JPS641452B2 - - Google Patents

Info

Publication number
JPS641452B2
JPS641452B2 JP61149253A JP14925386A JPS641452B2 JP S641452 B2 JPS641452 B2 JP S641452B2 JP 61149253 A JP61149253 A JP 61149253A JP 14925386 A JP14925386 A JP 14925386A JP S641452 B2 JPS641452 B2 JP S641452B2
Authority
JP
Japan
Prior art keywords
mmol
ethylene glycol
reaction
ethanol
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61149253A
Other languages
Japanese (ja)
Other versions
JPS635043A (en
Inventor
Takashi Masuda
Kazuhisa Murata
Akio Matsuda
Yoshihisa Watanabe
Shinichi Yoshida
Hisao Kinoshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61149253A priority Critical patent/JPS635043A/en
Publication of JPS635043A publication Critical patent/JPS635043A/en
Publication of JPS641452B2 publication Critical patent/JPS641452B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳现な説明】 〔産業䞊の利甚分野〕 本発明は䞀酞化炭玠および氎玠から液盞反応に
より゚チレングリコヌルや゚タノヌルのようなア
ルコヌルを効率よく補造する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for efficiently producing alcohols such as ethylene glycol and ethanol from carbon monoxide and hydrogen by a liquid phase reaction.

゚チレングリコヌルは、ポリ゚ステルの原料、
䞍凍剀などに利甚され、たた゚タノヌルは、溶
媒、燃料、䞍凍剀および各皮化孊原料に利甚され
るほか゚チレン原料ずしおの利甚も考えられ、い
ずれも工業的に重芁な基瀎化孊品である。
Ethylene glycol is a raw material for polyester,
Ethanol is used as an antifreeze agent, etc. Ethanol is used as a solvent, fuel, antifreeze agent, and various chemical raw materials, and may also be used as a raw material for ethylene, all of which are industrially important basic chemicals.

〔埓来の技術〕[Conventional technology]

埓来、これらの炭玠数のアルコヌルC2ア
ルコヌルは䞻ずしお石油を原料ずしお補造され
おきたが、近幎、化孊原料の倚様化を目的ずし
お、石炭、倩然ガス、重質油などの炭玠源から容
易に埗られる䞀酞化炭玠ず氎玠からこのような
C2アルコヌルを補造する技術の開発が重芁な課
題ずな぀おいる。
Traditionally, these two-carbon alcohols ( C2 alcohols) have been produced primarily from petroleum, but in recent years, with the aim of diversifying chemical raw materials, they have been produced from carbon sources such as coal, natural gas, and heavy oil. This kind of gas is produced from easily obtained carbon monoxide and hydrogen.
The development of technology to produce C2 alcohol has become an important issue.

䞀酞化炭玠ず氎玠から液盞反応により゚チレン
グリコヌルや゚タノヌルのようなC2アルコヌル
を補造する方法ずしおは、コバルト觊媒を䜿甚す
る方法米囜特蚱明现曞第2534018号、米囜特蚱
明现曞第2636046号など、ルテニりム觊媒を䜿甚
する方法米囜特蚱明现曞第4170605号、特開昭
55−115834号公報、特開昭57−109735公報など
たたロゞりム觊媒を䜿甚する方法などが提案され
おいる。
A method for producing C2 alcohols such as ethylene glycol and ethanol from carbon monoxide and hydrogen through a liquid phase reaction is a method using a cobalt catalyst (US Pat. No. 2,534,018, US Pat. No. 2,636,046, etc.). ), method using ruthenium catalyst (U.S. Pat. No. 4,170,605, JP-A-Sho
55-115834, JP 57-109735, etc.)
Also, methods using rhodium catalysts have been proposed.

ロゞりム觊媒を甚いる方法に぀いおは既に数倚
くの提案がなされおおり、助觊媒ずしお第四玚ア
ンモニりム塩特開昭51−32506号公報、アルカ
リ金属塩特開昭51−36403号公報、ビス第䞉
玚ホスフむンむミニりム塩特開昭51−63110
号公報などを添加する方法などがある。たた、
有機窒玠配䜍子を添加する方法が特開昭52−
42809号公報、特開昭52−42810号公報などに提案
されおいる。この堎合、有機窒玠配䜍子ずしおむ
ミダゟヌル類を甚いるこずも提案されおいる特
開昭59−170022号公報。さらに特開昭55−9065
号公報にはホスフむンオキシドを共存させる方法
が蚘茉されおいる。たた特開昭60−136524号公報
や特開昭60−149537号公報にはトリアルキルホス
フむンを䜿甚する方法が蚘茉されおいる。
Many proposals have already been made regarding methods using rhodium catalysts, including quaternary ammonium salts (Japanese Unexamined Patent Publication No. 51-32506), alkali metal salts (Japanese Unexamined Patent Publication No. 51-36403), and bis-catalysts. (Tertiary phosphine) iminium salt (JP-A-51-63110
There is a method of adding such as Also,
A method of adding organic nitrogen ligands was published in 1972.
This method has been proposed in JP-A No. 42809, Japanese Patent Laid-Open No. 52-42810, etc. In this case, it has also been proposed to use imidazoles as organic nitrogen ligands (Japanese Unexamined Patent Publication No. 170022/1983). Furthermore, JP-A-55-9065
The publication describes a method of coexisting phosphine oxide. Further, JP-A-60-136524 and JP-A-60-149537 describe methods using trialkylphosphines.

〔発明が解決しようずする問題点〕[Problem that the invention seeks to solve]

しかしながら、䞊蚘の方法では觊媒金属あたり
のC2アルコヌルの生成掻性タヌンオヌバヌ
数生成物モル数−atom觊媒金属・反応
時間が䜎いずいう問題がある。
However, the above method has a problem in that the production activity of C 2 alcohol per catalyst metal [turnover number: number of moles of product/(g-atom catalyst metal/reaction time)] is low.

