JPS641470Y2 - - Google Patents

Info

Publication number
JPS641470Y2
JPS641470Y2 JP1981073897U JP7389781U JPS641470Y2 JP S641470 Y2 JPS641470 Y2 JP S641470Y2 JP 1981073897 U JP1981073897 U JP 1981073897U JP 7389781 U JP7389781 U JP 7389781U JP S641470 Y2 JPS641470 Y2 JP S641470Y2
Authority
JP
Japan
Prior art keywords
scavenging
passage
cylinder
pressure relief
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981073897U
Other languages
Japanese (ja)
Other versions
JPS57186635U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981073897U priority Critical patent/JPS641470Y2/ja
Publication of JPS57186635U publication Critical patent/JPS57186635U/ja
Application granted granted Critical
Publication of JPS641470Y2 publication Critical patent/JPS641470Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • F02F1/22Other cylinders characterised by having ports in cylinder wall for scavenging or charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、2サイクルエンジンのシリンダに関
する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a cylinder for a two-stroke engine.

(従来の技術) 第4図に示す如く、2サイクルエンジンのシリ
ンダaにおいて、排気ポートbのシリンダ側開口
部上端に切欠溝cを設け、燃焼室内の圧力を切欠
溝cから排気ポートbへ逃がすことにより、リコ
イルスタータ等によるエンジン起動時の起動トル
クの低減を図るものは知られている。
(Prior art) As shown in Fig. 4, in the cylinder a of a two-stroke engine, a notch c is provided at the upper end of the cylinder side opening of the exhaust port b, and the pressure in the combustion chamber is released from the notch groove c to the exhaust port b. It is known to reduce the starting torque when starting the engine using a recoil starter or the like.

また、第4図に鎖線で示す如くシリンダ壁に排
気ポートbよりも上方位置から吸気ポートdに至
るバイパス通路eを設け、このバイパス通路eを
介して圧力を吸気ポートdに逃がすものも知られ
ている。
It is also known that a bypass passage e is provided in the cylinder wall from a position above the exhaust port b to the intake port d, as shown by the chain line in FIG. 4, and the pressure is released to the intake port d via the bypass passage e. ing.

(考案が解決しようとする課題) しかし、上記切欠溝cを設けたものにおいて
は、圧縮行程において新気ガスの一部が切欠溝c
から排気ポートbへ流出するという問題がある。
一方、上記バイパス通路eを設けたものにおいて
は、膨張行程において既燃ガスの一部がバイパス
通路eより吸気ポートdへ流入し、続いてクラン
クケース内で新気ガス中へ拡散されるため、給気
比が低くなつてしまう。
(Problem to be solved by the invention) However, in the case where the above-mentioned notched groove c is provided, part of the fresh gas is absorbed into the notched groove c during the compression stroke.
There is a problem that the air flows out from the air to the exhaust port b.
On the other hand, in the case where the bypass passage e is provided, a part of the burnt gas flows into the intake port d from the bypass passage e during the expansion stroke, and is subsequently diffused into fresh gas within the crankcase. The air supply ratio becomes low.

そうして、上述の切欠溝やバイパス通路という
圧力逃がし通路をエンジンの全運転期間にわたつ
てピストンの摺動により開閉する方式を採用する
場合、エンジンの通常運転時においても上述の排
気ポートへの新気の流出やクランクケース内の新
気ガス中への既燃ガスの拡散が生ずるものであ
り、このことは、上記新気の流出が燃料消費率の
上昇や大気汚染の原因となり、あるいは上記既燃
ガスの拡散がエンジンの性能の低下を招くという
点で重要な問題となる。
If a method is adopted in which the above-mentioned pressure relief passages such as notched grooves and bypass passages are opened and closed by sliding pistons throughout the entire operating period of the engine, even during normal operation of the engine, the above-mentioned exhaust port is closed. This causes the outflow of fresh air and the diffusion of burnt gas into the fresh air gas in the crankcase. Diffusion of burnt gas is an important problem in that it causes deterioration in engine performance.

