JPS641710B2 - - Google Patents

Info

Publication number
JPS641710B2
JPS641710B2 JP59218061A JP21806184A JPS641710B2 JP S641710 B2 JPS641710 B2 JP S641710B2 JP 59218061 A JP59218061 A JP 59218061A JP 21806184 A JP21806184 A JP 21806184A JP S641710 B2 JPS641710 B2 JP S641710B2
Authority
JP
Japan
Prior art keywords
oil
bearing
inner ring
lubrication
bearing inner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59218061A
Other languages
Japanese (ja)
Other versions
JPS6196219A (en
Inventor
Hajime Nomura
Satomi Oomori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Toyo Bearing Co Ltd filed Critical NTN Toyo Bearing Co Ltd
Priority to JP59218061A priority Critical patent/JPS6196219A/en
Publication of JPS6196219A publication Critical patent/JPS6196219A/en
Publication of JPS641710B2 publication Critical patent/JPS641710B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/007Cooling of bearings of rolling bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/6677Details of supply of the liquid to the bearing, e.g. passages or nozzles from radial inside, e.g. via a passage through the shaft and/or inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6681Details of distribution or circulation inside the bearing, e.g. grooves on the cage or passages in the rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/20Geometry three-dimensional
    • F05B2250/23Geometry three-dimensional prismatic
    • F05B2250/231Geometry three-dimensional prismatic cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、ジエツト・エンジンのタービン、
圧縮機等の高速度回転体に使用される高速円筒こ
ろ軸受、特に、軸受内輪を冷却すると同時に、軸
受内に油を注ぎ込ませ、滑り部や転がり部に油を
供給するアンダー・レース潤滑法を用いた高速円
筒ころ軸受に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a jet engine turbine,
High-speed cylindrical roller bearings used in high-speed rotating bodies such as compressors, especially the under-race lubrication method that cools the inner ring of the bearing and at the same time injects oil into the bearing to supply oil to the sliding and rolling parts. This article relates to the high-speed cylindrical roller bearings used.

従来の技術 ジエツト・エンジンのタービン、圧縮機等の高
速度回転体に使用される転がり軸受は、かなり過
酷な条件で運転される。その為に、軸受材料とし
て真空溶解した耐熱軸受鋼(M―50)が使われた
り、潤滑油としてジエステル油(MIL―L―
7808)或いはテトラエステル油(MIL―L―
23699)が使われたりしている。また、潤滑法に
もいろいろ研究がなされ、最近の高速回転用転が
り軸受には、アンダー・レース潤滑法が最適とさ
れ、一般に広く利用されている。このアンダー・
レース潤滑法は、軸受内輪を冷却すると同時に、
遠心力で軸受内に油を注ぎ込ませ、滑り部や転が
り部に油を供給する方法で、従来のジエツト潤滑
法に替るものである。
BACKGROUND OF THE INVENTION Rolling bearings used in high-speed rotating bodies such as jet engine turbines and compressors are operated under fairly severe conditions. For this reason, vacuum-melted heat-resistant bearing steel (M-50) is used as the bearing material, and diester oil (MIL-L-
7808) or tetraester oil (MIL-L-
23699) is sometimes used. Various studies have also been conducted on lubrication methods, and the under-race lubrication method has been considered optimal for recent high-speed rolling bearings, and is generally widely used. This under-
The race lubrication method cools the inner ring of the bearing and at the same time
This method replaces the conventional jet lubrication method by injecting oil into the bearing using centrifugal force and supplying oil to sliding and rolling parts.

第5図及び第6図はアンダー・レース潤滑法を
用いた公知の高速円筒ころ軸受を示し、同図に於
いて、1は軸受内輪、2は軸受外輪、3は内外輪
1,2間に介在した転動体である円筒ころ、4は
円筒ころ3を回転自在に保持する保持器である。
そして、軸受内輪1の内周面には、多数の冷却溝
5が軸方向に設けられ、かつ、この冷却溝5と内
輪軌道面6の両ヌスミ部6a,6bとを夫々連通
する同径の潤滑路7a,7bが同じ個数ずつ設け
られている。
Figures 5 and 6 show a known high-speed cylindrical roller bearing using the under-race lubrication method. Cylindrical rollers 4, which are intervening rolling elements, are cages that rotatably hold the cylindrical rollers 3.
A large number of cooling grooves 5 are provided in the axial direction on the inner circumferential surface of the bearing inner ring 1, and the same-diameter cooling grooves 5 are provided in the axial direction to communicate the cooling grooves 5 with both the slotted portions 6a and 6b of the inner ring raceway surface 6, respectively. The same number of lubrication passages 7a and 7b are provided.