たた、゚チレングリコヌルの盎接合成では、゚
チレングリコヌル以倖にメタノヌル、ギ酞メチ
ル、゚タノヌル等が副生成するが、埓来法では、
特開昭59−170022号公報等に瀺されるように、付
加䟡倀の䜎いメタノヌルの生成量が倚いずいう問
題があり、メタノヌルの副性を少なくし、付加䟡
倀の高い゚チレングリコヌルず゚タノヌルを合せ
たC2アルコヌルの遞択率を向䞊させるこずが実
甚的立堎から求められおいる。たたロゞりム觊媒
を甚いる堎合、その配䜍子ずしお安定性の良いも
のを甚いるこずも重芁で、前蚘むミダゟヌル類の
ばあい、その分子䞭に䞍飜和結合を有しおいるた
め安定性の点で未だ満足し埗るものではない。
In addition, in the direct synthesis of ethylene glycol, methanol, methyl formate, ethanol, etc. are produced as by-products in addition to ethylene glycol, but in the conventional method,
As shown in Japanese Unexamined Patent Publication No. 59-170022, etc., there is a problem that a large amount of methanol with low added value is produced. There is a practical need to improve the selectivity of two alcohols. In addition, when using a rhodium catalyst, it is important to use a ligand with good stability, and in the case of the imidazoles mentioned above, since they have unsaturated bonds in their molecules, they are still unstable in terms of stability. It's not something I can be satisfied with.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、䞊蚘の問題を克服するために鋭
意研究を重ねた結果、ロゞりムを含む觊媒を甚い
お、䞀酞化炭玠ず氎玠を反応させる際に反応系に
ピロリゞン類を存圚させるこずにより、埓来法の
結果から予想できない特異的に高い觊媒掻性ず遞
択性が埗られるこずを芋出し本発明をなすに至぀
た。
As a result of extensive research to overcome the above problems, the present inventors discovered that by allowing pyrrolidines to exist in the reaction system when reacting carbon monoxide and hydrogen using a catalyst containing rhodium, The present inventors have discovered that specific high catalytic activity and selectivity that could not be expected from the results of conventional methods have been achieved.

即ち本発明は、ロゞりムを含む觊媒を甚い、䞀
酞化炭玠ず氎玠を反応させる際に反応系にピロリ
ゞン類を存圚させるこずを特城ずする゚チレング
リコヌルおよび゚タノヌルを補造する方法を提䟛
するものである。
That is, the present invention provides a method for producing ethylene glycol and ethanol, which is characterized by using a rhodium-containing catalyst and allowing pyrrolidines to be present in the reaction system when carbon monoxide and hydrogen are reacted.

本発明によれば合成ガスから液盞反応により遞
択率よく゚チレングリコヌルや゚タノヌルのよう
なC2アルコヌルを補造するこずができるので本
発明の意矩は倧きい。
According to the present invention, C 2 alcohols such as ethylene glycol and ethanol can be produced with high selectivity from synthesis gas by liquid phase reaction, so the present invention has great significance.

以䞋に本発明を詳现に説明する。 The present invention will be explained in detail below.

本発明で䜿甚するピロリゞン類は匏(1)で瀺され
る。
The pyrrolidines used in the present invention are represented by formula (1).

ここではメチル、゚チル、ブチル、オクチ
ル、ドデシル、−ヒドロキシ゚チルなどのアル
キル基又はアルキル基の䞀郚がOH基で眮換され
たヒドロキシアルキル基である。たたR′は、
アルキル基又はヒドロキシアルキル基である。
Here, R is an alkyl group such as methyl, ethyl, butyl, octyl, dodecyl, 2-hydroxyethyl, or a hydroxyalkyl group in which a part of the alkyl group is substituted with an OH group. Also, R′ is H,
It is an alkyl group or a hydroxyalkyl group.

本発明で甚いられる䞀酞化炭玠ず氎玠のモル比
は通垞COH210〜であるが、奜た
しくは〜の範囲である。この混合ガ
ス合成ガスの圧力は250Kgcm2〜3000Kgcm2
奜たしくは300Kgcm2〜2000Kgcm2の範囲である。
本発明のピロリゞン類は反応溶媒ずしお甚いるこ
ずができる。たた適圓な垌釈剀により垌釈しお甚
いるこずもできる。垌釈剀ずしおはこの皮の反応
に通垞甚いられるものは䜿甚できるが、奜たしい
垌釈剀ずしおはベンれン、トル゚ン、キシレン、
デカリン、ヘキサン、ヘプタン等の炭化氎玠や
−メチルピロリドン、−゚チルピロリドンのよ
うなピロリドン類、NN′−ゞメチルむミダゟリ
ゞノンのようなアルキル尿玠類、たたはテトラハ
むドロフラン、クラりン゚ヌテル、ゞオキサン、
ゞブチル゚ヌテル、゚チルプニル゚ヌテル、テ
トラグラむム等の゚ヌテル類などがあげられる。
これらの垌釈剀は単独でも混合物ずしおも䜿甚で
きる。
The molar ratio of carbon monoxide and hydrogen used in the present invention is usually CO: H2 = 1:10 to 5:1, preferably in the range of 1:4 to 2:1. The pressure of this mixed gas (synthesis gas) is 250Kg/cm 2 to 3000Kg/cm 2
Preferably it is in the range of 300Kg/cm 2 to 2000Kg/cm 2 .
The pyrrolidines of the present invention can be used as reaction solvents. It can also be used after being diluted with a suitable diluent. As the diluent, those commonly used in this type of reaction can be used, but preferred diluents include benzene, toluene, xylene,
Hydrocarbons such as decalin, hexane, heptane and N
- pyrrolidones such as methylpyrrolidone, N-ethylpyrrolidone, alkyl ureas such as NN'-dimethylimidazolidinone, or tetrahydrofuran, crown ether, dioxane,
Examples include ethers such as dibutyl ether, ethyl phenyl ether, and tetraglyme.
These diluents can be used alone or as a mixture.

