JPS642356B2 - - Google Patents

Info

Publication number
JPS642356B2
JPS642356B2 JP18375683A JP18375683A JPS642356B2 JP S642356 B2 JPS642356 B2 JP S642356B2 JP 18375683 A JP18375683 A JP 18375683A JP 18375683 A JP18375683 A JP 18375683A JP S642356 B2 JPS642356 B2 JP S642356B2
Authority
JP
Japan
Prior art keywords
tank
fermentation
ethanol
yeast
fermenter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18375683A
Other languages
Japanese (ja)
Other versions
JPS6075273A (en
Inventor
Kenji Kida
Shigeru Morimura
Nobuyuki Shima
Masahiro Shioda
Kohei Tanemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP18375683A priority Critical patent/JPS6075273A/en
Publication of JPS6075273A publication Critical patent/JPS6075273A/en
Publication of JPS642356B2 publication Critical patent/JPS642356B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

【発明の詳細な説明】 この発明は、凝集性酵母や、ゼオドライト、バ
ーミキユライトなどの単体に付着した菌体を用い
る醗酵槽に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fermenter using flocculating yeast or microbial cells attached to a single substance such as zeodolite or vermiculite.

この明細書において前後関係については第1,
2および3図において醗酵液の流出方向すなわち
各図における右方を便宜上前方と称し、左方を後
方と称することとする。
In this specification, regarding context,
In Figures 2 and 3, the outflow direction of the fermentation liquid, that is, the right side in each figure is referred to as the front for convenience, and the left side is referred to as the rear.

近年、石油代替エネルギーの一つとして、バイ
オマスから醗酵法により生産されるエタノールが
注目を集めている。そしてこの反応は、次の反応
式で示すように、ブドウ糖その他の糖類からエタ
ノールと炭酸ガスを生成する。
In recent years, ethanol produced from biomass by fermentation has attracted attention as an energy alternative to oil. This reaction produces ethanol and carbon dioxide gas from glucose and other sugars, as shown in the following reaction formula.

C6H12O6→2C2H5OH+2CO2 上記式から明らかなように、エタノール生産性
を増大させると、必然的に炭酸ガスの生成速度も
増大し、そのため凝集性酵母のフロツクや担体に
付着した菌体は、発生した炭酸ガスの気泡の上昇
に伴つて槽内を上昇して、槽外に流出するうらみ
があつた。このような問題を解決するために、従
来の醗酵槽では、第1図に示すように、垂直有底
筒状の槽本体11の頂部12に微生物沈降分離用
のバツフル13を設けたり、または第2図に示す
ように、有底筒状の槽本体21を前方上り勾配に
傾斜させる手段がとられた。なお、第1図および
第2図において、14,24は原料供給管、1
5,25は醗酵液流出管、16,26はガス抜き
管、17,27は炭酸ガスの気泡である。
C 6 H 12 O 6 →2C 2 H 5 OH + 2CO 2As is clear from the above equation, increasing the productivity of ethanol inevitably increases the rate of production of carbon dioxide gas, which causes the flocs and carriers of flocculating yeast to increase. The attached bacterial cells rose inside the tank as the generated carbon dioxide bubbles rose, and there was a tendency for them to flow out of the tank. In order to solve such problems, in conventional fermentation tanks, as shown in FIG. As shown in FIG. 2, a method was taken in which the bottomed cylindrical tank body 21 was tilted upward in the forward direction. In addition, in FIGS. 1 and 2, 14 and 24 are raw material supply pipes;
5 and 25 are fermentation liquid outflow pipes, 16 and 26 are gas vent pipes, and 17 and 27 are carbon dioxide gas bubbles.

