JPS641464B2 - - Google Patents

Info

Publication number
JPS641464B2
JPS641464B2 JP1476684A JP1476684A JPS641464B2 JP S641464 B2 JPS641464 B2 JP S641464B2 JP 1476684 A JP1476684 A JP 1476684A JP 1476684 A JP1476684 A JP 1476684A JP S641464 B2 JPS641464 B2 JP S641464B2
Authority
JP
Japan
Prior art keywords
reaction
salt
thiuronium
parts
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1476684A
Other languages
Japanese (ja)
Other versions
JPS60158163A (en
Inventor
Kyoshi Kokoma
Takashi Hida
Fukusaburo Yakura
Masahiro Shiosaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisso Petrochemical Ind Co Ltd
Original Assignee
Nisso Petrochemical Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisso Petrochemical Ind Co Ltd filed Critical Nisso Petrochemical Ind Co Ltd
Priority to JP1476684A priority Critical patent/JPS60158163A/en
Publication of JPS60158163A publication Critical patent/JPS60158163A/en
Publication of JPS641464B2 publication Critical patent/JPS641464B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 本発明は含硫黄化合物に特有の柔軟な性質を示
す為近年連鎖移動剤、各種シーラント或いは接着
剤原料として工業的規模にて使用されているポリ
チオアルキルジメチルカプタン類の改良製造方法
に関し、更に詳しくはモノ又はジヒドロキシポリ
(モノ)チオアキレン類をチオ尿素でメルカプト
化することにより、上記用途に用いられているポ
リチオアルキレンジメルカプタン類を高収率、高
純度で製造する方法に関する。 「従来技術」 モノ又はジヒドロキシポリ(モノ)チオアルキ
レン類(以下HSA類と略記する。)とチオ尿素及
び塩化水素を反応させ、下記の如き チウロニウム塩となし次いでアルカリ性物質にて
該チウロニウム塩を分解し、ポリチオアルキレン
ジメルカプタン類(以下、SADM類と略記す
る。)を製造する方法はよく知られている。 しかしながら、この方法にあつては従来から収
率が低いこと及びSADM類の純度が低いこと等
の避けがたい欠点が存在した。 「発明が解決しようとする問題点」 本発明者らは上記の問題を解決し、高収率で、
高純度のSADM類を得るべく種々検討した結果、
本発明に到達した。 「問題点を解決するための手段」 本発明方法の第一は前述の製造工程の該チウロ
ニウム塩のアルカリ分解工程に目的とする
SADM類と同種又は異種のSADM類の金属塩を
共存させることを特徴とするSADM類の改良製
造方法であり、第二は前述の製造工程のチウロニ
ウム塩の生成工程に生成するのと同種のチウロニ
ウム塩を共存させ、且つ該チウロニウム塩のアル
カリ分解工程に目的とするSADM類と同種の
SADM類の金属塩を共存させることを特徴とす
るSADM類の改良製造方法である。 本発明方法を実施するに当り、出発物質として
使用するHSA類は下記一般式〔1〕又は〔2〕
にて示される。 HO(RS)nH …〔1〕 HO(RS)mROH …〔2〕 〔ここに、Rは炭素数2又は3からなるアルキレ
ン基を、n,mは1〜4の自然数を示す。〕 これらHSA類の具体例としては、 2―メルカプトエタノール HOCH2CH2SH)、 1―ヒドロキシ―5―メルカプト―3―チアペン
タン (HOCH2CH2SCH2CH2SH)、 1―ヒドロキシ―8―メルカプト―3,6―ジチ
アオクタン
(HOCH2CH2SCH2CH2SCH2CH2SH)、 1―ヒドロキシ―11―メルカプト―3,6,9―
トリチアウンデカン (HO(CH2CH2S)4H)、 チオジグリコール
(HOCH2CH2SCH2CH2OH)、 1,8―ジヒドロキシ―3,6―ジチアオクタン
(HOCH2CH2SCH2CH2SCH2CH2OH)、1,11
―ジヒドロキシ―3,6,9―トリチアウンデカ
ン (HO(CH2CH2S)3CH2CH2OH)、 1,14―ジヒドロキシ―3,6,9,12―テトラ
チアテトラデカン
(HO(CH2CH2S)4CH2CH2OH)、 等の外に2―メチル―2―メルカプトエタノー
ル、チオジプロピレングリコールなどの前記化合
物群のエチレン基の一部又は全部がプロピレン基
で置き換えられた同類の化合物等が例示出来る。 前述の如きチウロニウム塩の生成に際しては一
般にHSA類とチオ尿素を鉱酸の存在下に反応さ
せる。チオ尿素及び鉱酸の使用量は通常HSA類
の水酸基に対してそれぞれ当モル以上あるいは当
量以上用いることが好ましいが2倍モルあるいは
2倍当量を越えての使用は、反応後の処理を考慮
すれば好ましくない。鉱酸としては、塩酸、硫酸
が好ましい、このチウロニウム塩生成反応は発熱
を伴うため通常はHSA類あるいはチオ尿素を少
量ずつ連続的に、または間歇的に添加し、反応温
度を50〜100℃になるよう制御することが好まし
い。更に、この反応を円滑に行うために水媒体中
で行うのが一般的であり、水溶液中の全反応原料
の濃度は10〜50重量%が好ましい。 次に、この水溶液をSADM類の生成反応、云
いかえるなら、チウロニウム塩のアルカリ分解反
応に用いる。このアルカリ分解反応は発熱反応で
あり、一般にはアルカリ性化合物を反応系へ連続
的又は間歇的に添加することが好ましく、又反応
温度を30〜80℃の間に保持することが好ましい。
このアルカリ分解反応に用いられるアルカリ性化
合物としては一般にアルカリ金属の水酸化物が好
ましく本発明方法を実施するに当つても同様であ
る。該アルカリ性化合物として水酸化ナトリウ
ム、水酸化カリウムが好ましく、その使用量はチ
ウロニウム塩生成後の系内に存在する全チウロニ
ウム基に対して当モル以上2倍モル以下が好まし
く用いられるが、前述の鉱酸が残存している場合
にはこれを中和するために更にアルカリ性化合物
が要求されることは云う迄もない。 一方、本発明方法に従い、チウロニウム塩をア
ルカリ分解するに当つては、該反応系に生成を目
的とするのと同種又は異種のSADM類の金属塩
を共存させることが必須である。 この共存SADM金属塩としては特に限定はな
いが目的とするSADM類の生成以降のその分離
精製等を考慮すれば、その生成を目的とする
SADM類と同種のものが好ましく、又その塩と
してはアルカリ金属塩が好ましい。この共存
SADM金属塩の共存量はアルカリ分解に供する
チウロニウム塩に対して10〜50重量%が好まし
く、下限未満の使用量では効果が顕著に発現せ
ず、50重量%を越えての共存量は必要でない。 一方、本発明の第二の方法に従いチウロニウム
塩を生成させるに当つては、前記の一般的な方法
に準じ前記3種の反応原料に加えて生成チウロニ
ウム塩と同種又は異種のチウロニウム塩を共存さ
せることはより好ましい結果を導くことになる。 共存チウロニウム塩としては特に限定はないが
SADM類の生成以降のその分離精製等を考慮す
ればHSA類から誘導される。云いかえるなら本
来生成してくるチウロニウム塩と同一のものであ
ることが好ましい。共存させるための反応系への
添加方法については特に限定はないが、例えば
HSA類と鉱酸及び前述の如き共存させるチウロ
ニウム塩の混合物にチオ尿素を添加する方法、チ
オ尿素と共存させるチウロニウム塩の混合物に
HSA類及び鉱酸を好ましくは別途添加する方法
等を例示出来る。 この共存量は出発HSA類に対して10〜50重量
%が好ましく下限未満では共存効果が顕著でな
く、上限を越えての使用量は該チウロニウム塩の
生成反応の効率が著しく低下し、共に好ましくな
い。 以上の如き反応条件にてチウロニウム塩生成反
応を進めれば通常5〜10時間で目的とする塩が得
られるが、前述の如く反応に関与する以外のチウ
ロニウム塩を共存させれば、更に好ましい結果が
得られる。即ち、目的とするチウロニウム塩が高
収率で前述の如き水溶液中に生成する。 以上述べた如く、本発明方法を実施すれば反応