ピロリゞン類ず垌釈剀の割合はいかなる割合で
も䜿甚できるが、通垞党溶媒䞭のピロリゞン類の
割合は1wt以䞊、奜たしくは3wt以䞊である。
Although any ratio of the pyrrolidines to the diluent can be used, the ratio of the pyrrolidines in the total solvent is usually 1 wt% or more, preferably 3 wt% or more.

本発明においおは、反応条件䞋で可溶性の掻性
皮を生成しうるものであればいかなるロゞりム化
合物、ロゞりム金属でも觊媒ずしお䜿甚できる。
ロゞりム化合物ずしおは、䟋えばテトラロゞりム
ドデカカルボニル、トリスアセチルアセトン
ロゞりム、アセチルアセトナヌトゞカルボニルロ
ゞりム、酞化ロゞりム等が挙げられる。
In the present invention, any rhodium compound or rhodium metal can be used as a catalyst as long as it can produce soluble active species under the reaction conditions.
Examples of rhodium compounds include tetrarhodium dodecacarbonyl, tris(acetylacetone)
Examples include rhodium, acetylacetonatodicarbonyl rhodium, rhodium oxide, and the like.

反応溶媒䞭の觊媒濃床は、通垞金属ロゞりム換
算で反応液圓り0.01×10-3−atom〜
−atomの範囲であるが奜たしくは0.1×10-3−
atom〜−atomの範囲である。反応枩床ずし
おは、150〜350℃の範囲で行われるが、より奜た
しい枩床範囲は180〜300℃である。
The catalyst concentration in the reaction solvent is usually 0.01×10 -3 g-atom to 5 g per reaction solution in terms of metallic rhodium.
−atom range, preferably 0.1×10 −3 g−
It ranges from atom to 1 g-atom. The reaction temperature is carried out in the range of 150 to 350°C, but the more preferable temperature range is 180 to 300°C.

本発明の方法は、回分匏、連続匏のいずれの反
応様匏によ぀おも実斜可胜であり、たた反応液か
らの生成物および觊媒の分離は、蒞留、抜出等の
公知の方法により容易に行いうる。
The method of the present invention can be carried out in either batch or continuous reaction mode, and separation of the product and catalyst from the reaction solution can be easily carried out by known methods such as distillation and extraction. sell.

次に本発明を実斜䟋および比范䟋によりさらに
詳现に説明する。
Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実斜䟋  窒玠眮換した内容積20mlのしんずう匏オヌトク
レヌブむンコネル鋌補に−メチルピロリゞ
ンmlずテトラロゞりムドデカカルボニル
0.00625ミリモルを仕蟌み、COH2の混
合ガスで反応噚内を眮換した埌同組成の混合ガス
を圧入しお1800Kgcm2の䞀定圧力䞋270℃で時
間反応を行぀た。反応埌、オヌトクレヌブを冷华
し、生成物をガスクロマトグラフで分析した結
果、゚チレングリコヌル22.05ミリモル、゚タノ
ヌル10.02ミリモル、メタノヌル1.13ミリモル、
ギ酞メチル0.18ミリモルが埗られた。゚チレング
リコヌルず゚タノヌルのタヌンオヌバヌ数はそれ
ぞれ882mol−atomRhず400mol
−atomRhであ぀た。たた゚チレングリ
コヌルず゚タノヌルを合せたC2アルコヌルの遞
択率は98であ぀た。
Example 1 7 ml of N-methylpyrrolidine and tetrarhodium dodecacarbonyl were placed in a nitrogen-purged autoclave with an internal volume of 20 ml (made of Inconel steel).
After charging 0.00625 mmol and replacing the inside of the reactor with a mixed gas of CO:H 2 = 1:1, a mixed gas of the same composition was pressurized and the reaction was carried out at 270°C for 1 hour under a constant pressure of 1800 kg/cm 2 . . After the reaction, the autoclave was cooled and the products were analyzed by gas chromatography, which revealed that 22.05 mmol of ethylene glycol, 10.02 mmol of ethanol, 1.13 mmol of methanol,
0.18 mmol of methyl formate was obtained. The turnover numbers of ethylene glycol and ethanol are 882 mol/(g-atomRh)h and 400 mol/h, respectively.
(g-atomRh)h. In addition, the selectivity for C 2 alcohol, which is a combination of ethylene glycol and ethanol, was 98%.

ここで遞択率は次匏のような炭玠効率で瀺し
た。
Here, the selectivity is expressed as carbon efficiency as shown in the following formula.

゚チレングリコヌルの遞択率 ×EG×100MeOHMF×EtOH2EG ゚タノヌルの遞択率 ×EtOH×100MeOHMF×EtOH2EG MeOH゚タノヌルの生成モル数、MFギ酞
メチルの生成モル数、EtOH゚タノヌルの生成
モル数、EG゚チレングリコヌルの生成モル数 比范䟋  −メチルピロリゞンの代りに−−メチ
ルブチリルピロリゞンを甚いる他は実斜䟋ず
同様の条件で反応を行぀たずころ゚チレングリコ
ヌル0.45ミリモル、゚タノヌル0.20ミリモル、メ
タノヌル0.14が埗られたにすぎない。
Ethylene glycol selectivity = 2 x EG x 100 / MeOH + MF + 2 x EtOH + 2EG Ethanol selectivity = 2 x EtOH x 100 / MeOH + MF + 2 x EtOH + 2EG MeOH: number of moles of ethanol produced, MF: number of moles of methyl formate produced, EtOH: number of moles of ethanol produced Number of moles produced, EG: Number of moles produced of ethylene glycol Comparative Example 1 When the reaction was carried out under the same conditions as in Example 1 except that 1-(3-methylbutyryl)pyrrolidine was used instead of N-methylpyrrolidine, ethylene glycol was 0.45%. Only 0.20 mmol of ethanol and 0.14 mmol of methanol were obtained.

比范䟋  −メチルピロリゞンの代りにピロリゞンを甚
いる他は実斜䟋ず同様の条件で反応を行぀た
が、゚チレングリコヌルず゚タノヌルの生成は認
められなか぀た。
Comparative Example 2 A reaction was carried out under the same conditions as in Example 1 except that pyrrolidine was used instead of N-methylpyrrolidine, but no production of ethylene glycol and ethanol was observed.

