JPS642429B2 - - Google Patents

Info

Publication number
JPS642429B2
JPS642429B2 JP24555685A JP24555685A JPS642429B2 JP S642429 B2 JPS642429 B2 JP S642429B2 JP 24555685 A JP24555685 A JP 24555685A JP 24555685 A JP24555685 A JP 24555685A JP S642429 B2 JPS642429 B2 JP S642429B2
Authority
JP
Japan
Prior art keywords
powder
electrode
planar
gun
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24555685A
Other languages
Japanese (ja)
Other versions
JPS61153168A (en
Inventor
Tsutomu Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ONODA SEMENTO KK
Original Assignee
ONODA SEMENTO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ONODA SEMENTO KK filed Critical ONODA SEMENTO KK
Priority to JP24555685A priority Critical patent/JPS61153168A/en
Publication of JPS61153168A publication Critical patent/JPS61153168A/en
Publication of JPS642429B2 publication Critical patent/JPS642429B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、正負のイオンを一面に亙つて生起
させるための面状無声放電電極に関するものであ
り、更に述べれば、互いに極性の異なる一対の電
極の間に絶縁体を介入してなる面状無声放電電極
に関するものである。
Detailed Description of the Invention The present invention relates to a planar silent discharge electrode for generating positive and negative ions over one surface, and more specifically, an insulator is provided between a pair of electrodes having different polarities. This invention relates to an intervening planar silent discharge electrode.

従来の放電電極、例えば、噴射ガンの先端に直
流電圧を印加してそこにイオン電流を発生する放
電電極を具備している静電紛体塗装装置。
An electrostatic powder coating apparatus includes a conventional discharge electrode, for example, a discharge electrode that applies a DC voltage to the tip of an injection gun to generate an ionic current there.

従来から行なわれている静電紛体塗装装置にお
いては第1図に示した如く被塗物196に対向離
設した噴射ガン190より圧搾空気191等によ
り粉体貯槽192より空気に懸濁した塗料粉体1
94をガンの吐出口195より噴出させると同時
にガンの吐出口195に電源193により高圧直
流電圧を印加してガンの先端195よりコロナ放
電をさせてガンの先端195より出発して被塗物
196に至る電気力線及びコロナ放電によるイオ
ン電流を利用して塗装空間に存在する粉体194
を荷電してガンの先端195と被塗物196との
間に存在する電界によるクーロン力によつて塗料
粉体を被塗物196の表面に移送してその表面に
第2図における199に示した如き塗粉層を形成
し、しかる後にこれを加熱等の手段によつて焼き
付けて塗膜を得るのが通常の手段である。
In a conventional electrostatic powder coating apparatus, as shown in FIG. 1, paint powder suspended in the air is discharged from a powder storage tank 192 by compressed air 191 or the like from an injection gun 190 that is placed opposite to and separated from an object 196 to be coated. body 1
94 is ejected from the gun's discharge port 195, and at the same time, a high-voltage DC voltage is applied to the gun's discharge port 195 from the power supply 193 to cause a corona discharge from the gun's tip 195. Powder 194 existing in the painting space using electric lines of force and ion current due to corona discharge.
is charged and the paint powder is transferred to the surface of the object to be coated 196 by Coulomb force due to the electric field existing between the tip 195 of the gun and the object to be coated 196, as shown at 199 in FIG. The usual method is to form a coating powder layer and then bake it by means such as heating to obtain a coating film.