系内に共存SADM類の金属塩がそのまま残存す
るのでこれを回収するためには、再び前述の如き
鉱酸で該共存塩を中和すればよい。又、本来のア
ルカリ分解に於いてもチウロニウム塩の分解に必
要な量以上のアルカリ性化合物を用いた場合にあ
つても、生成を目的としたHSDM類の一部も金
属塩として存在するので、この塩も同様に鉱酸を
用いて中和し、HSDM類として回収すべきであ
る。 かくして、本発明方法を実施すればHSDM類
が前述の如き一般的な方法に比べて高収率で得ら
れるが、このHSDM類は前述の如き水溶液と分
離するので、これを分液し水あるいは他の溶剤で
洗浄し、公知の精製法、例えば蒸留等により精製
すれば容易に高純度のHSDM類を得ることが出
来る。 「実施例」 以下に実施例及び比較例を記し、本発明方法を
詳しく説明するがこれらに限定されるものではな
い。尚、以下に記される部は重量部を示す。 実施例 1 (チウロニウム塩化反応) 撹拌機、温度計、アリーン冷却器及び滴下装置
を備えた内容1の4ツ口フラスコに31.5%塩酸
298部及びチオ尿素194部を仕込みわずかに加熱し
た均一な溶液にビス(2―ヒドロキシエチル)ス
ルフイド145部を除々に滴下し滴下終了後100℃で
4時間撹拌を続けた。そのあと冷却し反応液をほ
ぼ3等分した。これを反応液(A),(B),(C)とする。 上記反応液(A)を反応器へ戻しチウロニウム塩の
存在下に上記のチウロニウム塩化反応を繰返し
た。冷却後、反応液を2等分しこれらを反応液
(D),(E)とした。 (メルカプト化反応) 上記反応液(B)の同様の反応器に入れ更にジメル
カプトジエチルスルフイドのナトリウム塩64部を
加え完全に溶解させた後、50%水酸化ナトリウム
水溶液413部をゆつくり滴下し、60℃で30分間反
応させた。冷却後、過剰のアルカリを塩酸で中和
し、キシレンを84部添加し、有機層を分離させ
た。この有機層を分液し、キシレンを減圧下に蒸
留除去した所、目的とするジメルカプトジエチル
スルフイド154部が得られた。初めに加えた分を
差し引いた新たに生成したジメチルカプトジエチ
ルスルフイドの原料ビス(2―ヒドロキシエチ
ル)スルフイドに対する収率は82%、純度は85%
であつた。 比較例 1 実施例1で述べた反応液(C)を同様の反応器へ入
れ、ジメルカプトジエチルスルフイドのナトリウ
ム塩を添加せず、実施例1に記載の方法をくりか
えした。収率は69%、純度は71%であつた。 実施例 2 実施例1で述べた反応液(D)を同様の反応器へ入
れ、更にジメルカプトジエチルスルフイドのナト
リウム塩64部を加え、溶解させた後、50%水酸化
ナトリウム水溶液413部をゆつくり滴下し60℃以
下に温度を保ちながら30分間反応させ、実施例1
(メルカプト化反応)に記載の方法を繰り返した
所、初めに加えた分を差し引いた新たに生成した
ジメルカプトジエチルスルフイドの原料ビス(2
―ヒドロキシエチル)スルフイドに対する収率は
92%であり、純度は95%であつた。 実施例 3 実施例1と同様の反応装置に31.5%の塩酸水溶
液74部およびチオ尿素49部を仕込み均一溶液とし
た。この溶液に118部の1―ヒドロキシ―8―メ
ルカプト―3,6―ジチアオクタンを仕込み、実
施例1と同条件でチウロニウム塩化反応を行つ
た。冷却後、反応液を2等分しこれらを反応液
(F),(G)とした。 この反応液(F)を同様の反応器に入れ、前述と同
一条件で原料を仕込み再びチウロニウム塩化反応
を行つた。次いでこの反応液に1,8―ジメチル
カプト―3,6―ジチアオクタンのカリウム塩34
部を添加し均一溶液とした後30%水酸化カリウム
水溶液217部をゆつくり滴下し、60℃以下の温度
で1時間反応させた。このあと、実施例1記載と
同様の方法で処理した所、1,8―ジメチルカプ
ト―3,6―ジチアオクタン224部が得られた。
加えた分を差し引いた収率は95%であり、純度は
92%であつた。 比較例 2 実施例3で用意された反応液(G)を同様の反応器
に入れ、1,8―ジメルカプト―3,6―ジチア
オクタンの金属塩を添加せず、30%水酸化カリウ
ム水溶液72部を用いて実施例3記載のメルカプト
化反応及び反応後の後処理を繰り返した。得られ
た1,8―ジメルカプト―3,6―ジチアオクタ
ンは124部であつた。収率は70%、純度は68%で
あつた。 実施例4及び比較例3 実施例1で用いたのと同様の反応器に31.5%塩
酸149部、チオ尿素97部を仕込み、均一溶液とし
た。これに1,11―ジヒドロキシ―3,6,9―
トリチアウンデカンを加え、実施例1記載のチウ
ロニウム塩化反応を行つた。この反応液を2等分
し、これらを反応液(H),(J)とした。 反応液(H)には1,11―ジメルカプト―3,6,
9―トリチアウンデカンのナトリウム塩44部を添
加し(実施例4)、反応液(J)には添加せず(比較
例3)、50%水酸化ナトリウム水溶液62部を用い
て実施例1(メルカプト化反応)記載の方法を繰
返し、得られた結果を第1表に示した。
"Industrial Application Field" The present invention focuses on polythioalkyldimethylcaptans, which have recently been used on an industrial scale as chain transfer agents, various sealants, and raw materials for adhesives because they exhibit flexible properties unique to sulfur-containing compounds. More specifically, it relates to an improved production method for producing polythioalkylene dimercaptans used in the above applications in high yield and high purity by mercaptizing mono- or dihydroxypoly(mono)thioachilenes with thiourea. Regarding how to. "Prior art" Mono- or dihydroxypoly(mono)thioalkylenes (hereinafter abbreviated as HSAs) are reacted with thiourea and hydrogen chloride to produce the following A method for producing polythioalkylene dimercaptans (hereinafter abbreviated as SADMs) by forming a thiuronium salt and then decomposing the thiuronium salt with an alkaline substance is well known. However, this method has traditionally had unavoidable drawbacks such as low yield and low purity of SADMs. "Problems to be Solved by the Invention" The present inventors have solved the above problems and achieved high yield.
As a result of various studies to obtain high-purity SADMs,
We have arrived at the present invention. "Means for Solving the Problems" The first method of the present invention is aimed at the alkali decomposition step of the thiuronium salt in the above-mentioned manufacturing process.
This is an improved production method for SADMs characterized by the coexistence of SADMs and metal salts of the same type or different types of SADMs. The same kind of SADM is used in the alkali decomposition process of the thiuronium salt.