これに対し、上記バイパス通路のような圧力逃
がし通路にバルブを設けて、エンジンの通常運転
時にはこれを閉塞するということが考えられるの
であるが、単に圧力逃がし機構の構造が複雑にな
るだけでなく、汎用エンジンにおいてはバルブ操
作レバーの設置場所の確保が難しいとともに、エ
ンジンの起動操作の都度、バルブの開閉操作を必
要とし、さらには、バルブの締め忘れを招く懸念
もある。
On the other hand, it is conceivable to provide a valve in a pressure relief passage such as the bypass passage mentioned above and close it during normal operation of the engine, but this would not only complicate the structure of the pressure relief mechanism but also In a general-purpose engine, it is difficult to secure a place to install a valve operating lever, and the valve must be opened and closed each time the engine is started, and furthermore, there is a concern that the valve may be forgotten to be tightened.

(課題を解決するための手段) 本考案は、このような課題に対して、燃焼室内
の圧力を掃気通路に逃がすようにして、排気ポー
トへの新気の流出やクランクケース内の新気ガス
中への既燃ガスの拡散を防止するとともに、圧力
逃がし通路に開閉用のバルブを設けずとも、圧縮
行程での燃焼室に対する上記通路の連通時間は、
エンジンの起動時には長く、エンジンの通常運転
時には瞬時であつて、このことにより、エンジン
の起動時には圧縮比を低減しながら、通常運転時
には圧縮比の低減を抑えることが可能であること
を利用し、圧力逃がし通路をエンジンの全運転期
間にわたりピストンの摺動により開閉する方式を
採用するものである。
(Means for solving the problem) The present invention solves this problem by releasing the pressure inside the combustion chamber to the scavenging passage, thereby reducing the flow of fresh air to the exhaust port and the fresh air gas inside the crankcase. In addition to preventing the diffusion of burnt gas inside, the communication time of the passage to the combustion chamber during the compression stroke is
Taking advantage of the fact that the compression ratio is long when the engine is started, and instantaneous when the engine is running normally, and thus it is possible to reduce the compression ratio when the engine is started, while suppressing the reduction in the compression ratio during normal operation. A method is adopted in which the pressure relief passage is opened and closed by the sliding movement of a piston throughout the entire operating period of the engine.

すなわち、本考案に係る2サイクルエンジンの
シリンダは、1または2以上の掃気通路を設けた
ものにおいて、一端が排気ポートよりも上方のシ
リンダ壁内面に、他端が掃気通路にそれぞれ開口
し、エンジンの全運転期間にわたつてピストンの
摺動により開閉される圧力逃がし通路が形成され
ていることを特徴とする。
That is, the cylinder of the two-stroke engine according to the present invention has one or more scavenging passages, one end of which opens on the inner surface of the cylinder wall above the exhaust port, and the other end of which opens into the scavenging passage. A pressure relief passage is formed that is opened and closed by the sliding movement of the piston over the entire operating period.

(作用) 上記2サイクルエンジンのシリンダにおいて
は、圧力逃がし通路はエンジンの全運転期間にわ
たつてピストンの摺動により開閉されるが、シリ
ンダ内のガスが圧力逃がし通路を通つて掃気通路
に流れる量は、シリンダ内と掃気通路間の圧力差
が同じであれば、シリンダ内に対する圧力逃がし
通路の連通時間に比例する。そして、シリンダ内
のガスの圧縮は、上昇行程のピストンの上縁が排
気ポートの上縁に達した時から始まるが、エンジ
ン起動時のようにエンジン回転数が極めて低いと
きは、圧縮開始から圧力逃がし通路がピストンで
閉塞されるまでの時間、つまり、圧力逃がし通路
の連通時間が長い。しかし、エンジン回転数が高
くなるにつれて上記連通時間は短くなり、高速回
転時には圧力逃がし通路は燃焼室に対し瞬時しか
連通しないことになる。
(Function) In the cylinder of the two-stroke engine mentioned above, the pressure relief passage is opened and closed by the sliding movement of the piston over the entire operating period of the engine, but the amount of gas in the cylinder that flows through the pressure relief passage to the scavenging passage is is proportional to the communication time of the pressure relief passage with respect to the cylinder, if the pressure difference between the inside of the cylinder and the scavenging passage is the same. Compression of the gas in the cylinder begins when the upper edge of the piston on its upward stroke reaches the upper edge of the exhaust port. The time it takes for the relief passage to be closed by the piston, that is, the communication time of the pressure relief passage is long. However, as the engine speed increases, the communication time becomes shorter, and the pressure relief passage communicates with the combustion chamber only momentarily during high-speed rotation.