以上第1図に関して詳細に説明した従来の静電
紛体塗装装置の面198による断面図を示したの
が第2図である。すなわち、従来の静電紛体塗装
方式においては、第2に示した如く、ガン195
−1の正面にはガンにより流れる電流が206に
示した電流の分布曲線に示した如く、ガンの正面
に集中するので、塗粉層199はガンの正面が厚
くなり、正面より遠ざかるに従つてうすくなる。
従つてガンを移動させない限り均一な塗膜層を得
ることは困難である。次にガンの正面では電流が
集中する結果、現在使用されている如き、高電気
抵抗の粉体塗料では周辺部に充分な塗膜の厚みが
得られる以前にその中心部においては塗膜層にお
けるイオン電流の電圧降下が粉体層の火花電圧を
越えてしまうために、粉体層において205で示
した如き逆電離現象が発生し、粉体層に小孔を作
りこのために肌荒れ、ピンホール等の粉体塗装法
にとつては致命的とも言うべき欠陥を発生する原
因となる。
FIG. 2 shows a cross-sectional view taken along plane 198 of the conventional electrostatic powder coating apparatus described in detail with respect to FIG. 1 above. That is, in the conventional electrostatic powder coating method, as shown in the second figure, the gun 195
-1, the current flowing through the gun is concentrated at the front of the gun as shown in the current distribution curve 206, so the coating powder layer 199 becomes thicker at the front of the gun, and as it moves away from the front. It becomes thinner.
Therefore, it is difficult to obtain a uniform coating layer unless the gun is moved. Secondly, as a result of the concentration of current in front of the gun, with the high electrical resistance powder coatings currently in use, the coating layer in the center becomes thicker than the coating thickness can be obtained in the peripheral areas. Since the voltage drop of the ion current exceeds the spark voltage of the powder bed, a reverse ionization phenomenon as shown at 205 occurs in the powder bed, creating small pores in the powder bed, resulting in rough skin and pinholes. For other powder coating methods, this can cause fatal defects.

ガンの正面に電流及び電界の集中が起こるため
に、又ガンの先端からコロナ放電を行なわせるた
め、この部分では著しい電界の集中が起こりいわ
ゆるグレデイエントフオースにより粉体層がガン
の先端の電界が集中している脚部に逆に固着して
ガンの電圧電流特性を変化させ、しばしば塗装工
程を中断してガンの先端を掃除しなければ安定に
塗装工程を管理することは不可能であるという大
きな欠点を従来の粉体塗装方式は持つている。更
に従来の粉体塗装方式においては、ガンの物理的
形状が定まればガンに印加する電圧を定めた場
合、その時得られる電流が常に一義的に定まつて
しまい、粉体の性質に応じて電圧と電流を独立に
選択することが不可能であり、これが塗膜の性能
の改善をはばむ原因となつている。
Because the current and electric field are concentrated in front of the gun, and because corona discharge occurs from the tip of the gun, there is a significant concentration of electric field in this area, and the so-called gradient force causes the powder layer to close to the tip of the gun. It sticks to the legs where the electric field is concentrated, changing the gun's voltage and current characteristics, and it is impossible to stably manage the painting process unless you frequently interrupt the painting process and clean the tip of the gun. Conventional powder coating methods have one major drawback: Furthermore, in conventional powder coating methods, once the physical shape of the gun is determined, the current obtained at that time is always uniquely determined when the voltage to be applied to the gun is determined, and it varies depending on the properties of the powder. It is not possible to select voltage and current independently, which hinders the improvement of coating performance.

本発明は、以上詳細に述べた従来の粉体塗装ガ
ンによる静電紛体塗装方式のあらゆる欠点を悉く
解決して、ピンホール、肌荒れ等の無い極めて良
好な塗膜を得ることができ、且塗膜の厚みの均一
性が良く、長期の連続運転をし得る画期的な静電
紛体塗装装置などを得ることのできる面状無声放
電電極を提供するものである。
The present invention solves all the drawbacks of the electrostatic powder coating method using the conventional powder coating gun described in detail above, and makes it possible to obtain an extremely good coating film without pinholes, rough skin, etc. The present invention provides a planar silent discharge electrode that has good film thickness uniformity and can be used as an innovative electrostatic powder coating device that can be operated continuously for a long period of time.

本発明は、板状電極を板状絶縁物に埋設し、該
板状絶縁物の表面に線状電極を露出して設け、該
線状電極の周囲と板状絶縁物の表面との間に無声
放電を生起せしめるための空間を形成したことを
特徴とする面状無声放電電極である。
In the present invention, a plate-shaped electrode is embedded in a plate-shaped insulator, a linear electrode is provided exposed on the surface of the plate-shaped insulator, and a space between the periphery of the linear electrode and the surface of the plate-shaped insulator is provided. This is a planar silent discharge electrode characterized by forming a space for generating silent discharge.