そして、前記高速円筒ころ軸受は、例えばジエ
ツト・エンジンのタービン、圧縮機等の高速度回
転体に組付けられおり、運転時、給油された油
を、軸受内輪1の冷却溝5に送り、冷却溝5を通
過させて軸受内輪1を冷却すると同時に、遠心力
で潤滑路7a,7bから軸受内に油を注ぎ込ま
せ、軸受内輪1と円筒ころ3の滑り部や転がり部
に油を供給して該部を潤滑するようになされてい
る。
The high-speed cylindrical roller bearing is assembled into a high-speed rotating body such as a jet engine turbine or compressor, and during operation, oil is sent to the cooling groove 5 of the inner ring 1 of the bearing for cooling. The bearing inner ring 1 is cooled by passing through the groove 5, and at the same time oil is poured into the bearing from the lubrication paths 7a and 7b by centrifugal force, and the oil is supplied to the sliding parts and rolling parts of the bearing inner ring 1 and the cylindrical rollers 3. It is designed to lubricate this part.

発明が解決しようとする問題点 ところで、この種の高速円筒ころ軸受は冷却用
油量と潤滑用油量が略同量で、かつ、軸受内輪1
の給油側潤滑路7aと排油側潤滑路7bの潤滑用
油量が略同量であるのが望ましい。ところが、従
来の高速円筒ころ軸受では、給油側潤滑路7aと
排油側潤滑路7bは同径であり、また、同数であ
るので、回転数が低い域では冷却用油量が潤滑用
油量より多いが、ある回転数以上になると、これ
が逆転し、潤滑用油量が冷却用油量より多くな
り、回転数の増加に伴い、その差が拡がつて行
く。これは、回転数が上がると、遠心力が増し、
この力が軸受内輪1の潤滑路7a,7bに油を送
り込んで潤滑用油量を多くしているからで、給油
量が少ないときの方が、多いときに比べ、冷却用
油量と潤滑用油量の逆転する点(冷却用油量と潤
滑用油量が同量になる点)が低い回転数になつて
行く傾向にある。従つて、高い回転数で良好な運
転条件を得るには、給油量を多くする必要があつ
た。また、上述のように給油量を多くして回転数
の高速度化を行つても、排油側の潤滑路7bを通
る油量が、給油側の潤滑路7aを通る油量よりも
少なく、また、油の温度も給油側より排油側の油
温度の方が軸受内輪1を冷却した後だから高くな
り、軸受内輪1が歪んで円筒ころ3の端面摩耗等
の好ましくない現象が起こる。
Problems to be Solved by the Invention Incidentally, in this type of high-speed cylindrical roller bearing, the amount of cooling oil and the amount of lubricating oil are approximately the same, and the bearing inner ring 1
It is desirable that the amounts of lubricating oil in the oil supply side lubrication path 7a and the oil discharge side lubrication path 7b are approximately the same amount. However, in conventional high-speed cylindrical roller bearings, the oil supply side lubrication passage 7a and the oil discharge side lubrication passage 7b have the same diameter and the same number, so the amount of cooling oil is equal to the amount of lubrication oil in the low rotation speed range. However, when the number of rotations exceeds a certain number, this is reversed, and the amount of lubricating oil becomes larger than the amount of cooling oil, and as the number of rotations increases, the difference widens. This is because as the rotation speed increases, centrifugal force increases,
This force feeds oil into the lubrication paths 7a and 7b of the bearing inner ring 1, increasing the amount of lubricating oil.When the amount of oil supplied is small, the amount of cooling oil and lubrication The point at which the oil amount reverses (the point where the amount of cooling oil and the amount of lubricating oil become the same amount) tends to move toward lower rotational speeds. Therefore, in order to obtain good operating conditions at high rotational speeds, it was necessary to increase the amount of oil supplied. Furthermore, even if the rotational speed is increased by increasing the amount of oil supplied as described above, the amount of oil passing through the lubrication path 7b on the oil drain side is smaller than the amount of oil passing through the lubrication path 7a on the oil supply side. Further, the oil temperature on the oil drain side is higher than that on the oil supply side because it is after the bearing inner ring 1 has been cooled, which causes undesirable phenomena such as distortion of the bearing inner ring 1 and end face wear of the cylindrical rollers 3.