従つて、上記連通時間が極めて短い通常運転時
にはシリンダ内のガスが圧力逃がし通路へ流れる
量は少なく、この圧力逃がし通路があつても圧縮
比はあまり低下しないが、上記連通時間が長いエ
ンジンの起動時には、圧力逃がし通路へ流れるガ
スの量が多くなり、この圧力逃がし通路が閉じら
れるまでは圧力の上昇はあまりない。よつて、起
動時は通常運転時に比べて圧縮比が低くなつて起
動トルクが低減する。
Therefore, during normal operation when the communication time is extremely short, the amount of gas in the cylinder flowing into the pressure relief passage is small, and even if this pressure relief passage exists, the compression ratio does not decrease much, but when starting the engine, the communication time is long. Sometimes, there is a large amount of gas flowing into the pressure relief passage, and the pressure does not increase significantly until the pressure relief passage is closed. Therefore, at startup, the compression ratio is lower than during normal operation, and the startup torque is reduced.

また、この圧縮行程においては、新気ガスの一
部は掃気通路に流れるだけであり、外部には流出
しない。さらに、膨張行程において、既燃ガスの
一部は圧力逃がし通路を経て掃気通路に流入する
が、そのまま掃気通路に滞留するためクランクケ
ース内へ流入する既燃ガスは微量である。また、
掃気行程においては、上記膨張行程で掃気通路に
滞留した既燃ガスが排気ポートへ吹き抜ける掃気
初期のガスとなるため、排気ポートへの新気の吹
き抜け量が少なくなる。
Further, in this compression stroke, a part of the fresh gas only flows into the scavenging passage and does not flow out to the outside. Furthermore, during the expansion stroke, a portion of the burnt gas flows into the scavenging passage through the pressure relief passage, but since it stays in the scavenging passage as it is, only a small amount of the burnt gas flows into the crankcase. Also,
In the scavenging stroke, the burnt gas that remained in the scavenging passage during the expansion stroke becomes the initial scavenging gas that blows through to the exhaust port, so the amount of fresh air that blows through to the exhaust port decreases.

(考案の効果) 従つて、本考案によれば、一端が排気ポートよ
りも上方のシリンダ壁内面に、他端が掃気通路に
それぞれ開口し、エンジンの全運転期間にわたつ
てピストンの摺動により開閉される圧力逃がし通
路を形成したから、エンジンの起動トルクの低減
が図れることになり、また、排気ポートへの新気
の流出やクランクケース内の新気ガス中への既燃
ガスの拡散の問題はなく、且つ圧力逃がし通路を
バルブで開閉する必要はないことから、簡単な構
造で燃料消費率の上昇や大気汚染、あるいはエン
ジンの性能の低下の問題を招くことなく、エンジ
ンの始動性を向上せしめることができる。
(Effect of the invention) Therefore, according to the invention, one end is opened on the inner surface of the cylinder wall above the exhaust port, and the other end is opened in the scavenging passage, and the piston slides through the entire operating period of the engine. By creating a pressure relief passage that opens and closes, it is possible to reduce the engine starting torque, and it also prevents fresh air from flowing into the exhaust port and burning gas from diffusing into the fresh air in the crankcase. There is no problem, and since there is no need to open and close the pressure relief passage with a valve, the simple structure improves engine startability without increasing fuel consumption, air pollution, or deteriorating engine performance. It can be improved.

(実施例) 以下、本考案の実施例を図面に基づいて説明す
る。
(Example) Hereinafter, an example of the present invention will be described based on the drawings.

<実施例 1> 本例は第1図に示し、1は2サイクルエンジン
で、シリンダヘツド2、シリンダ3及びクランク
ケース4が順に連設され、ピストン5のピストン
ピン6とクランクシヤフト7のクランクピン8と
がコンロツド9で連結されている。10はシリン
ダ側掃気通路、11はクランクケース側掃気通
路、12は排気ポート、13は掃気内壁である。
<Example 1> This example is shown in FIG. 1, and 1 is a two-stroke engine, in which a cylinder head 2, a cylinder 3, and a crankcase 4 are connected in sequence, and a piston pin 6 of a piston 5 and a crank pin of a crankshaft 7 are connected. 8 are connected by connecting rod 9. 10 is a cylinder side scavenging passage, 11 is a crankcase side scavenging passage, 12 is an exhaust port, and 13 is a scavenging inner wall.

