JPS642222B2 - - Google Patents

Info

Publication number
JPS642222B2
JPS642222B2 JP55090225A JP9022580A JPS642222B2 JP S642222 B2 JPS642222 B2 JP S642222B2 JP 55090225 A JP55090225 A JP 55090225A JP 9022580 A JP9022580 A JP 9022580A JP S642222 B2 JPS642222 B2 JP S642222B2
Authority
JP
Japan
Prior art keywords
light
output
receives
voltage
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55090225A
Other languages
Japanese (ja)
Other versions
JPS5716365A (en
Inventor
Akihisa Hashimoto
Yoichi Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP9022580A priority Critical patent/JPS5716365A/en
Publication of JPS5716365A publication Critical patent/JPS5716365A/en
Publication of JPS642222B2 publication Critical patent/JPS642222B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/241Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using electro-optical modulators, e.g. electro-absorption
    • G01R15/242Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using electro-optical modulators, e.g. electro-absorption based on the Pockels effect, i.e. linear electro-optic effect

Description

【発明の詳細な説明】 本発明は、半導体レーザと光変調素子を用いた
電気量測定器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrical quantity measuring device using a semiconductor laser and an optical modulation element.

従来より、フアラデー素子等の光変調素子を用
いた電気量測定器が実現されているがこのような
測定器の場合、発光部と受光部とがそれぞれ分離
された構成となつているため構成が複雑である。
本発明は、このような点に鑑みてなされたもの
で、半導体レーザを発光部としても受光部として
も用い、構成の比較的簡単な電気量測定器を実現
したものである。以下、図面を参照しながら本発
明を詳細に説明する。
Conventionally, electrical quantity measuring instruments using optical modulation elements such as Faraday elements have been realized, but in the case of such measuring instruments, the light emitting part and the light receiving part are separated, so the configuration is difficult. It's complicated.
The present invention has been made in view of these points, and uses a semiconductor laser as both a light emitting section and a light receiving section to realize an electrical quantity measuring device with a relatively simple configuration. Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は、本発明の一実施例を示す構成図であ
る。同図において、1は光を発射するとともに光
を受ける半導体レーザである。2は、該半導体レ
ーザの光出力を受けて平行光束に変換するための
レンズである。半導体レーザ1の光出力が平行光
である場合には必要が無い。3は、レンズ2の通
過光を受けて特定の偏光面をもつ光のみを通過さ
せる偏光板である。4は、該偏光板の通過光を受
けるポツケルス素子である。ポツケルス素子とし
ては例えばニオブ酸リチウムが用いられる。5
は、入力未知電圧Exを該ボツケルス素子に印加
する電圧印加手段である。6は、前記ポツケルス
素子4の通過光を受ける1/8波長板である。7は、
該波長板の通過光を受けて該通過光を反射させる
ための反射鏡である。
FIG. 1 is a configuration diagram showing an embodiment of the present invention. In the figure, 1 is a semiconductor laser that emits light and receives light. 2 is a lens for receiving the optical output of the semiconductor laser and converting it into a parallel beam. This is not necessary if the optical output of the semiconductor laser 1 is parallel light. 3 is a polarizing plate that receives the light passing through the lens 2 and allows only light having a specific polarization plane to pass through. 4 is a Pockels element that receives the light passing through the polarizing plate. For example, lithium niobate is used as the Pockels element. 5
is a voltage applying means for applying an input unknown voltage Ex to the Bockels element. 6 is a 1/8 wavelength plate that receives the light passing through the Pockels element 4. 7 is
This is a reflecting mirror for receiving the light passing through the wavelength plate and reflecting the light passing through.

8は、前記半導体レーザ1の他方の光出力を受
けて対応する電気信号に変換する光検出器であ
る。9は、該光検出器の出力をその負入力端子
に、基準電圧Esをその正入力端子に受けて前記
半導体レーザに流す電流量を調整する電流増幅器
である。該電流増幅器の出力は、抵抗器Rを介し
て前記半導体レーザに接続されている。出力電流
は該抵抗器Rにより電圧に変換される。この、抵
抗器Rの両端の電圧降下分を、本発明に係る電気
量測定器の出力Voとしている。このように構成
された電気量測定器の動作を以下に説明する。
8 is a photodetector that receives the other optical output of the semiconductor laser 1 and converts it into a corresponding electric signal. Reference numeral 9 denotes a current amplifier that receives the output of the photodetector at its negative input terminal and receives the reference voltage Es at its positive input terminal to adjust the amount of current flowing through the semiconductor laser. The output of the current amplifier is connected via a resistor R to the semiconductor laser. The output current is converted to a voltage by the resistor R. This voltage drop across the resistor R is defined as the output Vo of the electrical quantity measuring device according to the present invention. The operation of the electrical quantity measuring device configured in this way will be explained below.