これら従来の醗酵槽において、微生物として凝
集性酵母を用いた場合、酵母の凝集の仕方や酵母
フロツクの大きさは一般に醗酵条件や炭酸ガスの
発生による反応液の撹乱の程度に依存する。そし
て小さな酵母フロツクは発生した炭酸ガスに伴つ
て槽内を上昇し、第1図の醗酵槽では、発生した
炭酸ガスの空塔速度すなわちガス線速度が大きい
ため沈降分離部12において酵母フロツクを完全
には分離させることができず、一部は醗酵液流出
管15から槽外に流出し、また第2図の醗酵槽の
場合、上記ガスの空塔速度は小さいが、第1図の
醗酵槽の沈降分離部に相当する部分がないため、
やはり酵母フロツクが醗酵液に伴つて流出するの
を食い止めることはできなかつた。また担体付着
菌体を用いた醗酵の場合には、上記凝集性酵母の
場合ほどではないが、エタノールの生産性を高め
ようとすると、担体付着菌体が槽外へ流出する量
もやはり増大した。
When flocculating yeast is used as the microorganism in these conventional fermenters, the manner in which the yeast flocculate and the size of the yeast flocs generally depend on the fermentation conditions and the degree of disturbance of the reaction solution due to the generation of carbon dioxide gas. The small yeast flocs rise in the tank along with the generated carbon dioxide gas, and in the fermentation tank shown in FIG. However, in the case of the fermentation tank shown in Fig. 2, the superficial velocity of the gas is small, but in the case of the fermentation tank shown in Fig. 1, Since there is no part corresponding to the sedimentation separation section,
As expected, it was not possible to prevent the yeast floc from flowing out along with the fermentation liquid. In addition, in the case of fermentation using carrier-attached microbial cells, when trying to increase ethanol productivity, the amount of carrier-attached microbial cells flowing out of the tank also increased, although not as much as in the case of the flocculating yeast mentioned above. .

この発明は、上記のような実情に鑑みてなされ
たもので、従来の醗酵槽を組み合わせてこれらの
長所を生かし、微生物の槽外流出を可及的に食い
止めて槽内の微生物濃度を高く維持し、以つてエ
タノールの生産性を向上せしめることのできる醗
酵槽を提供することを目的とする。
This invention was made in view of the above-mentioned circumstances, and utilizes these advantages by combining conventional fermenters to prevent microorganisms from flowing out of the tank as much as possible and maintain a high concentration of microorganisms in the tank. The object of the present invention is to provide a fermentation tank that can improve ethanol productivity.

この発明による醗酵槽は、連続醗酵用の流動槽
型のものであつて、第3図に示すように、有底筒
状の槽本体31を前方上り勾配に傾斜配置し、槽
内頂部32に微生物沈降分離用のバツフル33を
設けたものである。
The fermentation tank according to the present invention is of a fluidized tank type for continuous fermentation, and as shown in FIG. It is equipped with a buffer 33 for sedimentation and separation of microorganisms.

有底筒状の槽本体31は円筒状のもののほか、
角筒状のものでもよい。また傾斜勾配は、通常、
鉛直に対して15゜前後であるが、この角度は適宜
設定される。
The bottomed cylindrical tank body 31 may be cylindrical, or
A rectangular tubular shape may also be used. Also, the slope gradient is usually
Although it is approximately 15 degrees with respect to the vertical, this angle is set as appropriate.

醗酵槽の槽底には原料供給管34が配され、頂
部32の前側壁には醗酵液流出管35が配され、
同頂壁にはガス抜き管36が配されている。バツ
フル33は垂直部33aとその下端に前方下り勾
配に設けられた傾斜部33bとよりなり、垂直部
33aの上端は液面に達し、傾斜部33bの下端
は槽本体31の前部傾斜壁31aの上端部との間
に小間隔を有している。
A raw material supply pipe 34 is arranged at the bottom of the fermentation tank, and a fermentation liquid outflow pipe 35 is arranged at the front wall of the top 32.
A gas vent pipe 36 is arranged on the top wall. The vertical part 33 is composed of a vertical part 33a and a slope part 33b provided at the lower end of the vertical part 33b with a forward downward slope. There is a small distance between the upper end of the

醗酵により発生した炭酸ガスの気泡37は槽内
を上昇するが、その空塔速度は小さく抑えられ、
そのため酵母フロツクや担体付着菌体が気泡37
に伴つて上昇する量は少なく、上昇したものもバ
ツフル33によつてほとんど沈降分離せられ、槽
外に流出しない。こうして槽内の微生物濃度が高
く維持される。
Carbon dioxide gas bubbles 37 generated by fermentation rise in the tank, but their superficial velocity is kept small.
Therefore, yeast flocs and bacterial cells attached to the carrier become air bubbles 37.
The amount that rises as a result of this is small, and even what rises is mostly settled and separated by the baffle 33 and does not flow out of the tank. In this way, the concentration of microorganisms in the tank is maintained high.