実斜䟋  反応枩床を230℃ずする他は実斜䟋ず同様の
条件で反応を行぀たずころ、゚チレングリコヌル
4.96ミリモル、゚タノヌル0.27ミリモル、メタノ
ヌル2.12ミリモル、ギ酞メチル0.09ミリモルが埗
られた。゚チレングリコヌルず゚タノヌルのタヌ
ンオヌバヌ数はそれぞれ198mol−
atomRhず10.8mol−atomRhであ
぀た。C2アルコヌルの遞択率は82.6であ぀た。
Example 2 A reaction was carried out under the same conditions as in Example 1 except that the reaction temperature was 230°C.
4.96 mmol of ethanol, 0.27 mmol of ethanol, 2.12 mmol of methanol and 0.09 mmol of methyl formate were obtained. The turnover numbers of ethylene glycol and ethanol are each 198 mol/(g-
atomRh)h and 10.8 mol/(g-atomRh)h. The selectivity for C2 alcohol was 82.6%.

比范䟋  −メチルピロリゞンmlの代りに−メチル
ピロリドンをml甚いる他は実斜䟋ず同様の条
件で反応ず行぀たずころ、゚チレングリコヌル
0.69ミリモル、メタノヌル0.14ミリモルが埗られ
た。゚チレングリコヌルのタヌンオヌバヌ数は
27.6mol−atomRhであ぀た。
Comparative Example 3 A reaction was carried out under the same conditions as in Example 2 except that 7 ml of N-methylpyrrolidone was used instead of 7 ml of N-methylpyrrolidine.
0.69 mmol and 0.14 mmol of methanol were obtained. The turnover number of ethylene glycol is
It was 27.6 mol/(g-atomRh)h.

実斜䟋  −−ヒドロキシ゚チルピロリゞンml、
トル゚ンmlずテトラロゞりムドデカカルボニル
0.025ミリモルを甚い、反応枩床を230℃ずする他
は実斜䟋ず同様の条件で反応を行぀たずころ、
゚チレングリコヌル5.80ミリモル、゚タノヌル
0.43ミリモル、メタノヌル11.46ミリモル、ギ酞
メチル1.51ミリモルが埗られた。゚チレングリコ
ヌルのタヌンオヌバヌ数は58.0mol−
atomRhであ぀た。
Example 3 2 ml of 1-(2-hydroxyethyl)pyrrolidine,
5ml of toluene and tetrarhodium dodecacarbonyl
The reaction was carried out under the same conditions as in Example 1 except that 0.025 mmol was used and the reaction temperature was 230°C.
Ethylene glycol 5.80 mmol, ethanol
0.43 mmol, methanol 11.46 mmol and methyl formate 1.51 mmol were obtained. The turnover number of ethylene glycol is 58.0mol/(g-
atomRh)h.

比范䟋  −−ヒドロキシ゚チルピロリゞンml
およびトル゚ンmlの代りにトル゚ンmlを甚い
る他は実斜䟋ず同様の条件で行぀たずころ、゚
チレングリコヌル0.14ミリモル、メタノヌル7.55
ミリモル、ギ酞メチル3.15ミリモルが埗られた。
゚タノヌルの生成は認められなか぀た。゚チレン
グリコヌルのタヌンオヌバヌ数は1.4mol
−atomRhであ぀た。
Comparative example 4 1-(2-hydroxyethyl)pyrrolidine 2 ml
The same conditions as in Example 3 were used except that 7 ml of toluene was used instead of 5 ml of toluene. Ethylene glycol 0.14 mmol, methanol 7.55
3.15 mmol of methyl formate were obtained.
No production of ethanol was observed. The turnover number of ethylene glycol is 1.4mol/(g
-atomRh)h.

実斜䟋  反応枩床を250℃ずする他は実斜䟋ず同様の
条件で反応を行぀た。この堎合゚チレングリコヌ
ルの生成量は12.25ミリモルであり、゚タノヌル
の生成量は2.06ミリモルであ぀た。゚チレングリ
コヌルのタヌンオヌバヌ数は490mol−
atomRhであ぀た。たたメタノヌル1.47ミリ
モル、ギ酞メチル0.24ミリモルが埗られた。
Example 4 A reaction was carried out under the same conditions as in Example 1 except that the reaction temperature was 250°C. In this case, the amount of ethylene glycol produced was 12.25 mmol, and the amount of ethanol produced was 2.06 mmol. The turnover number of ethylene glycol is 490mol/(g-
atomRh)h. Additionally, 1.47 mmol of methanol and 0.24 mmol of methyl formate were obtained.

実斜䟋  溶媒ずしお−メチル−−ピロリゞン゚タノ
ヌルmlを甚いる他は実斜䟋ず同様の条件で反
応を行぀た。この堎合の゚チレングリコヌルの生
成量は8.69ミリモルであり、゚タノヌルの生成量
は1.78ミリモルであ぀た。たたメタノヌル2.94ミ
リモル、ギ酞メチル0.14ミリモルが埗られた。゚
チレングリコヌルのタヌンオヌバヌ数は348であ
぀た。
Example 5 A reaction was carried out under the same conditions as in Example 4, except that 7 ml of 1-methyl-2-pyrrolidine ethanol was used as the solvent. In this case, the amount of ethylene glycol produced was 8.69 mmol, and the amount of ethanol produced was 1.78 mmol. Additionally, 2.94 mmol of methanol and 0.14 mmol of methyl formate were obtained. The turnover number of ethylene glycol was 348.