以下本発明の一実施例を添附図面により説明す
るが、ここでは、放電塗装装置の面状無声放電電
極について説明する。
An embodiment of the present invention will be described below with reference to the accompanying drawings. Here, a planar silent discharge electrode of an electric discharge coating apparatus will be explained.

なお同一図面符号は、その名称も機能も同一で
ある。
Note that the same drawing symbols have the same names and functions.

板状電極1を板状絶縁物2に埋設し、該板状絶
縁物2の表面に線状電極3を露出して設ける。
A plate-shaped electrode 1 is embedded in a plate-shaped insulator 2, and a linear electrode 3 is exposed and provided on the surface of the plate-shaped insulator 2.

交流電源6の一端を前記線状電極3に接続し、
他端を前記板状電極1に接続すると共に直流電源
7を介して導線8により接地する。Fは、線状電
極3の周囲と板状絶縁物2の表面との間に無声放
電を生起させるための空間である。第4図におい
て、被塗物10に対して面状無声放電電極Sは空
間18を隔ててほぼ平行に対向離設されている。
この場合、被塗物10は平板状物体である。今、
塗料粉体11は、塗料供給装置12によつてダク
ト15に少量ずつ送入され、このダクト15はフ
アン17によつてダスト回収口16、ダクト13
及びダクト14によつて構成される閉回路中を流
れる搬送用空気によつて気体中に懸濁した状態で
塗装空間18に供給されるようになつている。
Connecting one end of an AC power source 6 to the linear electrode 3,
The other end is connected to the plate-shaped electrode 1 and grounded via a conductor 8 via a DC power source 7. F is a space for generating a silent discharge between the periphery of the linear electrode 3 and the surface of the plate-shaped insulator 2. In FIG. 4, the planar silent discharge electrodes S are spaced apart from each other in parallel to the object 10 with a space 18 in between.
In this case, the object to be coated 10 is a flat object. now,
The paint powder 11 is fed into a duct 15 little by little by a paint supply device 12, and this duct 15 is connected to a dust collection port 16 and a duct 13 by a fan 17.
The paint is supplied to the coating space 18 in a suspended state in gas by the conveying air flowing through a closed circuit constituted by the duct 14 and the duct 14.

交流電源6により、板状電極1と線状電極3と
の間に、交流の高電圧が印加されると、その間に
は面状無声放電電極Sの外側に対し凸である交流
の電気力線A3が発生し、この電気力線の密度す
なわち面状無声放電電極Sの表面におけるこの交
番電界の電界強度が、その付近に存在する気体の
火花電圧よりも高くなつた時には、この面状無声
放電電極Sの表面一面にわたつて無声放電が存在
するようになる。すなわち、この状態において
は、面状無声放電電極の表面には正負のイオン及
び電子がプラズマ状になつて面上に一面に存在す
るようになる。従つて直流電源7によつて導線8
を介して上記面状無声放電電極の電位を高く保
ち、同時に導線9によつて被塗物を接地した場合
には、面状無声放電電極の表面に存在するプラズ
マの中より特定の極性を持つ正又は負のイオンの
みが選択的に引き出されて被塗物10に向つて矢
印5の如く進行する。この過程において塗粉供給
口15より供給されて被塗物10の表面に吸引さ
れ塗粉層19を形成する。この場合、塗装空間1
8に存在する電気力線は面状無声放電電極から被
塗物10に向かう平等電界であるため、被塗物1
0の表面に流入する塗粉、及びイオン電流による
電流の電流密度分布は著しく均一性が高く、従つ
て被塗物10の表面にはほとんど数秒間で極めて
均一性の良い塗粉層19が形成される。
When a high AC voltage is applied between the plate electrode 1 and the linear electrode 3 by the AC power source 6, AC electric lines of force that are convex toward the outside of the planar silent discharge electrode S are created between the plate electrode 1 and the linear electrode 3. A3 occurs, and when the density of the electric lines of force, that is, the electric field strength of this alternating electric field on the surface of the planar silent discharge electrode S, becomes higher than the spark voltage of the gas existing in the vicinity, this planar silent discharge A silent discharge now exists over the entire surface of the electrode S. That is, in this state, positive and negative ions and electrons become plasma and exist all over the surface of the planar silent discharge electrode. Therefore, the conductor 8 is connected by the DC power source 7.
When the potential of the planar silent discharge electrode is kept high through the conductor 9 and the object to be coated is grounded at the same time, the plasma existing on the surface of the planar silent discharge electrode has a specific polarity. Only positive or negative ions are selectively extracted and travel toward the object 10 as shown by arrow 5. In this process, the powder is supplied from the coating powder supply port 15 and sucked onto the surface of the object 10 to form a coating powder layer 19. In this case, painting space 1
Since the lines of electric force existing at 8 are uniform electric fields directed from the planar silent discharge electrode toward the object 10 to be coated,
The coating powder flowing onto the surface of the object 10 and the current density distribution of the current caused by the ion current are extremely uniform, and therefore, an extremely uniform coating layer 19 is formed on the surface of the object 10 in just a few seconds. be done.