シリンダ3には、排気ポート12のシリンダ側
開口部よりも上位置においてシリンダ壁を内外に
貫通した横孔15と、シリンダ側掃気通路10よ
りシリンダ上端に至り、前記横孔15に直交した
縦孔16とが形成されている。そして、上記横孔
15の外側開口はプラグ17で、また、縦孔16
の上端開口はガスケツト18でそれぞれ閉塞され
ており、これにより、上記横孔15と縦孔16と
で、一端が排気ポート12よりも上方のシリンダ
壁内面に、他端がシリンダ側掃気通路10にそれ
ぞれ開口し、エンジンの全運転期間にわたつてピ
ストン5の摺動により開閉される圧力逃がし通路
19が構成されている。なお、第1図中、20は
ピストンピン潤滑油孔である。
The cylinder 3 has a horizontal hole 15 that penetrates the cylinder wall inside and out at a position above the cylinder side opening of the exhaust port 12, and a vertical hole that reaches the upper end of the cylinder from the cylinder side scavenging passage 10 and is perpendicular to the horizontal hole 15. 16 are formed. The outer opening of the horizontal hole 15 is a plug 17, and the vertical hole 16 is a plug 17.
The upper end openings are each closed by a gasket 18, so that the horizontal hole 15 and the vertical hole 16 have one end connected to the inner surface of the cylinder wall above the exhaust port 12, and the other end connected to the cylinder side scavenging passage 10. A pressure relief passage 19 is formed, which is opened and closed by the sliding movement of the piston 5 over the entire operating period of the engine. In addition, in FIG. 1, 20 is a piston pin lubricating oil hole.

上記構造において、シリンダ内のガスの圧縮
は、上昇行程のピストン5の上縁が排気ポート1
2の上縁に達した時から始まり、圧縮開始から圧
力逃がし通路19がピストン5で閉塞されるま
で、シリンダ3内の新気ガスの一部が圧力逃がし
通路19を介して掃気通路10,11に流れ圧縮
比が低下する。この場合、エンジン起動時のよう
にエンジン回転数が極めて低いときは、圧縮開始
から圧力逃がし通路19がピストン5で閉塞され
るまでの時間、つまり、圧力逃がし通路19の連
通時間が長く、エンジン回転数が高くなるにつれ
て上記連通時間が短くなり、高速回転時には圧力
逃がし通路19は燃焼室に対し瞬時しか連通しな
いことになる。
In the above structure, the gas in the cylinder is compressed when the upper edge of the piston 5 on the upward stroke reaches the exhaust port 1.
Starting from the time when the upper edge of the cylinder 2 is reached, a part of the fresh gas in the cylinder 3 passes through the pressure relief passage 19 to the scavenging passages 10 and 11 from the start of compression until the pressure relief passage 19 is closed by the piston 5. The flow compression ratio decreases. In this case, when the engine speed is extremely low, such as when starting the engine, the time from the start of compression until the pressure relief passage 19 is closed by the piston 5, that is, the communication time of the pressure relief passage 19 is long, and the engine speed As the number increases, the communication time becomes shorter, and at high speed rotation, the pressure relief passage 19 communicates with the combustion chamber only momentarily.

従つて、上記連通時間が極めて短い通常運転時
にはシリンダ内のガスが圧力逃がし通路19へ流
れる量は少なく、この圧力逃がし通路19があつ
ても圧縮比はあまり低下しないが、上記連通時間
が長いエンジンの起動時には、圧力逃がし通路1
9へ流れるガスの量が多くなり、この圧力逃がし
通路19が閉じられるまでは圧力の上昇はあまり
なく、通常運転時に比べて圧縮比が低くなり、上
記起動トルクが低減されることになる。これによ
り、小さな起動トルクで大きな起動回転速度が得
られるため、エンジンの始動性が向上し、また、
圧縮行程を容易に乗り切ることができるようにな
るため、起動操作時の逆転シヨツク、所謂ケツチ
ンが防止される。
Therefore, during normal operation when the communication time is extremely short, the amount of gas in the cylinder flowing into the pressure relief passage 19 is small, and even if this pressure relief passage 19 is provided, the compression ratio does not decrease much, but in an engine where the communication time is long. When starting up, pressure relief passage 1
The amount of gas flowing into the engine 9 increases and the pressure does not increase much until the pressure relief passage 19 is closed, the compression ratio becomes lower than during normal operation, and the starting torque is reduced. As a result, a large starting rotation speed can be obtained with a small starting torque, improving engine starting performance.
Since the compression stroke can be easily overcome, a reverse shock or so-called butt during a starting operation is prevented.