比范䟋  −メチルピロリゞンmlの代りに−メチル
ピロリゞンmlずトリブチルホスフむンオキシド
mlを甚いる他は実斜䟋ず同様の条件で反応を
行い゚チレングリコヌル0.30ミリモル、゚タノヌ
ル0.04ミリモル、メタノヌル0.36ミリモルを埗
た。゚チレングリコヌルのタヌンオヌバヌ数は
12mol−atomRhであ぀た。
Comparative Example 5 A reaction was carried out under the same conditions as in Example 1, except that 2 ml of N-methylpyrrolidine and 5 ml of tributylphosphine oxide were used instead of 7 ml of N-methylpyrrolidine, and 0.30 mmol of ethylene glycol, 0.04 mmol of ethanol, and 0.36 mmol of methanol were used. Obtained. The turnover number of ethylene glycol is
It was 12 mol/(g-atomRh)h.

実斜䟋  −−ヒドロキシ゚チルピロリゞンml
ず−゚チルピロリドンmlを甚いる他は比范䟋
ず同じ条件で反応を行い゚チレングリコヌル
6.00ミリモル、゚タノヌル3.8ミリモル、メタノ
ヌル1.71ミリモル、ギ酞メチル0.11ミリモルを埗
た。
Example 6 2 ml of 1-(2-hydroxyethyl)pyrrolidine
The reaction was carried out under the same conditions as in Comparative Example 5 except that 5 ml of N-ethylpyrrolidone and ethylene glycol were used.
6.00 mmol of ethanol, 3.8 mmol of ethanol, 1.71 mmol of methanol, and 0.11 mmol of methyl formate were obtained.

実斜䟋  −メチルピロリゞンmlずテトラロゞりムド
デカカルボニル0.025ミリモルをオヌトクレヌブ
に仕蟌み、実斜䟋ず同様の方法で1800Kgcm2、
230℃で時間反応を行぀たずころ、゚チレング
リコヌル6.69〜ミリモル、゚タノヌル0.46ミリモ
ル、メタノヌル6.06ミリモル、ギ酞メチル0.35ミ
リモルを埗た。゚チレングリコヌルのタヌンオヌ
バヌ数は66.9mol−atomRhであ぀た。
Example 7 7 ml of N-methylpyrrolidine and 0.025 mmol of tetrarhodium dodecacarbonyl were charged into an autoclave, and 1800 kg/cm 2 was prepared in the same manner as in Example 1.
When the reaction was carried out at 230°C for 1 hour, 6.69 mmol of ethylene glycol, 0.46 mmol of ethanol, 6.06 mmol of methanol, and 0.35 mmol of methyl formate were obtained. The turnover number of ethylene glycol was 66.9 mol/(g-atomRh)h.

実斜䟋  −メチルピロリゞンmlに−メチルピロリ
ドンmlを共存させる他は実斜䟋ず同様に反応
を行い゚チレングリコヌル9.27ミリモル、゚タノ
ヌル1.23ミリモル、メタノヌル10.53ミリモル、
ギ酞メチル0.57ミリモルを埗た。゚チレングリコ
ヌルのタヌンオヌバヌ数は92.7であ぀た。実斜䟋
ず比べC2アルコヌルの生成量が増加した。
Example 8 The reaction was carried out in the same manner as in Example 7 except that 6 ml of N-methylpyrrolidine was coexisting with 1 ml of N-methylpyrrolidone. 9.27 mmol of ethylene glycol, 1.23 mmol of ethanol, 10.53 mmol of methanol,
0.57 mmol of methyl formate was obtained. The turnover number of ethylene glycol was 92.7. Compared to Example 7, the amount of C 2 alcohol produced increased.

実斜䟋  −メチルピロリゞンmlにN′−ゞメチ
ルむミダゟリゞノンmlを共存させ他は実斜䟋
ず同様に反応を行い゚チレングリコヌル9.69ミリ
モル、゚タノヌル2.10ミリモル、メタノヌル
12.45ミリモル、ギ酞メチル0.69ミリモルを埗た。
実斜䟋ず比べC2アルコヌルの生成量が増加し
た。
Example 9 1 ml of N,N'-dimethylimidazolidinone was coexisted with 6 ml of N-methylpyrrolidine, and the rest was Example 7.
Carry out the reaction in the same manner as ethylene glycol 9.69 mmol, ethanol 2.10 mmol, methanol
12.45 mmol and 0.69 mmol of methyl formate were obtained.
Compared to Example 7, the amount of C 2 alcohol produced increased.

実斜䟋 10 −メチルピロリゞンml、テトラヒドロフラ
ンmlを甚いる他は実斜䟋ず同様の条件で反応
を行぀たずころ、゚チレングリコヌル9.90ミリモ
ル、゚タノヌル0.92ミリモル、メタノヌル15.07
ミリモル、ギ酞メチル0.95ミリモルが埗られた。
゚チレングリコヌルのタヌンオヌバヌ数は
99.0mol−atomRhであ぀た。
Example 10 A reaction was carried out under the same conditions as in Example 3 except that 2 ml of N-methylpyrrolidine and 5 ml of tetrahydrofuran were used, resulting in 9.90 mmol of ethylene glycol, 0.92 mmol of ethanol, and 15.07 mmol of methanol.
0.95 mmol of methyl formate was obtained.
The turnover number of ethylene glycol is
It was 99.0 mol/(g-atomRh)h.

比范䟋  −メチルピロリゞンml、テトラヒドロフラ
ンmlの代りにテトラヒドロフランmlを甚いる
他は実斜䟋10ず同様の条件で反応を行぀たずこ
ろ、゚チレングリコヌル1.54ミリモル、メタノヌ
ル10.33ミリモル、ギ酞メチル2.36ミリモルが埗
られた。゚チレングリコヌルのタヌンオヌバヌ数
は15.4mol−atomRhであ぀た。
Comparative Example 6 A reaction was carried out under the same conditions as in Example 10 except that 2 ml of N-methylpyrrolidine and 7 ml of tetrahydrofuran were used instead of 5 ml of tetrahydrofuran. 1.54 mmol of ethylene glycol, 10.33 mmol of methanol, and 2.36 mmol of methyl formate were obtained. Ta. The turnover number of ethylene glycol was 15.4 mol/(g-atomRh)h.