半導体レーザ1から発射された光は、レンズ
2、偏光板3を介してポツケルス素子4に入射す
る。一方、該ポツケルス素子には、電圧印加手段
5を介して未知電圧Exが印加されている。従つ
て、ポツケルス素子4を通過する光は、ポツケル
ス効果により未知電圧Exの大きさに対応した偏
光面の回転を生じる。ポツケルス素子4を通過中
に変調された光は、続く1/8波長板6で位相を
π/4ラジアン回転させられた後反射鏡7に入射
する。この入射光は反射鏡7で全反射し、再び前
記1/8波長板6に入射し位相をπ/4ラジアンだ
け回転させられる。1/8波長板6を通過した光は、
再びポツケルス素子4に入射する。
Light emitted from the semiconductor laser 1 enters the Pockels element 4 via the lens 2 and the polarizing plate 3. On the other hand, an unknown voltage Ex is applied to the Pockels element via the voltage applying means 5. Therefore, the light passing through the Pockels element 4 undergoes rotation of the plane of polarization corresponding to the magnitude of the unknown voltage Ex due to the Pockels effect. The light modulated while passing through the Pockels element 4 has its phase rotated by π/4 radians at the subsequent 1/8 wavelength plate 6, and then enters the reflecting mirror 7. This incident light is totally reflected by the reflecting mirror 7, enters the ⅛ wavelength plate 6 again, and its phase is rotated by π/4 radian. The light that passed through the 1/8 wavelength plate 6 is
The light enters the Pockels element 4 again.

ポツケルス素子4で再び変調を受けた光は、前
記偏光板3に入射する。該偏光板3は、反射鏡7
によつて反射されてきた光を受ける時には今度は
検光子として働く。即ち、特定の偏光面を持つ光
のみを通過させる。従つて、検光子3を通過した
光のエネルギーは入力未知電圧Exの大きさに対
応したものとなつている。検光子3の通過光は、
レンズ2を介して半導体1に入射する。ところ
で、半導体レーザ1を構成しているレーザダイオ
ードの光出力は、その反射光を自らに入射するこ
とによつて効率が変化する。
The light that has been modulated again by the Pockels element 4 enters the polarizing plate 3. The polarizing plate 3 is a reflecting mirror 7
When it receives the light reflected by it, it acts as an analyzer. That is, only light having a specific plane of polarization is allowed to pass through. Therefore, the energy of the light passing through the analyzer 3 corresponds to the magnitude of the input unknown voltage Ex. The light passing through analyzer 3 is
The light enters the semiconductor 1 through the lens 2. Incidentally, the efficiency of the optical output of the laser diode constituting the semiconductor laser 1 changes as the reflected light is incident on itself.

第2図は、このようなレーザダイオードの出力
特性を示す図である。同図において、横軸はレー
ザダイオードに流す電流を、縦軸は相対光出力を
示す。f1は反射光0のときの、f2は反射光10%の
ときの、f3は反射光50%のときの、f4は反射光90
%のときのそれぞれ光出力特性を示す。図より、
同一の光出力を得るに必要な電流量は反射光が多
いほど少なくてすむことがわかる。
FIG. 2 is a diagram showing the output characteristics of such a laser diode. In the figure, the horizontal axis shows the current flowing through the laser diode, and the vertical axis shows the relative optical output. f 1 is when the reflected light is 0, f 2 is when the reflected light is 10%, f 3 is when the reflected light is 50%, f 4 is when the reflected light is 90%.
%, the optical output characteristics are shown respectively. From the figure,
It can be seen that the more reflected light, the smaller the amount of current required to obtain the same optical output.

半導体レーザはその両方向に光出力を発射させ
ることができる。第1図に示す半導体レーザ1の
他方の出力は、光検出器8に照射される。光検出
器8は、半導体レーザ1の照射光を受けて該光の
エネルギーに対応した量の電気信号を発生する。
光検出器8の出力信号は、続く電流増幅器9の負
入力端子に入力する。一方、該電流増幅器の正入
力端子には、基準電圧Esが入力している。電流
増幅器9は、これら両者の電圧値が等しくなるよ
うに前記半導体レーザ1に流す電流を制御する。
従つて、前述した半導体レーザ1に入射する反射
光のエネルギーが未知電圧Exの大きさに反比例
するように偏光子を用いるようにしておけば、電
流増幅器9の出力電流は未知電圧Exに比例する。
この出力電流を増幅器9の出力とレーザ1間に接
続された抵抗器Rを介して電圧として取り出すよ
うにすると、この電圧出力Voは未知電圧Exに比
例したものとなり、電気量測定器として利用する
ことができる。
Semiconductor lasers can emit light output in both directions. The other output of the semiconductor laser 1 shown in FIG. 1 is applied to a photodetector 8. The photodetector 8 receives the irradiated light from the semiconductor laser 1 and generates an electrical signal of an amount corresponding to the energy of the light.
The output signal of the photodetector 8 is input to the negative input terminal of the following current amplifier 9. On the other hand, the reference voltage Es is input to the positive input terminal of the current amplifier. A current amplifier 9 controls the current flowing through the semiconductor laser 1 so that these two voltage values become equal.
Therefore, if a polarizer is used so that the energy of the reflected light incident on the semiconductor laser 1 is inversely proportional to the magnitude of the unknown voltage Ex, the output current of the current amplifier 9 will be proportional to the unknown voltage Ex. .
If this output current is taken out as a voltage via a resistor R connected between the output of the amplifier 9 and the laser 1, this voltage output Vo becomes proportional to the unknown voltage Ex, and can be used as an electrical quantity measuring device. be able to.