これらの原因は、従来の高速円筒ころ軸受で
は、軸受内輪1の潤滑路7a,7bの孔径が、給
油側も排油側も同径で、しかも、その個数が同
じ、即ち、潤滑路7a,7bの総孔開口面積が同
じであるからと考えられる。
The reason for these problems is that in conventional high-speed cylindrical roller bearings, the lubrication passages 7a and 7b of the bearing inner ring 1 have the same diameter on both the oil supply side and the oil discharge side, and the number of lubrication passages 7a, 7b is the same. This is thought to be because the total hole opening area of 7b is the same.

問題点を解決するための手段 この発明は軸受内輪と、軸受外輪と、前記軸受
内外輪間に介在した円筒ころとからなり、前記軸
受内輪の内周面には、多数の冷却溝が軸方向に設
けられ、かつ、この冷却溝と内輪軌道面の両ヌス
ミ部とを夫々連通する潤滑路が数個ずつ設けられ
たアンダー・レース潤滑法を用いる高速円筒ころ
軸受に於いて、前記軸受内輪の冷却溝を給油側か
ら排油側に向けて漸次大きく形成し、かつ、給油
側潤滑路の総孔開口面積を排油側潤滑路の総孔開
口面積より小さく形成したものである。
Means for Solving the Problems This invention consists of a bearing inner ring, a bearing outer ring, and cylindrical rollers interposed between the bearing inner and outer rings, and a large number of cooling grooves are formed in the axial direction on the inner circumferential surface of the bearing inner ring. In a high-speed cylindrical roller bearing using the under race lubrication method, in which several lubrication passages are provided, each communicating between the cooling groove and both hollow portions of the inner ring raceway surface, The cooling grooves are formed to gradually become larger from the oil supply side to the oil discharge side, and the total hole opening area of the oil supply side lubrication path is formed to be smaller than the total hole opening area of the oil discharge side lubrication path.

実施例 第1図及び第2図はこの発明に係る高速円筒こ
ろ軸受の一例を示し、同図に於いて、8は軸受内
輪、9は軸受外輪、10は内外輪8,9間に介在
した転動体である円筒ころ、11は円筒ころ10
を回転自在に保持する保持器である。そして、軸
受内輪8の内周面には、多数の冷却溝12が軸方
向に設けられ、かつ、この冷却溝12と内輪軌道
面13の両ヌスミ部13a,13bとを夫々連通
する潤滑路14a,14bが数個ずつ設けられて
いる。
Embodiment Figures 1 and 2 show an example of a high-speed cylindrical roller bearing according to the present invention. Cylindrical rollers as rolling elements, 11 are cylindrical rollers 10
This is a retainer that rotatably holds the A large number of cooling grooves 12 are provided in the axial direction on the inner circumferential surface of the bearing inner ring 8, and lubrication passages 14a communicate between the cooling grooves 12 and the hollow portions 13a and 13b of the inner ring raceway surface 13, respectively. , 14b are provided.

上記構造の高速円筒ころ軸受に於いて、この発
明では排油側の圧力を給油側より低くして油が出
て行きやすいように軸受内輪8の冷却溝12を給
油側から排油側に向けて漸次大きいテーパ状或い
はラツパ状に形成し、かつ、給油側潤滑路14a
の総孔開口面積が排油側潤滑路14bの総孔開口
面積より小さくなるように、給油側潤滑路14a
を排油側潤滑路14bより小さな孔径にするか、
或いはその個数を少なくしている。
In the high-speed cylindrical roller bearing of the above structure, the present invention directs the cooling groove 12 of the bearing inner ring 8 from the oil supply side to the oil drain side so that the pressure on the oil drain side is lower than that on the oil supply side so that oil can easily flow out. The oil supply side lubrication path 14a is formed into a tapered or turgid shape that gradually increases.
The oil supply side lubrication path 14a is arranged such that the total hole opening area of the oil supply side lubrication path 14a is smaller than the total hole opening area of the oil drain side lubrication path 14b.
Either make the hole diameter smaller than that of the oil drain side lubrication path 14b, or
Or the number is reduced.