つぎにこの発明の醗酵槽による効果を実証する
ために、この発明の醗酵槽を用いた実施例と、従
来の醗酵槽を用いた比較例について説明する。
Next, in order to demonstrate the effects of the fermenter of the present invention, examples using the fermenter of the present invention and comparative examples using a conventional fermenter will be described.

比較例 1 第1図に示す流動層型の醗酵槽を用い、まず槽
内に担体として平均粒径0.4mmの粒状バーミキユ
ライトを5wt/vol%を投入し、さらに担体付着
性の菌体としてザイモモナス・モービリス
(Zymomonas mobilis)ATCC−10988の前培養
液をその濃度が10vol%になるように加え、回分
培養を行なつた。約80時間の培養後、下記培地A
およびBをA:B=1:9で槽内に供給し、下記
醗酵条件下に連続醗酵を行つた。
Comparative Example 1 Using the fluidized bed type fermentation tank shown in Figure 1, first, 5 wt/vol% of granular vermiculite with an average particle size of 0.4 mm was introduced into the tank as a carrier, and then microbial cells attached to the carrier were added. A preculture solution of Zymomonas mobilis ATCC-10988 was added at a concentration of 10 vol %, and batch culture was performed. After culturing for about 80 hours, use the following medium A.
and B were supplied into the tank at a ratio of A:B=1:9, and continuous fermentation was performed under the following fermentation conditions.

培地A:酵母エキス 10g/ (NH4)SO4 10g/ KH2PO4 10g/ MgCl2・6H2O 5g/ MnCl2・4H2O 40mg/ ZnSO4・7H2O 40mg/ 消泡剤 3g/ 培地B:グルコース 167g/ FeSO4・7H2O 33mg/ 醗酵条件:醗酵温度 30℃ PH 4.5 培地の供給量を徐々に上げ、すなわち希釈率を
徐々に上げて、エタノール生産性を検討した。結
果を第4図に示す。同図から明らかなように、希
釈率=0.3h-1まではエタノール生産性は、ほぼ直
線的に増加したが、希釈率0.4h-1ではエタノール
濃度は約50g/に低下し、エタノール生産性は
約20g/・h以上には増加しなかつた。この原
因は担体付着菌体が槽外へ流出したためであつ
た。
Medium A: Yeast extract 10g/(NH 4 )SO 4 10g/ KH 2 PO 4 10g/ MgCl 2・6H 2 O 5g/ MnCl 2・4H 2 O 40mg/ ZnSO 4・7H 2 O 40mg/ Antifoaming agent 3g/ Medium B: Glucose 167g/ FeSO4.7H2O 33mg /Fermentation conditions: Fermentation temperature 30°C PH 4.5 Ethanol productivity was examined by gradually increasing the supply amount of the medium, that is, gradually increasing the dilution rate. The results are shown in Figure 4. As is clear from the figure, ethanol productivity increased almost linearly up to a dilution rate of 0.3 h -1 , but at a dilution rate of 0.4 h -1 , the ethanol concentration decreased to about 50 g/ did not increase above about 20 g/h. This was due to the bacterial cells attached to the carrier flowing out of the tank.

比較例 2 第1図に示す流動槽型の醗酵槽を用い、まず、
槽内に凝集性酵母としてサツカロマイセス・ウバ
ラム(Saccharomyces uvarum)lFO−2018の前
培養液をその濃度が10vol%になるように加えて
回分培養を行つた。約80時間の培養後、下記培地
CおよびDをC:D=1:1.5で槽内に供給し、
下記醗酵条件下に連続醗酵を行つた。
Comparative Example 2 Using the fluidized tank type fermenter shown in Figure 1, first,
Batch culture was performed by adding a preculture solution of Saccharomyces uvarum lFO-2018 as a flocculating yeast to the tank at a concentration of 10 vol%. After culturing for about 80 hours, the following media C and D were supplied into the tank at a ratio of C:D=1:1.5,
Continuous fermentation was carried out under the following fermentation conditions.