This is an improved method for producing SADMs characterized by the coexistence of metal salts of SADMs. In carrying out the method of the present invention, HSAs used as starting materials have the following general formula [1] or [2]
It is shown in HO(RS)nH...[1] HO(RS)mROH...[2] [Here, R represents an alkylene group having 2 or 3 carbon atoms, and n and m represent natural numbers of 1 to 4. ] Specific examples of these HSAs include 2-mercaptoethanol (HOCH 2 CH 2 SH), 1-hydroxy-5-mercapto-3-thiapentane (HOCH 2 CH 2 SCH 2 CH 2 SH), and 1-hydroxy-8- Mercapto-3,6-dithiaoctane
(HOCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SH), 1-hydroxy-11-mercapto-3,6,9-
Trithiaundecane (HO(CH 2 CH 2 S) 4 H), Thiodiglycol
(HOCH 2 CH 2 SCH 2 CH 2 OH), 1,8-dihydroxy-3,6-dithiaoctane (HOCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 OH), 1,11
-dihydroxy-3,6,9-trithiaundecane (HO(CH 2 CH 2 S) 3 CH 2 CH 2 OH), 1,14-dihydroxy-3,6,9,12-tetrathiatetradecane
(HO(CH 2 CH 2 S) 4 CH 2 CH 2 OH), etc. In addition to 2-methyl-2-mercaptoethanol and thiodipropylene glycol, some or all of the ethylene groups in the above compound group are propylene groups. Examples include similar compounds substituted with . When producing thiuronium salts as described above, HSAs and thiourea are generally reacted in the presence of a mineral acid. It is usually preferable to use thiourea and mineral acid in an amount equal to or more than the equivalent mole relative to the hydroxyl group of the HSA, but if more than twice the mole or equivalent is used, post-reaction treatment should be taken into consideration. It is not desirable. As the mineral acid, hydrochloric acid or sulfuric acid is preferable. Since this thiuronium salt production reaction is accompanied by heat generation, usually HSAs or thiourea is added continuously or intermittently in small amounts to keep the reaction temperature at 50 to 100°C. It is preferable to control it so that Furthermore, in order to carry out this reaction smoothly, it is generally carried out in an aqueous medium, and the concentration of all reaction raw materials in the aqueous solution is preferably 10 to 50% by weight. Next, this aqueous solution is used for the generation reaction of SADMs, in other words, for the alkaline decomposition reaction of thiuronium salt. This alkaline decomposition reaction is an exothermic reaction, and it is generally preferable to add the alkaline compound to the reaction system continuously or intermittently, and to maintain the reaction temperature between 30 and 80°C.
As the alkaline compound used in this alkaline decomposition reaction, an alkali metal hydroxide is generally preferred and the same holds true when carrying out the method of the present invention. Sodium hydroxide and potassium hydroxide are preferable as the alkaline compound, and the amount used is preferably at least one equivalent mole and at most two times the mole based on all the thiuronium groups present in the system after thiuronium salt formation. Needless to say, if any acid remains, an additional alkaline compound is required to neutralize it. On the other hand, when a thiuronium salt is subjected to alkaline decomposition according to the method of the present invention, it is essential to coexist in the reaction system a metal salt of the same or different type of SADM to be produced. This coexisting SADM metal salt is not particularly limited, but considering the separation and purification after the production of the target SADM,
Those of the same type as SADMs are preferable, and as the salt thereof, alkali metal salts are preferable. This coexistence
The amount of SADM metal salt coexisting is preferably 10 to 50% by weight based on the thiuronium salt subjected to alkaline decomposition.If the amount used is less than the lower limit, the effect will not be noticeable, and if the amount is more than 50% by weight, it is not necessary. . On the other hand, in producing a thiuronium salt according to the second method of the present invention, in addition to the above three reaction materials, a thiuronium salt of the same type or different type as the produced thiuronium salt is allowed to coexist. This will lead to more favorable results. There are no particular restrictions on the coexisting thiuronium salt, but