また、エンジンの起動時及び通常運転時におい
て、上記圧縮行程では、新気ガスの一部は掃気通
路10,11に流れるだけであり、外部には流出
しない。さらに、膨張行程において、既燃ガスの
一部は圧力逃がし通路19を経て掃気通路10,
11に流入するが、そのまま掃気通路10,11
に滞留するためクランクケース4内へ流入する既
燃ガスは微量であり、新気ガスとの混合はほとん
ど生じない。また、掃気行程においては、上記膨
張行程で掃気通路10,11に滞留した既燃ガス
が排気ポート12へ吹き抜ける掃気初期のガスと
なるため、排気ポート12への新気の吹き抜け量
が少なくなる。
Furthermore, during the engine startup and normal operation, a portion of the fresh gas only flows into the scavenging passages 10 and 11 during the compression stroke, and does not flow out to the outside. Further, during the expansion stroke, a part of the burnt gas passes through the pressure relief passage 19 and the scavenging passage 10.
11, but directly flows into the scavenging passages 10, 11.
The amount of burned gas that flows into the crankcase 4 is very small and hardly mixes with fresh gas. Furthermore, in the scavenging stroke, the burnt gas that has remained in the scavenging passages 10 and 11 during the expansion stroke becomes gas at the initial stage of scavenging that blows through to the exhaust port 12, so the amount of fresh air that blows through to the exhaust port 12 is reduced.

<実施例 2> 本例はその要部を第2図に示し、圧力逃がし通
路を設ける位置を特定したものである。
<Example 2> In this example, the main part is shown in FIG. 2, and the position where the pressure relief passage is provided is specified.

すなわち、シリンダ3には排気ポート12側か
ら吸気ポート21側に至る両半円周に沿つてそれ
ぞれ複数の掃気通路22〜24が形成されてお
り、排気ポート12から最も遠い位置の掃気通路
24に圧力逃がし通路25の一端が開口してい
る。
That is, a plurality of scavenging passages 22 to 24 are formed in the cylinder 3 along both semicircumferences from the exhaust port 12 side to the intake port 21 side. One end of the pressure relief passage 25 is open.

本例においては、排気ポート12から最も遠い
位置の掃気通路24に既燃ガスが滞留するが、各
掃気通路22〜24から出る掃気ガスはシリンダ
内面に沿つて上方へ移動し、ループを描いた後、
排気ポート12に至ることから、排気ポート12
から最も遠い位置の掃気通路24から出る掃気初
期のガス、すなわち前記既燃ガスが他の掃気通路
22,23から出る新気ガスよりも先に排気ポー
ト12へ吹き抜けるため、新気ガスの吹き抜け量
が減少する。
In this example, burnt gas remains in the scavenging passage 24 located farthest from the exhaust port 12, but the scavenging gas exiting from each scavenging passage 22 to 24 moves upward along the inner surface of the cylinder, forming a loop. rear,
Since it reaches the exhaust port 12, the exhaust port 12
Since the gas at the initial stage of scavenging, that is, the burnt gas, which exits from the scavenging passage 24 at the farthest position from the scavenging passage 24, blows through to the exhaust port 12 before the fresh gas exiting from the other scavenging passages 22 and 23, the amount of fresh gas blown through is small. decreases.

<実施例 3> 本例はその要部を第3図に示し、圧力逃がし通
路を設けた掃気通路24の開口時期を他の掃気通
路22,23のそれよりも早めたものである。
<Embodiment 3> The main part of this example is shown in FIG. 3, and the scavenging passage 24 provided with a pressure relief passage is opened earlier than the other scavenging passages 22 and 23.