培地C:フイリピン産廃蜜 700g/ (NH42SO4 7g/ K2S2O5 0.5g/ 消泡剤 2.5g/ よりなる混合液をH2SO4でPH4.5に調整したもの 培地D:水道水 この連続醗酵における希釈率とエタノール生産
性の関係を第5図に示す。同図から明らかなよう
に、凝集性酵母の流出のためにエタノール生産性
は約7g/・h以上には増加しなかつた。
Medium C: A mixture of 700 g of honey from the Philippines / 7 g of (NH 4 ) 2 SO 4 / 0.5 g of K 2 S 2 O 5 / 2.5 g of antifoaming agent and adjusted to PH4.5 with H 2 SO 4 . D: Tap water The relationship between dilution rate and ethanol productivity in this continuous fermentation is shown in Figure 5. As is clear from the figure, the ethanol productivity did not increase above about 7 g/h due to the outflow of flocculating yeast.

比較例 3 醗酵槽として第2図に示す醗酵槽(槽内径=80
mm、高さ=4500mm、勾配=鉛直に対して15゜、実
容積約20)を用いる点を除いて、比較例1と同
じ操作を繰り返した。
Comparative Example 3 The fermentation tank shown in Figure 2 was used as a fermentation tank (tank inner diameter = 80
The same operation as in Comparative Example 1 was repeated, except that the height was 4500 mm, the slope was 15° to the vertical, and the actual volume was approximately 20 mm.

発生した炭酸ガスの空塔速度は著しく低下した
ため、担体付着菌体の槽外流出はある程度食い止
められたが、一部流出は免れなかつた。そのため
エタノール生産性は約13g/・h以上には増加
しなかつた。
Since the superficial velocity of the generated carbon dioxide gas was significantly reduced, the outflow of the bacterial cells attached to the carriers from the tank was prevented to some extent, but some outflow could not be avoided. Therefore, ethanol productivity did not increase above about 13 g/h.

比較例 4 醗酵槽として比較例3で用いた醗酵槽を用いる
点を除いて、比較例2と同じ操作を繰り返した。
Comparative Example 4 The same operations as in Comparative Example 2 were repeated, except that the fermenter used in Comparative Example 3 was used as the fermenter.

凝集性酵母の沈降速度は0.3〜0.4m/secと小さ
く、そのため酵母フロツクの槽外流出が著しく、
エタノール生産性は約5g/・hにとどまつ
た。
The sedimentation velocity of flocculating yeast is as low as 0.3 to 0.4 m/sec, so the flow of yeast flocs out of the tank is significant.
Ethanol productivity remained at about 5 g/h.

実施例 1 比較例1で用いた醗酵槽を鉛直に対して15゜傾
斜させ、比較例1の操作を繰り返した。
Example 1 The fermentation vessel used in Comparative Example 1 was tilted at an angle of 15° with respect to the vertical, and the operation of Comparative Example 1 was repeated.

比較例1の場合、上述したように、希釈率=
0.4h-1でエタノール濃度が低下して、エタノール
生産性は約20g/・hにとどまつたが、上記の
ように醗酵槽を傾斜させたところ、希釈率=
0.6h-1においてもエタノール濃度は低下せず、エ
タノール生産性は約40g/・hにも達した。
In the case of Comparative Example 1, as mentioned above, dilution rate =
At 0.4 h -1 , the ethanol concentration decreased and the ethanol productivity remained at about 20 g/h, but when the fermenter was tilted as described above, the dilution rate =
Even at 0.6 h -1 , the ethanol concentration did not decrease, and the ethanol productivity reached about 40 g/h.

実施例 2 実施例1で用いた醗酵槽を用いる点を除いて、
比較例2の操作を繰り返した。
Example 2 Except for using the fermenter used in Example 1,
The operation of Comparative Example 2 was repeated.

この場合、希釈率0.2h-1においてもエタノール
濃度は低下せず、アルコール生産性は約14g/
・hにも達した。
In this case, the ethanol concentration does not decrease even at a dilution rate of 0.2 h -1 , and the alcohol productivity is approximately 14 g/
・It also reached h.