本発明による粉体塗装装置の第一の特徴は、得
られる塗粉層の層厚の均一性が極めて良く、塗膜
の肌荒れやピンホール等が著しく少ないというこ
とである。これは、第4図に関する説明より明ら
かな如く、本発明による粉体塗装装置において
は、塗装空間18における電界がほぼ平等電界に
近く、被塗装物10に流入する電流の電流密度が
著しく良好であるために第2図に示した在来装置
における如く、電流密度の不均一に基く逆電離に
よるピンホールの発生、肌荒れ等が無く、且均一
な厚みの塗粉層を得ることができるからである。
次に、本発明の第2番目の特徴は、得られる塗膜
膜厚の制御性が著しく良好なことである。すなわ
ち本発明による粉体塗装装置においては交流電源
6及び直流電源7をそれぞれ調整することによつ
て、塗装空間18を流れる電流密度と塗装空間1
8に存在する電界強度を独立に調整することが可
能となるので、その結果塗粉層の厚みを極めて広
い範囲にわたつて粉体の性質に応じて自由に調整
することが可能となる。例えば著しく電気抵抗の
高い粉体においては、電流の量を低くおさえ、且
電界強度を大きくとることによつて極めて厚い塗
膜を得ることもできれば、比較的多い電流を流
し、且電界強度を比較的低くとることによつて薄
い塗膜を得ること等の調整を自由に行なうことが
できる。
The first feature of the powder coating apparatus according to the present invention is that the uniformity of the thickness of the powder coating layer obtained is extremely good, and there are extremely few rough surfaces, pinholes, etc. in the coating film. This is because, as is clear from the explanation regarding FIG. 4, in the powder coating apparatus according to the present invention, the electric field in the coating space 18 is almost a uniform electric field, and the current density of the current flowing into the object to be coated 10 is extremely good. Therefore, unlike the conventional device shown in Fig. 2, there is no occurrence of pinholes or rough skin caused by reverse ionization due to non-uniform current density, and it is possible to obtain a coated powder layer with a uniform thickness. be.
Next, the second feature of the present invention is that the controllability of the resulting coating film thickness is extremely good. That is, in the powder coating apparatus according to the present invention, by adjusting the AC power source 6 and the DC power source 7, the current density flowing through the coating space 18 and the coating space 1 can be adjusted.
Since it becomes possible to independently adjust the electric field strength present at 8, it becomes possible to freely adjust the thickness of the powder coating layer over a very wide range depending on the properties of the powder. For example, for powders with extremely high electrical resistance, it is possible to obtain an extremely thick coating film by keeping the amount of current low and increasing the electric field strength, or it is possible to obtain an extremely thick coating film by keeping the amount of current low and increasing the electric field strength, or by applying a relatively large amount of current and comparing the electric field strength. By lowering the target, it is possible to freely make adjustments such as obtaining a thin coating film.

