーブの両端部13,1
4の口径を放電用電極の挿入に適合する寸法に容
易に製作することができ、中央部分すなわち発光
物質が封入され発光する部分15と放電用電極の
支持部との間には接合部がない一体成形・焼成体
であるため、気密封着部分を最小限に抑えること
ができ、かつセラミツクチユーブの内面は全く汚
染されないので透光率に優れしかも放電灯の製作
時に行われるベーキングにおいてもよい結果をも
たらすことになる。さらにセラミツクチユーブの
発光する部分の肉厚は薄いので透光性に優れる一
方放電用電極の支持部の肉厚は厚いので機械的強
度にすぐれている。
The alumina ceramic tube obtained by such a method has both ends 13 and 1 of the tube.
4 can be easily manufactured to a size suitable for insertion of the discharge electrode, and there is no joint between the central portion, that is, the portion 15 in which the luminescent substance is sealed and emits light, and the support portion of the discharge electrode. Since it is an integrally molded and fired body, the hermetic sealing part can be kept to a minimum, and the inner surface of the ceramic tube is not contaminated at all, so it has excellent light transmittance and also produces good results in baking performed during the manufacture of discharge lamps. It will bring about. Furthermore, the wall thickness of the light emitting portion of the ceramic tube is thin, so it has excellent translucency, while the wall thickness of the supporting portion of the discharge electrode is thick, so it has excellent mechanical strength.

実施例 純度99.99%で0.1〜0.2μのアルミナ微粉末に対
し、添加物として酸化マグネシウム0.05重量%、
酸化イツトリウム、0.05重量%、有機バインダー
としてメチルセルロース3重量%、潤滑剤として
ポリエチレングリコール(商品名ポリノン)1重
量%、および混合助剤として水25重量%を加えニ
ーダーにより十分混合した後、真空土練機を用い
て成形用坏土を調整した。次いでピストン式押し
出し機により外径6.5mm、内径2.5mmのチユーブ形
状素材5を押し出し成形し、直ちに第2図のよう
な内面のキヤビテイが紡鐘形をなす形状の成形型
10に入れ、一端を端部剤13で密封した後、他
端より該素材管の内部に空気を挿入してキヤビテ
イに沿つた形状の成形体6に変形させた。成形体
6の中央部の外径は約10mmで、肉厚は約1.3mmで
あつた。
Example: 0.05% by weight of magnesium oxide as an additive to fine alumina powder of 0.1 to 0.2 μ with a purity of 99.99%.
After adding 0.05% by weight of yttrium oxide, 3% by weight of methyl cellulose as an organic binder, 1% by weight of polyethylene glycol (trade name: Polynon) as a lubricant, and 25% by weight of water as a mixing aid, the mixture was thoroughly mixed in a kneader, and then vacuum kneaded. The clay for molding was prepared using a machine. Next, a tube-shaped material 5 with an outer diameter of 6.5 mm and an inner diameter of 2.5 mm is extruded using a piston type extruder, and immediately placed in a mold 10 whose inner cavity has a bell-shaped shape as shown in FIG. After sealing with end agent 13, air was inserted into the material tube from the other end to transform it into a molded body 6 having a shape along the cavity. The outer diameter of the center portion of the molded body 6 was approximately 10 mm, and the wall thickness was approximately 1.3 mm.

加圧成形後、誘電乾燥器により外型に成形体を
納めたまま約2分間乾燥し、チユーブ表面を硬化
させた後、外型より取り出した。
After pressure molding, the molded body was dried in a dielectric dryer for about 2 minutes while being housed in the outer mold to harden the tube surface, and then taken out from the outer mold.

次いで、800℃3時間空気中で加熱し有機物を
完全に除去した後、真空炉で1800℃6時間焼成し
た。
Next, the mixture was heated in air at 800°C for 3 hours to completely remove organic matter, and then fired in a vacuum furnace at 1800°C for 6 hours.

このようにして得られたアルミナ質セラミツク
チユーブをヘリウムリークテスト機により気密試
験をした結果10−10atom・c.c./secであり、また
200℃から水中への熱衝撃試験にも耐え、さらに
積分球式透光率計で測定した全光線透過率は93%
であり、金属蒸気放電灯用セラミツクチユーブと
しての全ての性能を満足するものであつた。
The airtightness of the alumina ceramic tube thus obtained was tested using a helium leak tester, and the leakage was 10−10 atoms・cc/sec.
It withstands thermal shock tests from 200 degrees Celsius into water, and has a total light transmittance of 93% when measured with an integrating sphere transmittance meter.
Therefore, it satisfied all the performance requirements for a ceramic tube for a metal vapor discharge lamp.