そして、この発明の前記高速円筒ころ軸受は、
例えばジエツト・エンジンのタービン、圧縮機等
の高速度回転体に、第3図に示すように、組付け
られる。尚、同図に於いて、15は回転軸、16
はキヤツプ、17はスリーブ、18はハウジン
グ、19は給油ノズルであつて、軸受内輪8が回
転軸15上に嵌合されてキヤツプ16により回転
軸12上に固定したスリーブ17に向けて押付け
て結合され、かつ、軸受外輪9がハウジング18
に嵌合保持されている。そして、回転軸15とキ
ヤツプ16との間には給油通路20が形成され、
また、スリーブ17には排油通路21が形成され
ており、運転時、給油ノズル19より噴出された
油を、給油通路20を経て軸受内輪8の冷却溝1
2に送り、冷却溝12を通過させて軸受内輪8を
冷却すると同時に、遠心力等で潤滑路14a,1
4bから軸受内に油を注ぎ込ませ、軸受内外輪
1,2、円筒ころ10及び保持器11の滑り部や
転がり部に油を供給して該部を潤滑するようにな
されている。
The high-speed cylindrical roller bearing of the present invention is
For example, it is assembled into a high-speed rotating body such as a jet engine turbine or compressor, as shown in FIG. In addition, in the same figure, 15 is a rotating shaft, 16
17 is a cap, 17 is a sleeve, 18 is a housing, and 19 is an oil supply nozzle, in which the bearing inner ring 8 is fitted onto the rotating shaft 15 and is pressed and coupled to the sleeve 17 fixed on the rotating shaft 12 by the cap 16. and the bearing outer ring 9 is attached to the housing 18.
It is mated and retained. A refueling passage 20 is formed between the rotating shaft 15 and the cap 16.
Further, an oil drain passage 21 is formed in the sleeve 17, and during operation, oil ejected from the oil supply nozzle 19 is passed through the oil supply passage 20 to the cooling groove 1 of the bearing inner ring 8.
2, the bearing inner ring 8 is cooled by passing through the cooling groove 12, and at the same time, the lubricating path 14a, 1 is cooled by centrifugal force or the like.
Oil is poured into the bearing from 4b, and is supplied to the sliding and rolling parts of the bearing inner and outer rings 1, 2, cylindrical rollers 10, and cage 11 to lubricate these parts.

第4図aは給油側と排油側との潤滑路14a,
14bの総孔開口面積を同じにした場合、第4図
bは給油側潤滑路14aの総孔開口面積を排油側
潤滑路14bの総孔開口面積より小さくした(実
験例では1/2にした)場合の油の分配状態の比較
実験を行つた結果を示すものである。この時の測
定は、給油量5.5/minで給油させ、無負荷の
状態で行つた。この実験結果から、給油側潤滑路
14aの総孔開口面積を排油側潤滑路14bの総
孔開口面積の1/2にすることで、冷却用油量と潤
滑用油量との逆転点(冷却用油量と潤滑用油量と
が同一となる点)は、7600rpmから11000rpmへ
と高い回転数に移り、回転数の高速度化を推進す
ることが可能となる。このように冷却用油量と潤
滑用油量の逆転点が高い回転数に移るので、理想
的な軸受潤滑と軸受内輪8の冷却ができ、軸受内
輪8が歪んだり、クリープを起こしたり等の心配
がなくなる。
Figure 4a shows the lubrication path 14a between the oil supply side and the oil discharge side,
14b, the total hole opening area of the oil supply side lubrication path 14a is made smaller than the total hole opening area of the oil discharge side lubrication path 14b (in the experimental example, it is reduced to 1/2). This figure shows the results of a comparative experiment on the oil distribution state in the following cases. The measurements at this time were performed under no-load conditions with lubrication at a rate of 5.5/min. From this experimental result, by setting the total hole opening area of the oil supply side lubrication path 14a to 1/2 of the total hole opening area of the oil discharge side lubrication path 14b, it was found that the reversal point between the cooling oil amount and the lubrication oil amount ( At the point where the amount of cooling oil and the amount of lubricating oil are the same), the rotation speed shifts from 7,600 rpm to 11,000 rpm, making it possible to promote a higher rotation speed. In this way, the reversal point between the amount of cooling oil and the amount of lubricating oil moves to a higher rotational speed, so ideal bearing lubrication and cooling of the bearing inner ring 8 can be achieved, and the bearing inner ring 8 can be prevented from becoming distorted or creeping. No more worries.