以上のとおりで、この発明の醗酵槽によれば、
槽本体を所要勾配に傾斜配置したので、醗酵に伴
つて発生した炭酸ガスの空塔速度を小さくするこ
とができ、その結果酵母フロツクや担体付着菌体
が炭酸ガスの気泡に伴つて槽内を上昇するのを可
及的に抑えることができ、また槽内頂部にはバツ
フルを設けたので、これによつて酵母フロツクや
担体付着菌体を沈降させて、槽内の微生物濃度を
高く維持することができ、以つてエタノールの生
産性を向上せしめることができる。
As described above, according to the fermenter of this invention,
Since the tank body is tilted to the required slope, the superficial velocity of carbon dioxide gas generated during fermentation can be reduced, and as a result, yeast flocs and bacterial cells attached to the carrier move inside the tank with carbon dioxide bubbles. This can be suppressed as much as possible, and a baffle is provided at the top of the tank, which allows yeast floes and microbial cells attached to the carrier to settle down, maintaining a high microbial concentration in the tank. Therefore, the productivity of ethanol can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来の醗酵槽を示す垂直断面
図、第3図はこの発明による醗酵槽を示す垂直断
面図、第4図、第5図は希釈率とエタノール濃度
および同生産性との関係を示すグラフである。 31……槽本体、32……頂部、33……バツ
フル。
Figures 1 and 2 are vertical sectional views showing a conventional fermenter, Figure 3 is a vertical sectional view showing a fermenter according to the present invention, and Figures 4 and 5 are dilution ratios, ethanol concentrations, and productivity. It is a graph showing the relationship between 31...tank body, 32...top, 33...buttful.

Claims (1)

【特許請求の範囲】[Claims] 1 有底筒状の槽本体を所要勾配に傾斜配置し、
槽内頂部に微生物沈降分離用のバツフルを設け
た、醗酵槽。
1 Place the bottomed cylindrical tank body at the required slope,
A fermentation tank equipped with a butthole for sedimentation and separation of microorganisms at the top of the tank.
JP18375683A 1983-09-30 1983-09-30 Fermentation tank Granted JPS6075273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18375683A JPS6075273A (en) 1983-09-30 1983-09-30 Fermentation tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18375683A JPS6075273A (en) 1983-09-30 1983-09-30 Fermentation tank

Publications (2)

Publication Number Publication Date
JPS6075273A JPS6075273A (en) 1985-04-27
JPS642356B2 true JPS642356B2 (en) 1989-01-17

Family

ID=16141424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18375683A Granted JPS6075273A (en) 1983-09-30 1983-09-30 Fermentation tank

Country Status (1)

Country Link
JP (1) JPS6075273A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443985A (en) * 1993-07-22 1995-08-22 Alberta Research Council Cell culture bioreactor

Also Published As

Publication number Publication date
JPS6075273A (en) 1985-04-27

Similar Documents

Publication Publication Date Title
Yokoi et al. H production by immobilized cells of Clostridium butyricum on porous glass beads
US5258293A (en) Continuous process for ethanol production from lignocellulosic materials without mechanical agitation
US6395521B1 (en) Microbial process for producing hydrogen
US4413058A (en) Continuous production of ethanol by use of flocculent zymomonas mobilis
US20090035848A1 (en) Moving bed biofilm reactor (mbbr) system for conversion of syngas components to liquid products
CN101918530B (en) Bioreactor for mesophilic and/or thermophilic fermentation
US8535919B2 (en) Process for converting gas stream comprising CO, CO2 and H2 to liquid products by fermentation
CA1160974A (en) Continuous fermenter and reactor
Okabe et al. Itaconic acid production in an air-lift bioreactor using a modified draft tube
US4992370A (en) Process for the production of alcohol
CN102094048A (en) Method and device for producing organic acid or alcohol by fermenting synthetic gas
US4567145A (en) Continuous production of ethanol by use of respiration deficient mutant yeast
Jia et al. Enhanced oxygen transfer in tower bioreactor on addition of liquid hydrocarbons
CA1266249A (en) Fermentation methods and apparatus
Martin et al. Production of citric acid by submerged fermentation
GB2059988A (en) Fermentation process and apparatus
WO2001002534A1 (en) Process for producing fermentation product
Park et al. Itaconic acid production using an air-lift bioreactor in repeated batch culture of Aspergillus terreus
JPS6355915B2 (en)
JPS642356B2 (en)
US4654305A (en) Multiphase reactor systems based on foams for simultaneous growth and separation of products
Strandberg et al. Continuous ethanol production by a flocculent strain of Zymomonas mobilis
JP2500353B2 (en) Continuous alcohol production method for recycling flocculent microorganisms
Delgenes et al. Continuous production of ethanol from a glucose, xylose and arabinose mixture by a flocculent strain of Pichia stipitis
Furuta et al. Production of glucoamylase by passively immobilized cells of a flocculent yeast, Saccharomyces diastaticus