以上の説明から明らかなように、この発明の金
属蒸気放電灯用セラミツクチユーブ製造法によれ
ば、従来のようにチユーブにキヤツプを組み合せ
る必要もなく同一材質で一体化できるので気密性
にすぐれ、製造工程が簡便であるばかりでなく、
種々の発光管にも適合できる形状が容易に成形で
き、特に透光率をよくするため、発光部のチユー
ブの肉厚を薄くすることができる方法でその利用
価値は大なるものである。
As is clear from the above explanation, according to the method of manufacturing a ceramic tube for a metal vapor discharge lamp of the present invention, there is no need to combine the tube and the cap as in the past, and they can be integrated using the same material, resulting in excellent airtightness. Not only is the manufacturing process simple, but
It can be easily molded into a shape that can be adapted to various types of light emitting tubes, and has great utility as a method that can reduce the wall thickness of the tube in the light emitting section to improve light transmittance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の発光管を一部断面で示した正面
図、第2図はこの発明の方法による成形要領を示
す模式図、第3図はこの発明に用い得る外径の概
念を示す断面図、第4図および第5図はこの発明
に従つて得られるセラミツクチユーブを例示する
要部を断面とした正面図である。 1……アルミナ質セラミツクチユーブ、2……
キヤツプ、3……耐熱金属製電極、4……ガラス
フリツト、5……チユーブ形状素材、6……成形
体、7……チユーブ形状素材の一端、8……チユ
ーブ形状素材の他端、9……中央部分の管径、1
0……外型、11……嵌合部、12……圧力注入
端部、13……端部材、14……電極挿入部分、
15……発光する部分。
Fig. 1 is a partially cross-sectional front view of a conventional arc tube, Fig. 2 is a schematic diagram showing the molding procedure according to the method of the present invention, and Fig. 3 is a cross-sectional view showing the concept of the outer diameter that can be used in the present invention. FIGS. 4 and 5 are front views of main parts in cross section, illustrating a ceramic tube obtained according to the present invention. 1... Alumina ceramic tube, 2...
Cap, 3... Heat-resistant metal electrode, 4... Glass frit, 5... Tube-shaped material, 6... Molded body, 7... One end of tube-shaped material, 8... Other end of tube-shaped material, 9... Pipe diameter of central part, 1
0... Outer mold, 11... Fitting part, 12... Pressure injection end, 13... End member, 14... Electrode insertion part,
15... Part that emits light.

Claims (1)