すなわち、複数の掃気通路22〜24のうち、
排気ポート12から最も遠い位置の掃気通路24
は、シリンダ側開口部29の上端が他の掃気通路
22,23のシリンダ側開口部27,28よりも
上死点側に位置している。そして、シリンダ壁内
面には上記掃気通路24の上端より排気ポート1
2よりも上方位置に至る溝が形成されていて、こ
の溝を圧力逃がし通路26としている。
That is, among the plurality of scavenging passages 22 to 24,
Scavenging passage 24 located farthest from the exhaust port 12
In this case, the upper end of the cylinder-side opening 29 is located closer to the top dead center than the cylinder-side openings 27 and 28 of the other scavenging passages 22 and 23. An exhaust port 1 is provided on the inner surface of the cylinder wall from the upper end of the scavenging passage 24.
A groove extending to a position above 2 is formed, and this groove serves as a pressure relief passage 26.

従つて、本例においては、圧力逃がし通路26
を設けた掃気通路24が他の掃気通路22,23
よりも先に開口するため、前記掃気通路24に滞
留した既燃ガスが他の掃気通路22,23から流
出する掃気ガス、すなわち、新気ガスよりも先に
シリンダ内に流出し、この既燃ガスが主として排
気ポート12へ吹き抜ける掃気初期のガスとな
り、排気ポート12への新気ガスの吹き抜け量が
減少する。
Therefore, in this example, the pressure relief passage 26
The scavenging passage 24 provided with the scavenging passages 22 and 23
Since the scavenging passage 24 opens earlier than the scavenging passage 24, the burnt gas remaining in the scavenging passage 24 flows out into the cylinder before the scavenging gas flowing out from the other scavenging passages 22, 23, that is, fresh air gas, and this burned gas The gas mainly becomes the gas at the initial stage of scavenging that blows through to the exhaust port 12, and the amount of fresh gas that blows through to the exhaust port 12 decreases.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本考案の実施例を示し、第
1図は実施例1の2サイクルエンジンを示す中央
縦断面図、第2図は実施例2のシリンダを第1図
の−線において示す断面図、第3図は実施例
3のシリンダを示す第2図と同様の図、第4図は
従来例を示す第2図と同様の図である。 1……2サイクルエンジン、2……シリンダヘ
ツド、3……シリンダ、4……クランクケース、
5……ピストン、10,11,22〜24……掃
気通路、12……排気ポート、13……掃気内
壁、15……横孔、16……縦孔、19,25,
26……圧力逃がし通路、21……吸気ポート、
27〜29……掃気通路のシリンダ側開口部。
1 to 3 show embodiments of the present invention, FIG. 1 is a central longitudinal cross-sectional view showing a two-stroke engine of embodiment 1, and FIG. 2 shows a cylinder of embodiment 2 taken along the line - in FIG. 3 is a view similar to FIG. 2 showing the cylinder of the third embodiment, and FIG. 4 is a view similar to FIG. 2 showing the conventional example. 1... 2-stroke engine, 2... cylinder head, 3... cylinder, 4... crank case,
5...Piston, 10, 11, 22-24...Scavenging passage, 12...Exhaust port, 13...Scavenging inner wall, 15...Horizontal hole, 16...Vertical hole, 19, 25,
26...Pressure relief passage, 21...Intake port,
27 to 29... Cylinder side opening of the scavenging passage.

Claims (1)

【実用新案登録請求の範囲】 (1) 1または2以上の掃気通路を設けた2サイク
ルエンジンのシリンダにおいて、一端が排気ポ
ートよりも上方のシリンダ壁内面に、他端が掃
気通路にそれぞれ開口し、エンジンの全運転期
間にわたつてピストンの摺動により開閉される
圧力逃がし通路が形成されていることを特徴と
する2サイクルエンジンのシリンダ。 (2) 複数の掃気通路が設けられ、圧力逃がし通路
が開口した掃気通路はシリンダ側開口部の上端
が他の掃気通路のシリンダ側開口部の上端より
も上死点側に位置し、圧力逃がし通路が開口し
た掃気通路の開口時期を他の掃気通路の開口時
期よりも早くした実用新案登録請求の範囲第1
項に記載の2サイクルエンジンのシリンダ。 (3) 複数の掃気通路が設けられ、圧力逃がし通路
が排気ポートより最も遠い位置の掃気通路に開
口した実用新案登録請求の範囲第1項または第
2項に記載の2サイクルエンジンのシリンダ。
[Claims for Utility Model Registration] (1) In a two-stroke engine cylinder provided with one or more scavenging passages, one end opens on the inner surface of the cylinder wall above the exhaust port, and the other end opens into the scavenging passage. A cylinder for a two-stroke engine, characterized in that a pressure relief passage is formed that is opened and closed by sliding of a piston over the entire operating period of the engine. (2) In the scavenging passage where a plurality of scavenging passages are provided and the pressure relief passage is open, the upper end of the cylinder side opening is located closer to the top dead center than the upper end of the cylinder side opening of other scavenging passages, and the pressure relief passage is Scope of Utility Model Registration Claim No. 1 in which the opening timing of the scavenging passage where the passage is opened is earlier than the opening timing of other scavenging passages.
The cylinder of the two-stroke engine described in section. (3) A cylinder for a two-stroke engine according to claim 1 or 2, in which a plurality of scavenging passages are provided, and the pressure relief passage opens at the scavenging passage located furthest from the exhaust port.
JP1981073897U 1981-05-20 1981-05-20 Expired JPS641470Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981073897U JPS641470Y2 (en) 1981-05-20 1981-05-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981073897U JPS641470Y2 (en) 1981-05-20 1981-05-20