実斜䟋 11 内容積40mlの磁気誘導撹拌装眮を備えたオヌト
クレヌブハステロむ補を窒玠ガスで眮換
し、アセチルアセトナヌトビスカルボニルロ
ゞりム0.1ミリモル、トリむ゜プロピルホスフむ
ン0.5ミリモル、−メチルピロリゞンml、テ
トラグラむムmlを仕蟌み、COH2の
混合ガスで眮換する。次に、宀枩で360Kgcm2の
同䞀組成の混合ガスを充填し、このオヌトクレヌ
ブを加熱し、反応系の枩床が230℃に達した時点
から時間反応を行぀た。反応枩床に到達したず
きの最高圧力は玄500Kgcm2であ぀た。
Example 11 An autoclave (manufactured by Hastelloy C) equipped with a magnetic induction stirring device with an internal volume of 40 ml was purged with nitrogen gas, and 0.1 mmol of rhodium acetylacetonate (biscarbonyl), 0.5 mmol of triisopropylphosphine, and 2 ml of N-methylpyrrolidine were added. , 3 ml of tetraglyme was charged, and the gas was replaced with a mixed gas of CO:H 2 =1:1. Next, the autoclave was filled with a mixed gas of the same composition at 360 kg/cm 2 at room temperature, and the reaction was carried out for 1 hour from the time when the temperature of the reaction system reached 230°C. The maximum pressure when the reaction temperature was reached was about 500 Kg/cm 2 .

反応終予埌オヌトクレヌブを宀枩たで冷华し、
反応生成物をガスクロマトグラフで分析したずこ
ろ、゚チレングリコヌル3.46ミリモル、゚タノヌ
ル0.16ミリモル、メタノヌル4.62ミリモル、ギ酞
メチル0.14ミリモル、その他埮量のプロパ
ンゞオヌル、グリセリン、たたガス生成物ずしお
埮量のメタン、CO2が怜出された。
At the end of the reaction, cool the autoclave to room temperature,
Analysis of the reaction products by gas chromatography revealed 3.46 mmol of ethylene glycol, 0.16 mmol of ethanol, 4.62 mmol of methanol, 0.14 mmol of methyl formate, trace amounts of 1,2-propanediol, glycerin, and trace amounts of methane and CO as gas products. 2 were detected.

゚チレングリコヌルのタヌンオヌバヌ数は
34.5mol−atomRhであ぀た。
The turnover number of ethylene glycol is
It was 34.5 mol/(g-atomRh)h.

実斜䟋 12 実斜䟋11の条件で混合ガスの圧力を宀枩で490
Kgcm2に倉曎した以倖は同䞀の条件で反応を実斜
した。なお反応枩床に到達したずきの最高圧力は
箄685Kgcm2であ぀た。
Example 12 Under the conditions of Example 11, the pressure of the mixed gas was set to 490 at room temperature.
The reaction was carried out under the same conditions except that the amount was changed to Kg/cm 2 . The maximum pressure when the reaction temperature was reached was approximately 685 Kg/cm 2 .

反応生成物をガスクロマトグラフで分析した結
果、゚チレングリコヌル5.1ミリモル、゚タノヌ
ル0.20ミリモル、メタノヌル3.88ミリモル、ギ酞
メチル0.15ミリモル、その他に埮量のプロ
パンゞオヌル、グリセリン、メタン、CO2などが
生成した。
Gas chromatographic analysis of the reaction products revealed that 5.1 mmol of ethylene glycol, 0.20 mmol of ethanol, 3.88 mmol of methanol, 0.15 mmol of methyl formate, and trace amounts of 1,2-propanediol, glycerin, methane, and CO 2 were produced.

゚チレングリコヌルのタヌンオヌバヌ数は
51.0mol−atomRhであ぀た。
The turnover number of ethylene glycol is
It was 51.0 mol/(g-atomRh)h.

実斜䟋 13 −メチルピロリゞンに代え−−オクチル
ピロリゞンを䜿甚した以倖は、実斜䟋11の条件で
時間反応を行぀た。
Example 13 A reaction was carried out for 2 hours under the conditions of Example 11, except that N-n-octylpyrrolidine was used instead of N-methylpyrrolidine.

反応生成物のガスクロマトグラフによる分析結
果は、゚チレングリコヌル5.67ミリモル、゚タノ
ヌル0.13ミリモル、メタノヌル4.31ミリモル、ギ
酞メチル0.25ミリモルであり、その他に埮量の
プロパンゞオヌル、グリセリン、メタン、
CO2などが怜出された。たた、゚チレングリコヌ
ルのタヌンオヌバヌ数28.3mol−atomRh
が埗られた。
Gas chromatographic analysis of the reaction products revealed 5.67 mmol of ethylene glycol, 0.13 mmol of ethanol, 4.31 mmol of methanol, 0.25 mmol of methyl formate, and trace amounts of 1,2-propanediol, glycerin, methane,
CO 2 etc. were detected. In addition, the turnover number of ethylene glycol is 28.3 mol/(g-atomRh)
h was obtained.

実斜䟋 14 実斜䟋13の条件で−−オクチルピロリゞン
0.5ml、テトラグラむム4.5mlを䜿甚しお反応を行
぀た。
Example 14 N-n-octylpyrrolidine under the conditions of Example 13
The reaction was carried out using 0.5 ml of tetraglyme and 4.5 ml of tetraglyme.

反応生成物をガスクロマトグラフで分析した結
果、゚チレングリコヌル4.75ミリモル、゚タノヌ
ル0.05ミリモル、メタノヌル4.12ミリモル、ギ酞
メチル0.34ミリモル、その他に埮量の生成物ずし
おプロパンゞオヌル、グリセリン、メタ
ン、CO2などが怜出された。
Gas chromatographic analysis of the reaction products revealed 4.75 mmol of ethylene glycol, 0.05 mmol of ethanol, 4.12 mmol of methanol, 0.34 mmol of methyl formate, and trace amounts of other products such as 1,2-propanediol, glycerin, methane, and CO2 . was detected.