Considering the separation and purification of SADMs after their generation, they can be derived from HSAs. In other words, it is preferable that the thiuronium salt is the same as the thiuronium salt that is originally produced. There is no particular limitation on the method of addition to the reaction system for coexistence, but for example,
A method of adding thiourea to a mixture of HSAs, a mineral acid, and a thiuronium salt coexisting as described above;
Examples include a method in which HSAs and mineral acids are preferably added separately. The amount of coexistence is preferably 10 to 50% by weight based on the starting HSA, and if it is less than the lower limit, the coexistence effect will not be significant, and if the amount exceeds the upper limit, the efficiency of the reaction for producing the thiuronium salt will be significantly reduced, so both are preferable. do not have. If the thiuronium salt production reaction is carried out under the above reaction conditions, the desired salt can usually be obtained in 5 to 10 hours, but if thiuronium salts other than those involved in the reaction are coexisting as described above, even more favorable results can be obtained. is obtained. That is, the desired thiuronium salt is produced in high yield in the aqueous solution as described above. As mentioned above, if the method of the present invention is carried out, the metal salts of the coexisting SADMs will remain in the reaction system, so in order to recover them, the coexisting salts should be neutralized again with the mineral acid described above. good. In addition, even if an alkaline compound is used in an amount greater than that required for decomposing the thiuronium salt in the original alkaline decomposition, some of the HSDMs intended to be produced also exist as metal salts. Salts should also be neutralized using mineral acids and recovered as HSDMs. Thus, if the method of the present invention is carried out, HSDMs can be obtained in a higher yield than in the general method described above, but since the HSDMs are separated from the aqueous solution as described above, it is separated and mixed with water or water. Highly pure HSDMs can be easily obtained by washing with another solvent and purifying by a known purification method such as distillation. "Example" The method of the present invention will be described in detail below with reference to Examples and Comparative Examples, but the method is not limited thereto. Note that the parts described below indicate parts by weight. Example 1 (Thiuronium chloride reaction) 31.5% hydrochloric acid was placed in a 4-necked flask with contents 1 equipped with a stirrer, a thermometer, an Allene condenser, and a dropping device.
145 parts of bis(2-hydroxyethyl) sulfide was gradually added dropwise to a slightly heated homogeneous solution containing 298 parts of thiourea and 194 parts of thiourea, and after completion of the dropwise addition, stirring was continued at 100°C for 4 hours. Thereafter, it was cooled and the reaction solution was divided into approximately three equal parts. These are called reaction solutions (A), (B), and (C). The above reaction solution (A) was returned to the reactor and the above thiuronium salt reaction was repeated in the presence of the thiuronium salt. After cooling, divide the reaction solution into two equal parts and divide these into two equal parts.