Publications (2)

Publication Number Publication Date
JPS57186635U JPS57186635U (en) 1982-11-26
JPS641470Y2 true JPS641470Y2 (en) 1989-01-13

Family

ID=29869668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981073897U Expired JPS641470Y2 (en) 1981-05-20 1981-05-20

Country Status (1)

Country Link
JP (1) JPS641470Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139519U (en) * 1983-03-08 1984-09-18 川崎重工業株式会社 2 cycle engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1386177A (en) * 1972-08-17 1975-03-05 Norton Villiers Ltd Internal combustion engines
JPS5421714B2 (en) * 1975-07-18 1979-08-01
JPS5611623U (en) * 1979-07-04 1981-01-31
JPS5673897A (en) * 1979-11-16 1981-06-18 Hitachi Ltd Power source control system for nulcear fusion reactor
JPS57113963A (en) * 1980-12-29 1982-07-15 Yamaha Motor Co Ltd Interlocking device for choke and decompressor in internal-combustion engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851376Y2 (en) * 1977-07-15 1983-11-22 川崎重工業株式会社 Scavenging device for crank chamber compression type 2-stroke engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1386177A (en) * 1972-08-17 1975-03-05 Norton Villiers Ltd Internal combustion engines
JPS5421714B2 (en) * 1975-07-18 1979-08-01
JPS5611623U (en) * 1979-07-04 1981-01-31
JPS5673897A (en) * 1979-11-16 1981-06-18 Hitachi Ltd Power source control system for nulcear fusion reactor
JPS57113963A (en) * 1980-12-29 1982-07-15 Yamaha Motor Co Ltd Interlocking device for choke and decompressor in internal-combustion engine

Also Published As

Publication number Publication date
JPS57186635U (en) 1982-11-26

Similar Documents

Publication Publication Date Title
US6513465B2 (en) Two-stroke internal combustion engine
US5628295A (en) Two-stroke internal combustion engine
EP0382063A1 (en) 2-Cycle multi-cylinder engine
US4167161A (en) Directional auxiliary intake injection for internal combustion engine
US5027757A (en) Two-stroke cycle engine cylinder construction
JPS587058Y2 (en) Crank chamber compression type 2-stroke engine
JP3406119B2 (en) 2-stroke diesel engine with swirl chamber auxiliary combustion chamber
JPS641470Y2 (en)
US4938192A (en) Piston cylinder combination with engine cylinder wall having valve ports and combustion chamber
US6145483A (en) Two-cycle internal combustion engine
AU605984B2 (en) Decompression device in a two-cycle engine
US5603291A (en) Internal combustion engine with valve built into piston head
US5524578A (en) Two-cycle engine having improved idle relief
JPS595780B2 (en) 2 Cycle engine assembly
JP3622019B2 (en) Internal combustion engine
JP3948081B2 (en) Spark ignition internal combustion engine
US5540195A (en) Vuka two-stroke engine
JPH0335864Y2 (en)
JP2526986Y2 (en) Engine piston structure
JPH0110418Y2 (en)
JPH0123650B2 (en)
JPH0420991Y2 (en)
JPS5819303Y2 (en) 2 cycle engine
JPS5842578Y2 (en) Air supply system for two-stroke internal combustion engine
JPS5933843Y2 (en) 2 cylinder 2 cycle engine