次に本発明による粉体塗装装置の3番目の特徴
は、著しく長期間にわたる連続自動運転が何らの
保守サービスを必要とせず実行可能であるという
ことである。これは主として面状無声放電電極に
本質的に備わつている粉体に対する反撥作用によ
つて放電電極に粉体が付着することが起らないた
めである。すなわち、第4図に示した如く、本発
明による面状無声放電電極の相隣る電極間には電
極の表面に対して外側に凸な交番電気力線A3が
全面にわたつて存在する。従つて、この領域にお
ける帯電粉体粒子は、この外側に凸に彎曲した電
気力線の上で交番的に振動する結果、遠心力によ
つて常に電極表面から反撥される力を受ける。従
つてこの理由により塗装空間における粉体粒子は
決して放電電極表面付着することが無い。また本
発明においては、塗装空間における電界がほぼ平
等電界に近いものであるために、在来の装置にみ
られる如くガンの先端において集中する直流電界
が存在しないために、グレデイエントフオースに
よる電極表面への粉体の接近も全く起り得ない。
The third feature of the powder coating apparatus according to the present invention is that continuous automatic operation for an extremely long period of time can be carried out without requiring any maintenance services. This is mainly because the powder does not adhere to the discharge electrode due to the repulsion against the powder that is inherent in the planar silent discharge electrode. That is, as shown in FIG. 4, between adjacent electrodes of the planar silent discharge electrode according to the present invention, alternating electric lines of force A3 convex outward with respect to the surface of the electrodes exist over the entire surface. Therefore, the charged powder particles in this region vibrate alternately on the outwardly curved electric lines of force, and as a result are constantly subjected to a force repelled from the electrode surface by centrifugal force. Therefore, for this reason, powder particles in the coating space never adhere to the surface of the discharge electrode. In addition, in the present invention, since the electric field in the painting space is close to a uniform electric field, there is no concentrated DC electric field at the tip of the gun as seen in conventional equipment, so the gradient force Access of powder to the electrode surface is also completely impossible.

これらの二つの理由により、本発明による粉体
塗装装置の放電電極は決して塗料粉体が付着する
ことが無く、従つて、従来の粉体塗装装置に見ら
れる如く、ガン先端、あるいはその付近に設置さ
れた分散板における粉体の付着を取り除くための
作業の中断、保守サービスをする必要が全く無
い。従つて長期間にわたつて無保守連続運転を実
施することが容易である。
For these two reasons, the discharge electrode of the powder coating device according to the invention will never have paint powder adhering to it and will therefore never be placed at or near the tip of the gun, as in conventional powder coating devices. There is no need to interrupt work or perform maintenance services to remove powder adhesion on the dispersion plate installed. Therefore, it is easy to carry out continuous operation without maintenance for a long period of time.

これらの場合に於いて被塗物の被塗面に対向す
る面状無声放電電極の表面に導体が露出している
ので、電気力線が通りやすく、低い電圧で放電す
ることができる。
In these cases, since the conductor is exposed on the surface of the planar silent discharge electrode facing the surface of the object to be coated, lines of electric force can easily pass therethrough, and discharge can be performed at a low voltage.

又、電極が露出していない場合に起きる面状無
声放電電極の表面の残留電荷の問題も発生しな
い。従つて使用する絶縁物ないしは半導体の固有
抵抗値は極めて広い範囲に亘つて選択することが
できる。
Further, the problem of residual charge on the surface of the planar silent discharge electrode, which occurs when the electrode is not exposed, does not occur. Therefore, the resistivity value of the insulator or semiconductor used can be selected from a very wide range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の静電粉体塗装装置の斜面図、第
2図は第1図の面198で切断した部分の断面
図、第3図は本発明の面状無声放電電極の内部構
造を示す斜面図、第4図は本発明の面状無声放電
電極の使用状態を示す縦断面図、第5図は本発明
の実施例を示す図で、面状無声放電電極の概略図
である。 S……面状無声放電電極、1……板状電極、2
……板状絶縁物、3……線状電極。
Fig. 1 is a perspective view of a conventional electrostatic powder coating device, Fig. 2 is a sectional view taken along plane 198 in Fig. 1, and Fig. 3 shows the internal structure of the planar silent discharge electrode of the present invention. FIG. 4 is a longitudinal sectional view showing how the planar silent discharge electrode of the present invention is used, and FIG. 5 is a diagram showing an embodiment of the present invention, which is a schematic diagram of the planar silent discharge electrode. S...Planar silent discharge electrode, 1...Plate electrode, 2
... Plate insulator, 3... Linear electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 板状電極を板状絶縁物に埋設し、該板状絶縁
物の表面に線状電極を露出して設け、該線状電極
の露出面と板状絶縁物の表面との間に無声放電を
生起せしめるための空間を形成したことを特徴と
する面状無声放電電極。
1 A plate-shaped electrode is embedded in a plate-shaped insulator, a linear electrode is provided exposed on the surface of the plate-shaped insulator, and a silent discharge is generated between the exposed surface of the linear electrode and the surface of the plate-shaped insulator. A planar silent discharge electrode characterized by having a space formed therein for generating.
JP24555685A 1985-11-01 1985-11-01 Plane silent discharge electrode Granted JPS61153168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24555685A JPS61153168A (en) 1985-11-01 1985-11-01 Plane silent discharge electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24555685A JPS61153168A (en) 1985-11-01 1985-11-01 Plane silent discharge electrode