゚チレングリコヌルのタヌンオヌバヌ数は
2.37mol−atomRhであ぀た。
The turnover number of ethylene glycol is
It was 2.37 mol/(g-atomRh)h.

実斜䟋 15 実斜䟋13で−−オクチルピロリゞンに換え
−−ドデシルピロリゞンmlを䜿甚し、反応
枩床220℃で時間反応を行぀た。
Example 15 In Example 13, 2 ml of N-n-dodecylpyrrolidine was used instead of N-n-octylpyrrolidine, and the reaction was carried out at a reaction temperature of 220°C for 2 hours.

反応生成物をガスクロマトグラフで分析した結
果、゚チレングリコヌル3.12ミリモル、゚タノヌ
ル0.03ミリモル、メタノヌル2.70ミリモル、ギ酞
メチル0.33ミリモル、その他にプロパンゞ
オヌル、グリセリン、メタン、CO2など埮量の成
分が生成した。
Gas chromatographic analysis of the reaction products revealed that 3.12 mmol of ethylene glycol, 0.03 mmol of ethanol, 2.70 mmol of methanol, 0.33 mmol of methyl formate, and trace amounts of other components such as 1,2 propanediol, glycerin, methane, and CO 2 were produced. .

゚チレングリコヌルのタヌンオヌバヌ数は
23.7mol−atomRhであ぀た。
The turnover number of ethylene glycol is
It was 23.7 mol/(g-atomRh)h.

実斜䟋 16 実斜䟋11ず同様のオヌトクレヌブを䜿甚しお、
アセチルアセトナヌトビスカルボニルロゞり
ム1.0ミリモル、トリむ゜プロピルホスフむン2.0
ミリモル、−メチルピロリゞン0.5ml、
N′−ゞメチルむミダゟリゞノンmlを仕蟌み、
220℃で15分間反応を行぀た。
Example 16 Using the same autoclave as Example 11,
Acetylacetonate (biscarbonyl) rhodium 1.0 mmol, triisopropylphosphine 2.0
mmol, N-methylpyrrolidine 0.5ml, N,
Add 5 ml of N'-dimethylimidazolidinone,
The reaction was carried out at 220°C for 15 minutes.

反応生成物をガスクロマトグラフで分析した結
果、゚チレングリコヌル7.08ミリモル、゚タノヌ
ル0.09ミリモル、メタノヌル3.48ミリモル、ギ酞
メチル0.21ミリモル、その他に埮量のプロ
パンゞオヌル、グリセリン、メタン、CO2などが
生成した。この時の、゚チレングリコヌルのタヌ
ンオヌバヌ数は28.3mol−atomRhで
あ぀た。
Gas chromatographic analysis of the reaction products revealed that 7.08 mmol of ethylene glycol, 0.09 mmol of ethanol, 3.48 mmol of methanol, 0.21 mmol of methyl formate, and trace amounts of 1,2-propanediol, glycerin, methane, and CO 2 were produced. At this time, the turnover number of ethylene glycol was 28.3 mol/(g-atomRh)h.

実斜䟋 17 磁気誘導撹拌装眮を備えた内容積200mlのオヌ
トクレヌブハステロむ補の内郚を良く窒玠
ガスで眮換し、アセチルアセトナヌトビスカル
ボニルロゞりム1.4ミリモル、トリむ゜プロピ
ルホスフむン7.0ミリモル、−メチルピロリゞ
ン15ml、テトラグラむム45mlを仕蟌み、オヌトク
レヌブ内をCOH2の混合ガスで眮換し
た埌、同組成の混合ガスを圧入し520Kgcm2の䞀
定圧力䞋、240℃で時間、反応させた。
Example 17 The inside of a 200 ml autoclave (manufactured by Hastelloy C) equipped with a magnetic induction stirring device was thoroughly replaced with nitrogen gas, and 1.4 mmol of rhodium acetylacetonate (biscarbonyl), 7.0 mmol of triisopropylphosphine, and N- After charging 15 ml of methylpyrrolidine and 45 ml of tetraglyme and replacing the inside of the autoclave with a mixed gas of CO:H 2 = 1:1, a mixed gas of the same composition was introduced under pressure and the mixture was heated at 240°C under a constant pressure of 520 kg/cm 2 . time to react.

反応終了埌オヌトクレヌブを冷华し、反応生成
物を取り出しガスクロマトグラフで分析した結
果、゚チレングリコヌル54.50ミリモル、゚タノ
ヌル4.55ミリモル、メタノヌル64.30ミリモル、
ギ酞メチル0.78ミリモル、その他に埮量の
プロパンゞオヌル、グリセリン、メタン、CO2な
どが埗られた。この時の、゚チレングリコヌルの
タヌンオヌバヌ数は38.92mol−atomRh
であ぀た。
After the reaction was completed, the autoclave was cooled, and the reaction products were taken out and analyzed by gas chromatography. As a result, ethylene glycol 54.50 mmol, ethanol 4.55 mmol, methanol 64.30 mmol, methanol 64.30 mmol,
Methyl formate 0.78 mmol, plus trace amounts of 1,2
Propanediol, glycerin, methane, CO2 , etc. were obtained. At this time, the turnover number of ethylene glycol is 38.92 mol/(g-atomRh)
It was h.

実斜䟋 18 実斜䟋13の条件で−−オクチルピロリゞン
0.048ml、テトラグラむム5.0mlを䜿甚しお反応を
行぀た。
Example 18 N-n-octylpyrrolidine under the conditions of Example 13
The reaction was carried out using 0.048 ml and 5.0 ml of tetraglyme.

反応生成物をガスクロマトグラフで分析した結
果、゚チレングリコヌル2.41ミリモル、゚タノヌ
ル0.01ミリモル、メタノヌル6.21ミリモル、ギ酞
メチル0.45ミリモル、その他に埮量の生成物ずし
おプロパンゞオヌル、グリセリン、メタ
ン、CO2などが怜出された。
Gas chromatographic analysis of the reaction products revealed 2.41 mmol of ethylene glycol, 0.01 mmol of ethanol, 6.21 mmol of methanol, 0.45 mmol of methyl formate, and trace amounts of other products such as 1,2-propanediol, glycerin, methane, and CO2 . was detected.