(D) and (E). (Mercaptization reaction) Add 64 parts of sodium salt of dimercapto diethyl sulfide to the same reactor as above reaction solution (B) and dissolve completely, then slowly add 413 parts of 50% aqueous sodium hydroxide solution. It was added dropwise and reacted at 60°C for 30 minutes. After cooling, excess alkali was neutralized with hydrochloric acid, 84 parts of xylene was added, and the organic layer was separated. This organic layer was separated and xylene was removed by distillation under reduced pressure, yielding 154 parts of the desired dimercapto diethyl sulfide. The yield of newly produced dimethylcaptodiethyl sulfide after subtracting the amount added at the beginning is 82% and the purity is 85% based on the raw material bis(2-hydroxyethyl) sulfide.
It was hot. Comparative Example 1 The reaction solution (C) described in Example 1 was placed in a similar reactor, and the method described in Example 1 was repeated without adding the sodium salt of dimercapto diethyl sulfide. The yield was 69% and the purity was 71%. Example 2 The reaction solution (D) described in Example 1 was placed in a similar reactor, and 64 parts of sodium salt of dimercapto diethyl sulfide was added and dissolved, followed by 413 parts of a 50% aqueous sodium hydroxide solution. was slowly added dropwise and allowed to react for 30 minutes while keeping the temperature below 60°C.
(Mercaptation reaction) When the method described in (Mercaptization reaction) was repeated, a new raw material bis(2
-Hydroxyethyl) sulfide yield is
The purity was 92% and the purity was 95%. Example 3 Into the same reaction apparatus as in Example 1, 74 parts of a 31.5% aqueous hydrochloric acid solution and 49 parts of thiourea were charged to form a homogeneous solution. To this solution was added 118 parts of 1-hydroxy-8-mercapto-3,6-dithiaoctane, and a thiuronium salt reaction was carried out under the same conditions as in Example 1. After cooling, divide the reaction solution into two equal parts and divide these into two equal parts.
(F) and (G). This reaction solution (F) was placed in a similar reactor, and raw materials were charged under the same conditions as above to perform the thiuronium chloride reaction again. Next, potassium salt of 1,8-dimethylcapto-3,6-dithiaoctane34 was added to the reaction solution.
After adding 217 parts of a 30% potassium hydroxide aqueous solution to the mixture to form a homogeneous solution, 217 parts of a 30% potassium hydroxide aqueous solution was slowly added dropwise, and the mixture was reacted at a temperature of 60° C. or lower for 1 hour. Thereafter, the mixture was treated in the same manner as described in Example 1 to obtain 224 parts of 1,8-dimethylcapto-3,6-dithiaoctane.
The yield after subtracting the added amount is 95%, and the purity is
It was 92%. Comparative Example 2 The reaction solution (G) prepared in Example 3 was placed in a similar reactor, and 72 parts of a 30% potassium hydroxide aqueous solution was added without adding the metal salt of 1,8-dimercapto-3,6-dithiaoctane. The mercaptation reaction and post-reaction post-treatment described in Example 3 were repeated using the following. The amount of 1,8-dimercapto-3,6-dithiaoctane obtained was 124 parts. The yield was 70% and the purity was 68%. Example 4 and Comparative Example 3 In a reactor similar to that used in Example 1, 149 parts of 31.5% hydrochloric acid and 97 parts of thiourea were charged to form a homogeneous solution. To this, 1,11-dihydroxy-3,6,9-
Trithiaundecane was added, and the thiuronium salt reaction described in Example 1 was carried out. This reaction solution was divided into two equal parts, which were designated as reaction solutions (H) and (J). The reaction solution (H) contains 1,11-dimercapto-3,6,
Example 1 was prepared by adding 44 parts of sodium salt of 9-trithiaundecane (Example 4), not adding it to the reaction solution (J) (Comparative Example 3), and using 62 parts of a 50% aqueous sodium hydroxide solution. Mercaptization reaction) The method described above was repeated, and the results obtained are shown in Table 1.