【特許請求の範囲】[Claims] 1 金属蒸気放電灯の発光管に用いるアルミナ質
セラミツクチユーブの製造法において、最終焼成
で透光性アルミナ磁器となる組成としてアルミナ
微粉末に焼結助剤、可塑剤および混合助剤を加え
た成形用坏土を調整する段階と、次にこのチユー
ブ形状素材に押出成形する段階と、次にこのチユ
ーブ形状素材を内面が紡鐘形をなす外型のキヤビ
テイ内で該素材の内側に流体圧力を適用して所定
の発光管に対応する長さの素材管の中央部分でそ
の端部よりも大きく管径を押拡げ形づけ段階、お
よびこの形づけ段階を経て該素材管を外型から取
外しその後焼成に供する段階の順序結合に成るこ
とを特徴とする金属蒸気放電灯用セラミツクチユ
ーブ製造法。
1. In the manufacturing method of alumina ceramic tubes used in arc tubes of metal vapor discharge lamps, molding is performed by adding sintering aids, plasticizers, and mixing aids to alumina fine powder to create a composition that becomes translucent alumina porcelain in the final firing. A step of preparing the clay, then extrusion molding into the tube-shaped material, and then applying fluid pressure to the inside of the tube-shaped material in a cavity of an outer mold having a bell-shaped inner surface. A shaping step is performed in which the material tube of a length corresponding to a predetermined arc tube is expanded to a diameter larger than that at the ends at the center portion, and after this shaping step, the material tube is removed from the outer mold. A method for manufacturing a ceramic tube for a metal vapor discharge lamp, characterized by sequential combination of stages subjected to firing.
JP1237780A 1980-02-06 1980-02-06 Manufacture of ceramic tube for metal vapor discharge lamp Granted JPS56109710A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP1237780A JPS56109710A (en) 1980-02-06 1980-02-06 Manufacture of ceramic tube for metal vapor discharge lamp
US06/229,503 US4387067A (en) 1980-02-06 1981-01-29 Ceramic arc tube of metal vapor discharge lamps and a method of producing the same
AU66710/81A AU528293B2 (en) 1980-02-06 1981-01-29 Discharge lamp tube
HU24481A HU184375B (en) 1980-02-06 1981-02-03 Ceramic discharge tuae for metal-vapour lamps and method for making thereof
CA000370146A CA1164038A (en) 1980-02-06 1981-02-05 Ceramic arc tube of metal vapour discharge lamps and a method of producing the same
DE8181300508T DE3160859D1 (en) 1980-02-06 1981-02-06 Method of producing a ceramic arc tube of a metal vapour discharge lamp and ceramic arc tube thereby produced
EP81300508A EP0034056B1 (en) 1980-02-06 1981-02-06 Method of producing a ceramic arc tube of a metal vapour discharge lamp and ceramic arc tube thereby produced
PL1981229570A PL131086B1 (en) 1980-02-06 1981-02-06 Arc ceramic tube of lamp for discharge of metal vapours and method of making the same
US06/436,372 US4503356A (en) 1980-02-06 1982-10-25 Ceramic arc tube for metal vapor discharge lamps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1237780A JPS56109710A (en) 1980-02-06 1980-02-06 Manufacture of ceramic tube for metal vapor discharge lamp

Publications (2)

Publication Number Publication Date
JPS56109710A JPS56109710A (en) 1981-08-31
JPS642482B2 true JPS642482B2 (en) 1989-01-17

Family

ID=11803574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1237780A Granted JPS56109710A (en) 1980-02-06 1980-02-06 Manufacture of ceramic tube for metal vapor discharge lamp

Country Status (2)

Country Link
JP (1) JPS56109710A (en)
HU (1) HU184375B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002085590A1 (en) * 2001-04-17 2002-10-31 Ngk Insulators, Ltd. Method of manufacturing molded body, slurry for molding, core for molding, method of manufacturing core for molding, hollow ceramic molded body, and light emitting container

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844450A (en) * 1971-09-08 1974-10-29 Aladdin Ind Inc Vacuum insulated carafe

Also Published As

Publication number Publication date
HU184375B (en) 1984-08-28
JPS56109710A (en) 1981-08-31

Similar Documents

Publication Publication Date Title
US4387067A (en) Ceramic arc tube of metal vapor discharge lamps and a method of producing the same
US4451418A (en) Method for forming a green body of ceramic arc tubes used for a metal vapor discharge lamp and a molding die for forming said tube
CN100364028C (en) Production method of ceramic arc light tube for making metal halogen lamp
US20040168470A1 (en) Method for forming complex ceramic shapes
US6224449B1 (en) Method of forming lead-in seal in high pressure discharge lamps
US6346495B1 (en) Die pressing arctube bodies
JP2004047465A (en) Three electrode ceramic metal halide lamp
JPS624205B2 (en)
JP2000277013A (en) Manufacture of ceramic arc tube for metal halide lamp
JPS62187181A (en) Lining sealing method of electoconductive rod in ceramic body
JPS642482B2 (en)
US3515929A (en) Short arc lamp seal
CN102097281A (en) UV generator and manufacturing process thereof
EP1160831B1 (en) Discharge lamp
US5208509A (en) Arc tube for high pressure metal vapor discharge lamp
US5188554A (en) Method for isolating arc lamp lead-in from frit seal
CN101373698A (en) Combined HID electric arc tube
EP0341749A2 (en) Improved arc tube for high pressure metal vapor discharge lamp, lamp including same, and method
KR20020063610A (en) Method of manufacturing a lamp
JP3297590B2 (en) Neon tube for display
JPS59151730A (en) Manufacture of lamp
WO2007019044A1 (en) Ceramic arc tube and end plugs therefor and methods of making the same
CN110085508A (en) A kind of metal halide ceramic cavity and lamp
JPS62243235A (en) High pressure sodium lamp
JPH031769B2 (en)