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP49078226A Division JPS60108B2 (en) 1974-07-10 1974-07-10 Electric discharge coating equipment

Publications (2)

Publication Number Publication Date
JPS61153168A JPS61153168A (en) 1986-07-11
JPS642429B2 true JPS642429B2 (en) 1989-01-17

Family

ID=17135459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24555685A Granted JPS61153168A (en) 1985-11-01 1985-11-01 Plane silent discharge electrode

Country Status (1)

Country Link
JP (1) JPS61153168A (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517574A (en) * 1974-07-10 1976-01-21 Onoda Cement Co Ltd HOSOSENGATADENKAISOCHI
JPS517571A (en) * 1974-07-10 1976-01-21 Onoda Cement Co Ltd DENKAIKA ATENSOCHIKARANARUKABE
JPS517570A (en) * 1974-07-10 1976-01-21 Onoda Cement Co Ltd Denkaisochino untenhoho oyobi sonosochi
JPH0233204B2 (en) * 1983-06-15 1990-07-26 Yaesu Musen Kk JUSHINKAIRO

Also Published As

Publication number Publication date
JPS61153168A (en) 1986-07-11

Similar Documents

Publication Publication Date Title
US4673416A (en) Air cleaning apparatus
JP5029740B2 (en) Method for removing electricity from electrically insulating sheet, method for producing electrically insulating sheet, and electrically insulating sheet
JPS60108B2 (en) Electric discharge coating equipment
US5272414A (en) Discharge element, method of producing the same and apparatus comprising the same
GB1558924A (en) Electrostatic coating grid and method
US4811689A (en) Electrostatic powder coating apparatus
US4472756A (en) Duct type charge eliminator
JPS6097064A (en) Electrostatic coating apparatus
GB1588503A (en) Installation and method for electrostatic powder coating of articles
JP2006196255A (en) Discharge treatment device of sheet, discharge treatment method thereof and porous polyester film
JPS642429B2 (en)
EP0697255A2 (en) Method and apparatus for electrostatic powder coating
JP2002289394A (en) Method and device for eliminating static charge of insulating sheet
US3853580A (en) Methods for electrogasdynamic coating
JP3517968B2 (en) Insulating web static elimination method and web manufacturing method
JP4396084B2 (en) Manufacturing method of electrical insulating sheet
WO2017159441A1 (en) Insulating sheet discharging method and insulating sheet discharging apparatus
WO1994008725A1 (en) Method and apparatus for coating electrostatic powder
Bush et al. Laboratory analyses of corona discharges
Wang et al. New design of ion blower based on needle-dielectric-needle bipolar corona discharge
JPH0963788A (en) Static eliminator
JP4617757B2 (en) Electric insulation sheet neutralizing device and method, method for producing electric insulating sheet, and electric insulating sheet
KR19980066229A (en) Electric dust collecting and deodorizing device
JPH1034027A (en) Gun for forming electrostatic film and electrostatic film forming device
SU1172599A1 (en) Apparatus for applying polymeric pulverulent powder materials in the electric field