【表】 実施例5及び比較例4 実施例1で用いたのと同様の反応装置に31.5%
塩酸水溶液149部とチオ尿素97部を仕込み、均一
溶液とした。次いでこの溶液に110部の2―メル
カプト―1―メチルエチルアルコールをゆつくり
滴下し、実施例1(チウロニウム塩化反応)に記
載された方法を繰り返した。冷却後この反応液を
2等分し、これらを反応液(K),(L)とした。 反応液(K)を前述の反応器へ戻し、上記チウロニ
ウム塩化反応を繰り返した。この反応液に1,2
―ジメルカプト―1―メチルエタンのナトリウム
塩39部を添加し50%水酸化ナトリウム水溶液186
部を用いて実施例1記載のメルカプト化反応を繰
り返した。(実施例5)一方、反応液(L)及び50%
水酸化ナトリウム水溶液62部のみを用いて実施例
1記載のメルカプト化反応を繰り返した。(比較
例4)得られた1,2―ジメルカプト―1―メチ
ルエタンについての結果を第2表に示した。
[Table] Example 5 and Comparative Example 4 31.5% in the same reactor as used in Example 1
149 parts of an aqueous hydrochloric acid solution and 97 parts of thiourea were charged to form a homogeneous solution. Then 110 parts of 2-mercapto-1-methylethyl alcohol were slowly added dropwise to this solution and the method described in Example 1 (thiuronium chloride reaction) was repeated. After cooling, this reaction solution was divided into two equal parts, which were designated as reaction solutions (K) and (L). The reaction solution (K) was returned to the above-mentioned reactor, and the above-mentioned thiuronium chloride reaction was repeated. Add 1,2
-Add 39 parts of sodium salt of dimercapto-1-methylethane to 186% 50% sodium hydroxide aqueous solution
The mercaptation reaction described in Example 1 was repeated using (Example 5) On the other hand, reaction solution (L) and 50%
The mercaptation reaction described in Example 1 was repeated using only 62 parts of aqueous sodium hydroxide solution. (Comparative Example 4) Table 2 shows the results for the obtained 1,2-dimercapto-1-methylethane.