゚チレングリコヌルのタヌンオヌバヌ数は
12.1mol−atomRhであ぀た。
The turnover number of ethylene glycol is
It was 12.1 mol/(g-atomRh)h.

実斜䟋 19 実斜䟋13の条件で−−オクチルピロリゞン
0.12ml、テトラグラむム5.0mlを䜿甚しお反応を
行぀た。
Example 19 N-n-octylpyrrolidine under the conditions of Example 13
The reaction was carried out using 0.12 ml and 5.0 ml of tetraglyme.

反応生成物をガスクロマトグラフで分析した結
果、゚チレングリコヌル3.13ミリモル、゚タノヌ
ル0.01ミリモル、メタノヌル5.82ミリモル、ギ酞
メチル0.39ミリモル、その他に埮量の生成物ずし
おプロパンゞオヌル、グリセリン、メタ
ン、CO2などが怜出された。
Gas chromatography analysis of the reaction products revealed 3.13 mmol of ethylene glycol, 0.01 mmol of ethanol, 5.82 mmol of methanol, 0.39 mmol of methyl formate, and trace amounts of other products such as 1,2-propanediol, glycerin, methane, and CO2 . was detected.

゚チレングリコヌルのタヌンオヌバヌ数は
15.7mol−atomRhであ぀た。
The turnover number of ethylene glycol is
It was 15.7 mol/(g-atomRh)h.

〔効果〕〔effect〕

本発明の方法によれば、埓来の觊媒系では実斜
するこずのできなか぀たような高い収率で゚チレ
ングリコヌルや゚タノヌルのようなC2アルコヌ
ルを補造するこずが可胜である。
According to the method of the present invention, it is possible to produce C2 alcohols such as ethylene glycol and ethanol in high yields that were not possible with conventional catalyst systems.

Claims (1)

【特蚱請求の範囲】  ロゞりムを含有する觊媒を甚いお、䞀酞化炭
玠ず氎玠を反応させる際に反応系に䞋蚘の匏(1)
匏䞭、はアルキル基又はアルキル基の䞀郚が
OH基で眮換されたヒドロキシアルキル基であ
り、R′は、アルキル基又はヒドロキシアルキ
ル基であるで瀺されるピロリゞン類を存圚させ
るこず䜆し、トリアルキルホスフむンオキシド
を䜵甚する堎合を陀くを特城ずする゚チレング
リコヌルおよび゚タノヌルの補造方法。
[Claims] 1. When carbon monoxide and hydrogen are reacted using a rhodium-containing catalyst, the following formula (1) is added to the reaction system:
(In the formula, R is an alkyl group or a part of the alkyl group is
The presence of a pyrrolidine represented by a hydroxyalkyl group substituted with an OH group, where R' is H, an alkyl group, or a hydroxyalkyl group (unless trialkylphosphine oxide is used in combination) A method for producing ethylene glycol and ethanol, characterized by:
JP61149253A 1986-06-25 1986-06-25 Production of 2c alcohol Granted JPS635043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61149253A JPS635043A (en) 1986-06-25 1986-06-25 Production of 2c alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61149253A JPS635043A (en) 1986-06-25 1986-06-25 Production of 2c alcohol

Publications (2)

Publication Number Publication Date
JPS635043A JPS635043A (en) 1988-01-11
JPS641452B2 true JPS641452B2 (en) 1989-01-11

Family

ID=15471217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61149253A Granted JPS635043A (en) 1986-06-25 1986-06-25 Production of 2c alcohol

Country Status (1)

Country Link
JP (1) JPS635043A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135050A (en) * 1988-11-12 1990-05-23 Urashima Shokuhin Kogyo Kk Preparation of sheet food composed mainly of cheese
CN103537282B (en) * 2013-10-11 2016-04-06 浙江倧孊 For the synthesis of gas synthesizing alcohol methanogenic rhodium base catalyst in parallel and preparation method thereof

Also Published As

Publication number Publication date
JPS635043A (en) 1988-01-11

Similar Documents

Publication Publication Date Title
Berberich et al. Homoleptic lanthanide amides as homogeneous catalysts for the Tishchenko reaction
US5032618A (en) Process for producing methanol form synthesis gas, in the liquid phase
JPS6220171B2 (en)
JPS58121232A (en) Manufacture of glycol monoalkyl ether
Tindall et al. Ru0 or RuII: A Study on Stabilizing the “Activated” Form of Ru-PNP Complexes with Additional Phosphine Ligands in Alcohol Dehydrogenation and Ester Hydrogenation
US4348541A (en) Methanol homologation using cobalt-ruthenium catalysts
US4158100A (en) Process for the preparation of β-phenylethyl alcohol via homologation
EP0504981A1 (en) Catalyst system and process for the liquid-phase production of methanol from synthesis gas
JPS5829729A (en) Preparation of alkane polyol
JPS5918371B2 (en) Method for producing ethanol and n-propanol from methanol
CA1178974A (en) Alkanols from synthesis gas
JPS6015607B2 (en) Manufacturing method of ethylene glycol
JPS641452B2 (en)
US4332915A (en) Production of alkanols from synthesis gas
JPS6351129B2 (en)
US9174905B2 (en) Process for telomerization of butadiene using a mono-orthoalkoxy substituted catalyst
NZ201464A (en) Preparation of glycol aldehyde
EP0039061A1 (en) Preparation of amines from olefins using certain transition metal catalysts
EP0675129A1 (en) Process for preparing hetero substituted acetals
JP2664046B2 (en) Method for producing alcohols from carbon dioxide
JPS599528B2 (en) Ethanol manufacturing method
KR102657357B1 (en) The method for preparing carbamate compounds from amine compounds and the catalyst thereof
US4558157A (en) Synthesis of dimethylformamide
Sapienza et al. Low temperature catalysts for methanol production
JPS6055047B2 (en) Method for producing aliphatic alcohols

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term