以上、光変調素子としてポツケルス素子を用い
た場合に例にとつて説明した。このような電気量
測定器は、光変調素子としてフアラデー素子を用
いても同様に実現することができる。フアラデー
素子とは、偏波面の回転角が印加磁界の強さに比
例する所謂フアラデー効果を持つ素子である。フ
アラデー素子の具体例としては例えば鉛ガラスが
在る。上記したように、フアラデー効果は電界で
はなく磁界によつて生じるので、電圧の代わりに
電流を用いる必要がある。即ち、フアラデー素子
上に巻回したコイルに入力未知電流を流してやる
と該電流に比例した磁界が発生するのでフアラデ
ー効果を生ぜしむることができる。
In the above, an example has been described in which a Pockels element is used as a light modulation element. Such an electrical quantity measuring device can be similarly realized by using a Faraday element as the optical modulation element. The Faraday element is an element that has the so-called Faraday effect, in which the rotation angle of the plane of polarization is proportional to the strength of the applied magnetic field. A specific example of a Faraday element is lead glass, for example. As mentioned above, the Faraday effect is caused by a magnetic field rather than an electric field, so it is necessary to use a current instead of a voltage. That is, when an input unknown current is passed through a coil wound around a Faraday element, a magnetic field proportional to the current is generated, thereby producing the Faraday effect.

入力未知電流の大きさに応じて変調された光は
前述と同様の過程を経て再び反射光として半導体
レーザ1に入射する。この場合、第1図において
示した1/8波長板6は不要となる。この入射光の
エネルギーを入力未知電流の大きさに反比例する
ようにしておけば、前述と同様の理由により、電
流増幅器の出力部の抵抗器Rの両端より入力未知
電流の大きさに比例した出力電圧信号を取り出す
ことができる。即ち、光変調素子としてフアラデ
ー素子を用いた場合は電流測定をすることのでき
る電気量測定器として動作することになる。
The light modulated according to the magnitude of the input unknown current goes through the same process as described above and enters the semiconductor laser 1 again as reflected light. In this case, the 1/8 wavelength plate 6 shown in FIG. 1 becomes unnecessary. If the energy of this incident light is made to be inversely proportional to the magnitude of the input unknown current, for the same reason as mentioned above, an output proportional to the magnitude of the input unknown current will be generated from both ends of the resistor R at the output section of the current amplifier. Voltage signals can be extracted. That is, when a Faraday element is used as an optical modulation element, it operates as an electrical quantity measuring device that can measure current.

以上、詳細に説明したように、本発明によれば
半導体レーザを用いた構成の比較的簡単な電気量
測定器を実現することができる。
As described above in detail, according to the present invention, it is possible to realize a relatively simple electrical quantity measuring device using a semiconductor laser.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す構成図、第
2図はレーザダイオードの特性を示す図である。 1……半導体レーザ、2……レンズ、3……偏
光子、4……ポツケルス素子、5……電圧印加手
段、6……波長板、7……反射鏡、8……光検出
器、9……電流増幅器、Es……基準電圧、R…
…抵抗器。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing the characteristics of a laser diode. DESCRIPTION OF SYMBOLS 1... Semiconductor laser, 2... Lens, 3... Polarizer, 4... Pockels element, 5... Voltage application means, 6... Wave plate, 7... Reflector, 8... Photodetector, 9 ...Current amplifier, Es...Reference voltage, R...
…Resistor.