【表】 ルコールに対する収率
本発明方法にあつては、目的とする化合物の純
度、収率が共に改善されているが、これを更に明
確にするために実施例及び比較例の結果すべてを
第3表に示した。
[Table] Yield for alcohol In the method of the present invention, both the purity and yield of the target compound are improved. It is shown in Table 3.

【表】 ○:添加あり × :添加なし
「発明の効果」 本発明の方法では、モノ又はジヒドロキシポリ
(モノ)チオアルキレン類から高収率、高純度で
ポリチオアルキレンジメルカプタン類を製造する
ことが出来る。
[Table] ○: Addition ×: No addition ``Effects of the invention'' The method of the present invention makes it possible to produce polythioalkylene dimercaptans from mono- or dihydroxypoly(mono)thioalkylenes in high yield and with high purity. I can do it.

Claims (1)

【特許請求の範囲】 1 下記一般式〔1〕又は〔2〕にて示される。 HO(RS)nH …〔1〕 HO(RS)mROH …〔2〕 〔ここに、Rは炭素数2又は3からなるアルキ
レン基を、n,mは1〜4の自然数を示す〕 含硫黄化合物とチオ尿素及び鉱酸とを反応させ
チウロニウム塩となし、次いで該チウロニウム塩
をアルカリ性化合物を用いて分解し反応を完結さ
せるに当り、該チウロニウム塩の分解段階で分解
生成物と同種のポリチオアルキレンジメルカプタ
ン類の金属塩を共存させることを特徴とする下記
一般式〔3〕又は〔4〕にて示されるポリチオア
ルキレンジメルカプタン類の製造方法。 HS(RS)nH …〔3〕 HS(RS)mRSH …〔4〕 〔ここに、R,n,mについては一般式〔1〕
及び〔2〕に示されるものと同一である〕。 2 下記一般式〔1〕又は〔2〕にて示される。 HS(RS)nH …〔1〕 HS(RS)mROH …〔2〕 〔ここに、Rは炭素数2又は3からなるアルキ
レン基を、n,mは1〜4の自然数を示す〕 含硫黄化合物とチオ尿素及び鉱酸とを反応させ
チウロニウム塩となし、次いで該チウロニウム塩
をアルカリ性化合物を用いて分解し反応を完結さ
せるに当り、該チウロニウム塩の製造段階で該チ
ウロニウム塩と同種のチウロニウム塩類を共存さ
せること及び該チウロニウム塩の分解段階で分解
生成物と同種のポリチオアルキレンジメルカルプ
タン類の金属塩を共存させることを特徴とする下
記一般式〔3〕又は〔4〕にて示されるポリチオ
アルキレンジメルカプタン類の製造方法。 HS(RS)nH …〔3〕 HS(RS)mRSH …〔4〕 〔ここに、R,n,mについては一般式〔1〕
及び〔2〕に示されるものと同一である〕。
[Claims] 1 Represented by the following general formula [1] or [2]. HO(RS)nH...[1] HO(RS)mROH...[2] [Here, R represents an alkylene group having 2 or 3 carbon atoms, and n and m represent natural numbers from 1 to 4] Sulfur-containing compound is reacted with thiourea and a mineral acid to form a thiuronium salt, and then the thiuronium salt is decomposed using an alkaline compound to complete the reaction. A method for producing polythioalkylene dimercaptans represented by the following general formula [3] or [4], which comprises coexisting a metal salt of a rangemercaptan. HS(RS)nH...[3] HS(RS)mRSH...[4] [Here, for R, n, and m, use the general formula [1]
and [2]. 2 It is represented by the following general formula [1] or [2]. HS(RS)nH...[1] HS(RS)mROH...[2] [Here, R represents an alkylene group having 2 or 3 carbon atoms, and n and m represent natural numbers from 1 to 4] Sulfur-containing compound is reacted with thiourea and a mineral acid to form a thiuronium salt, and then the thiuronium salt is decomposed using an alkaline compound to complete the reaction. During the production step of the thiuronium salt, thiuronium salts of the same type as the thiuronium salt are used. It is represented by the following general formula [3] or [4], characterized in that it coexists with the thiuronium salt, and in the decomposition step of the thiuronium salt, a metal salt of the same type of polythioalkylene dimercarptane as the decomposition product coexists. A method for producing polythioalkylene dimercaptans. HS(RS)nH...[3] HS(RS)mRSH...[4] [Here, for R, n, and m, use the general formula [1]
and [2].
JP1476684A 1984-01-30 1984-01-30 Preparation of polythioaikylene dimercaptan Granted JPS60158163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1476684A JPS60158163A (en) 1984-01-30 1984-01-30 Preparation of polythioaikylene dimercaptan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1476684A JPS60158163A (en) 1984-01-30 1984-01-30 Preparation of polythioaikylene dimercaptan