以上のことから、アンダー・レース潤滑法を用
いた高速円筒ころ軸受に於いて給油側潤滑路14
aの総孔開口面積を排油側潤滑路14bの総孔開
口面積より小さくする効果は十分にある。
From the above, in high-speed cylindrical roller bearings using the under race lubrication method, the oil supply side lubrication path 14
There is a sufficient effect of making the total hole opening area of a smaller than the total hole opening area of the drain oil side lubrication path 14b.

発明の効果 この発明は、以上説明したように、アンダー・
レース潤滑法を用いた高速円筒ころ軸受に於い
て、軸受内輪の冷却溝を給油側から排油側に向か
つて漸次大きいテーパ状或いはラツパ状に形成
し、かつ、給油側潤滑路の総孔開口面積を排油側
潤滑路の総孔開口面積より小さくしたもので、回
転数の高速度化を推進することができ、しかも排
油側に油が流れ易くなつて排油側と給油側の潤滑
路の油量が略同量になるので、軸受内輪が歪んで
円筒ころの端面摩耗等の心配がなくなり、軸受寿
命の向上が図れる。
Effects of the Invention As explained above, this invention provides under-
In high-speed cylindrical roller bearings using the race lubrication method, the cooling groove in the inner ring of the bearing is formed in a tapered or tapered shape that gradually increases from the oil supply side to the oil drain side, and the total hole opening of the oil supply side lubrication path is The area is smaller than the total hole opening area of the lubrication path on the oil drain side, which allows for higher rotation speeds, and also allows oil to flow more easily to the oil drain side, improving lubrication between the oil drain side and the oil supply side. Since the amount of oil in the passage is approximately the same, there is no need to worry about distortion of the bearing inner ring and end face wear of the cylindrical rollers, and the life of the bearing can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はこの発明の高速円筒ころ軸
受の正面図及び第1図のA―A線縦断面図、第3
図はこの発明の高速円筒ころ軸受を高速回転体に
組み込んだ要部拡大断面図、第4図aおよびbは
従来品と本発明品との比較実験結果を示すグラ
フ、第5図及び第6図は従来の高速円筒ころ軸受
の正面図及び第5図のB―B線縦断面図である。 8…軸受内輪、9…軸受外輪、10…円筒こ
ろ、11…保持器、12…冷却溝、13…内輪軌
道面、14a…給油側潤滑路、14b…排油側潤
滑路。
1 and 2 are a front view of a high-speed cylindrical roller bearing of the present invention, a vertical sectional view taken along the line A--A in FIG.
The figure is an enlarged sectional view of the main parts of the high-speed cylindrical roller bearing of the present invention incorporated into a high-speed rotating body, Figures 4a and b are graphs showing the results of comparative experiments between the conventional product and the product of the present invention, and Figures 5 and 6 are The figures are a front view of a conventional high-speed cylindrical roller bearing and a longitudinal sectional view taken along the line BB in FIG. 8... Bearing inner ring, 9... Bearing outer ring, 10... Cylindrical roller, 11... Cage, 12... Cooling groove, 13... Inner ring raceway surface, 14a... Oil supply side lubrication path, 14b... Oil discharge side lubrication path.

Claims (1)