Claims (1)

【特許請求の範囲】 1 半導体レーザと、該レーザの一方の出力光を
受ける偏光板と、該偏光板の通過光を受けるポツ
ケルス素子と、該ポツケルス素子に未知電圧を印
加する電圧印加手段と、前記ポツケルス素子の通
過光を受ける1/8波長板と、該波長板の通過光を
受ける反射鏡と、前記半導体レーザの他方の出力
光を受けて該光のエネルギーに対応した電気信号
を発生する光検出器と、該光検出器の出力及び基
準電圧をそれぞれ入力して前記半導体レーザを駆
動する電流増幅器と、該電流増幅器の出力を電圧
に変換する電圧変換手段とで構成され前記電圧変
換手段の出力をその出力とする電気量測定器。 2 半導体レーザと、該レーザの一方の出力光を
受ける偏光板と、該偏光板の通過光を受けるフア
ラデー素子と、該フアラデー素子に未知電流を印
加する電流印加手段と、前記フアラデー素子の通
過光を受ける反射鏡と、前記半導体レーザの他方
の出力光を受けて該光のエネルギーに対応した電
気信号を発生する光検出器と、該光検出器の出力
及び基準電圧をそれぞれ入力して前記半導体レー
ザを駆動する電流増幅器と、該電流増幅器の出力
を電圧に変換する電圧変換手段とで構成され前記
電圧変換手段の出力をその出力とする電気量測定
器。
[Scope of Claims] 1. A semiconductor laser, a polarizing plate that receives output light from one of the lasers, a Pockels element that receives light passing through the polarizing plate, and voltage applying means that applies an unknown voltage to the Pockels element. A 1/8 wavelength plate that receives the light passing through the Pockels element, a reflecting mirror that receives the light passing through the wavelength plate, and a reflecting mirror that receives the output light from the other semiconductor laser and generates an electric signal corresponding to the energy of the light. The voltage conversion means is composed of a photodetector, a current amplifier that inputs the output of the photodetector and a reference voltage to drive the semiconductor laser, and a voltage conversion means that converts the output of the current amplifier into a voltage. An electrical quantity measuring instrument whose output is the output of 2. A semiconductor laser, a polarizing plate that receives output light from one of the lasers, a Faraday element that receives light that passes through the polarizing plate, current applying means that applies an unknown current to the Faraday element, and light that passes through the Faraday element. a photodetector that receives the other output light of the semiconductor laser and generates an electrical signal corresponding to the energy of the light; An electrical quantity measuring instrument comprising a current amplifier that drives a laser, and voltage conversion means that converts the output of the current amplifier into a voltage, and uses the output of the voltage conversion means as its output.
JP9022580A 1980-07-02 1980-07-02 Electric quantity measuring instrument Granted JPS5716365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9022580A JPS5716365A (en) 1980-07-02 1980-07-02 Electric quantity measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9022580A JPS5716365A (en) 1980-07-02 1980-07-02 Electric quantity measuring instrument

Publications (2)

Publication Number Publication Date
JPS5716365A JPS5716365A (en) 1982-01-27
JPS642222B2 true JPS642222B2 (en) 1989-01-17

Family

ID=13992535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9022580A Granted JPS5716365A (en) 1980-07-02 1980-07-02 Electric quantity measuring instrument

Country Status (1)

Country Link
JP (1) JPS5716365A (en)

Also Published As

Publication number Publication date
JPS5716365A (en) 1982-01-27

Similar Documents

Publication Publication Date Title
US4893353A (en) Optical frequency synthesizer/sweeper
US5471490A (en) Device in which electromagnetic radiation is raised in frequency and apparatus for optically scanning an information plane, comprising such a device
JP2001041983A (en) Photo-voltage sensor
JPS63279115A (en) Measuring device with laser and annular resonator
JPH0758386A (en) Optical frequency com generator
NL6403674A (en)
US4994663A (en) Light intensity correlating apparatus
JPS642222B2 (en)
CN114609558A (en) All-fiber NV color center sensing magnetic measurement system and method with stable and modulatable power
JP3428067B2 (en) Displacement measuring method and displacement measuring device used therefor
JPH04503108A (en) Phase difference control device for signals combined with fiber optic gyroscope
JPS6138212Y2 (en)
JP2734553B2 (en) Semiconductor laser module
JP3283660B2 (en) Voltage measuring device
JPH0782036B2 (en) Optical fiber type voltage sensor
JP2734552B2 (en) Semiconductor laser module
CN114609114A (en) Laser power stable type diamond NV color center fluorescence excitation and detection system and method
JPH05323405A (en) Wavelength conversion element and laser beam source
JPS6144293B2 (en)
JP2983106B2 (en) Optical DC voltage measuring device
CN116840543A (en) Half-wave voltage testing system of Y waveguide modulator
SU183485A1 (en) ELECTROOPTICAL DEVICE WITH MULTIPLE
JP2648431B2 (en) Optical temperature sensor
KR950004379B1 (en) Light converting device
JPH03135086A (en) Variable frequency light source