Publications (2)

Publication Number Publication Date
JPS60158163A JPS60158163A (en) 1985-08-19
JPS641464B2 true JPS641464B2 (en) 1989-01-11

Family

ID=11870193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1476684A Granted JPS60158163A (en) 1984-01-30 1984-01-30 Preparation of polythioaikylene dimercaptan

Country Status (1)

Country Link
JP (1) JPS60158163A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087758A (en) * 1988-12-22 1992-02-11 Mitsui Toatsu Chemicals, Inc. Mercapto compound, a high refractive index resin and lens and a process for preparing them
JP5358182B2 (en) * 2006-04-19 2013-12-04 三井化学株式会社 Method for producing (poly) thiol compound for optical material and polymerizable composition containing the same
JP6760598B2 (en) * 2016-09-30 2020-09-23 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd Method for manufacturing polythiol compounds for optical materials

Also Published As

Publication number Publication date
JPS60158163A (en) 1985-08-19

Similar Documents

Publication Publication Date Title
JPH0321023B2 (en)
JPS641464B2 (en)
JPS641465B2 (en)
KR950008205B1 (en) Method for preparing 3-aminopropyl-2-sulphatoethylsulphone
US3397244A (en) Process for production of diaryl and di (alkaryl) sulfides
JPH0319221B2 (en)
US4185053A (en) Process for manufacturing substantially pure dialkyl phosphorochloridothionate
JPH0366300B2 (en)
JP3910232B2 (en) Mercapto compound, triol compound, and production method thereof
EP1044965B1 (en) Process for the preparation of aromatic sulfur compounds
JPS6354712B2 (en)
EP0219446B1 (en) Process for the preparation of n-tetrathiodimorpholine
JPH02172969A (en) Production of dithiol di(meth)acrylate
US3775484A (en) Process for preparing metal salts of dithiolbutanediols
US2806065A (en) Manufacture of bis-(b-hydroxyalkyl-) polysulfides
JP3794858B2 (en) Method for producing aromatic sulfur compound
JPS636545B2 (en)
JPH02145561A (en) Production of polythioalklylene dimercaptans
JP2510089B2 (en) Method for producing mercapto ether compound
JPH027950B2 (en)
JPH01268673A (en) Production of mercaptan compound
JPH11209341A (en) Production of mercaptocarboxylic acid
SU1286523A1 (en) Method of producing colloid solutions of molybdenum disulfide
JPS6372686A (en) Improved manufacture of n,n'-tetrathiodimorpholine
JPS6318941B2 (en)