【特許請求の範囲】[Claims] 1 軸受内輪と、軸受外輪と、前記軸受内外輪間
に介在した円筒ころとからなり、前記軸受内輪の
内周面には、多数の冷却溝が軸方向に設けられ、
かつ、この冷却溝と内輪軌道面の両ヌスミ部とを
夫々連通する潤滑路が数個ずつ設けられたアンダ
ー・レース潤滑法を用いる高速円筒ころ軸受に於
いて、前記軸受内輪の冷却溝を給油側から排油側
に向けて漸次大きく形成し、かつ、給油側潤滑路
の総孔開口面積を排油側潤滑路の総孔開口面積よ
り小さく形成したことを特徴とする高速円筒ころ
軸受。
1 Consisting of a bearing inner ring, a bearing outer ring, and cylindrical rollers interposed between the bearing inner and outer rings, and a large number of cooling grooves are provided in the axial direction on the inner peripheral surface of the bearing inner ring,
In a high-speed cylindrical roller bearing using an under-race lubrication method in which several lubrication passages are provided that communicate the cooling groove with both grooved portions of the inner ring raceway surface, the cooling groove of the bearing inner ring is lubricated. 1. A high-speed cylindrical roller bearing characterized in that the holes are formed gradually larger from the side toward the oil drain side, and the total hole opening area of the oil supply side lubrication path is smaller than the total hole opening area of the oil drain side lubrication path.
JP59218061A 1984-10-16 1984-10-16 High speed cylindrical roller bearing Granted JPS6196219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59218061A JPS6196219A (en) 1984-10-16 1984-10-16 High speed cylindrical roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59218061A JPS6196219A (en) 1984-10-16 1984-10-16 High speed cylindrical roller bearing

Publications (2)

Publication Number Publication Date
JPS6196219A JPS6196219A (en) 1986-05-14
JPS641710B2 true JPS641710B2 (en) 1989-01-12

Family

ID=16714031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59218061A Granted JPS6196219A (en) 1984-10-16 1984-10-16 High speed cylindrical roller bearing

Country Status (1)

Country Link
JP (1) JPS6196219A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106593A (en) * 2009-11-18 2011-06-02 Mitsubishi Heavy Industries Food & Packaging Machinery Co Ltd Dew condensation preventing device for bearing of rotary joint

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2878589B1 (en) * 2004-11-29 2008-06-13 Snecma Moteurs Sa LUBRICANT UNDER-FEEDING COMPENSATION IN INTER-TREE BEARING
GB2421054A (en) * 2004-12-08 2006-06-14 Boc Group Plc Vacuum pump with cooled shaft seal surface and bearing
US20070086688A1 (en) * 2005-10-17 2007-04-19 Rexnord Industries, Llc Vented bearing assembly
JP5598075B2 (en) * 2010-04-28 2014-10-01 株式会社ジェイテクト Rolling bearing device
EP3586022B1 (en) 2017-02-22 2021-04-07 Volvo Truck Corporation A bearing arrangement and an assembly comprising such bearing arrangement
CN108488236A (en) * 2018-05-17 2018-09-04 中国航发哈尔滨轴承有限公司 The cylinder roller bearing and mating clamp nut of a kind of lubrication system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106593A (en) * 2009-11-18 2011-06-02 Mitsubishi Heavy Industries Food & Packaging Machinery Co Ltd Dew condensation preventing device for bearing of rotary joint

Also Published As

Publication number Publication date
JPS6196219A (en) 1986-05-14

Similar Documents

Publication Publication Date Title
US6511228B2 (en) Oil annulus to circumferentially equalize oil feed to inner race of a bearing
JP4131312B2 (en) Bearing device
US5489190A (en) Dynamic oil scavenge system
KR101264131B1 (en) Lubricating device for rolling bearing
US6872003B2 (en) Oil-damped rolling bearing
CN112424476B (en) Screw compressor element and machine
JPS63231021A (en) Lubricating device for roller bearing
JPS641710B2 (en)
JP2006316846A (en) Rolling bearing
JPH0988986A (en) Lubricative cooling method and device of angular contact ball bearing
WO1994024446A1 (en) Self-pumping roller bearings
JP3821902B2 (en) Bearing device
US4799810A (en) Very high speed marginally lubricated ball thrust bearing
JPH11336767A (en) Cylindrical roller bearing
JPH0244091Y2 (en)
US4729154A (en) Method of making and operating a very high speed marginally lubricated ball thrust bearing
JP2506541Y2 (en) Bearing lubricator
JPH11132244A (en) Cylindrical roller bearing device provided with lubricating device
JPH0645118U (en) Bearing lubricator
JP2000274443A (en) Lubricating and cooling device for bearing
JP2503488Y2 (en) Bearing lubricator
JPH0235216A (en) High speed angular ball bearing
JP2538801Y2 (en) Bearing lubrication device
JPH0530559U (en) Lubricator for cylindrical roller bearing
JP2002276676A (en) Cylindrical roller bearing