JPS641403B2 - - Google Patents

Info

Publication number
JPS641403B2
JPS641403B2 JP58091084A JP9108483A JPS641403B2 JP S641403 B2 JPS641403 B2 JP S641403B2 JP 58091084 A JP58091084 A JP 58091084A JP 9108483 A JP9108483 A JP 9108483A JP S641403 B2 JPS641403 B2 JP S641403B2
Authority
JP
Japan
Prior art keywords
furnace
activation
steam
zone
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58091084A
Other languages
Japanese (ja)
Other versions
JPS59217612A (en
Inventor
Takeo Sakai
Nobuyoshi Abe
Kozo Yabiku
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEIHAN RENTAN KOGYO CO Ltd
Original Assignee
KEIHAN RENTAN KOGYO CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEIHAN RENTAN KOGYO CO Ltd filed Critical KEIHAN RENTAN KOGYO CO Ltd
Priority to JP58091084A priority Critical patent/JPS59217612A/en
Publication of JPS59217612A publication Critical patent/JPS59217612A/en
Publication of JPS641403B2 publication Critical patent/JPS641403B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は活性炭の連続製造装置に関するもので
ある。 一般に活性炭は流動炉、ロータリーキルン、ヘ
レシヨフ型多段床炉、多段流動炉などを用い、炉
内に連続式に、または回分式に原料炭材を装入
し、これを加熱昇温し、蒸気を適当量吹込み、賦
活して製造されている。いずれの方法も設備的に
いろいろな問題があり、均質な活性炭を得ること
は困難である。 本発明者らは従来使用されている活性炭再生装
置を製造炉として使用し、改造の為の基礎実験を
行つて必要個所に改善を加えながら検討し、従来
の装置によつて発生していた諸問題を解決し得る
本発明の活性炭連続製造装置を完成させた。 上記の実験において発生した主なる問題点はつ
ぎのとおりである。 (1) スチームの凝縮現象による炭層内通気阻害に
よる炉内ガスの吸引力不足(−50m/m水柱以
上)。 (2) スチーム吹込み孔の閉塞によるスチームの添
加不均等。 (3) ガス引き用パイプの閉塞。 (4) 排出活性炭の水濡れによる排出機の機能障
害。 (5) タール発生によるガスパイプの閉塞。 (6) 装入原料の粒度−1m/mのものが10%以上
あることによる炉内圧の上昇(通気性悪化)。 (7) スチームの吹込み分散不良。 (8) 炉内温度のバラツキ大。 本発明者らはこれらの問題点をつぎのようにし
て解決した。 (1) 炉内ガスの吸引エゼクターの能力を上記装置
の10倍程度に大きくして吸引力不足を解消し
た。 (2) スチーム吹込み孔は原料の落下方向に対向し
て開いているので炉内圧が負圧となれば特に原
料が侵入する率は大きい。これはスチームパイ
プの噴出孔開口部上部にヒサシをつけ原料の落
下侵入を防ぐことで目的を達した。 (3) 原料が賦活して発生するCO、CO2、H2、N2
等のガス引きパイプは水平であり、原料が堆積
して閉塞しやすい形であるので、ガス導入口を
斜めにして安息角以下とし、かつ吸引孔上部に
遮蔽板を設けて目的を達した。 (4) 排出活性炭の水濡れによる排出機の機能低下
は排出機上部の冷却槽のところでスチームが冷
却し凝縮することが原因であると考えられたの
で、冷却槽の冷却を中止したところ排出機の機
能障害はなくなつた。 (5) タール発生と同時にスチームおよびCOまた
はCO2ガスと反応できる様にガス引き孔を電極
板の直上部に設置した。 (6) 原料粒度−1m/mを除外することで解決し
た。 (7) スチームの吹込みの分散化については賦活炉
(上)と賦活炉(中)の各電極板下部からの2
段階の吹込み方式とし、降下原料に斜め下また
は斜め上から吹付けるようにした。 (8) 炉内温度のバラツキは製品のバラツキに重大
な影響を及ぼす問題であるが、本発明者らは炉
壁内の対向電極板間に複数の極板を挿入し、極
板間の距離を狭くして通電することにより温度
のバラツキを少くした。 本発明者らはさらに温度と賦活の均一化を計る
ために賦活ゾーンを高さ方向に延長組合せて温度
の均一化と賦活の補填ができるように改善した。 つぎに第1図によつて従来の通電式活性炭再成
装置の構造の概略について説明する。 炉体は竪形の角筒で最上部に原料供給槽3があ
り、その下に加熱炉兼乾燥炉4、賦活炉5、冷却
槽6、排出機7、受槽8と連つて組立てられ一体
となつている。これらの内周は耐火性キヤスタブ
ル煉瓦で内張りしてあり、外周は円筒形鉄板で包
まれている。加熱炉兼乾燥炉4と賦活炉5の対向
一対の壁には同容量の電極板20がそれぞれ設置
されている。賦活炉5で賦活された炭材は下降
し、冷却槽6で冷却された後排出機7の回転によ
り受槽8に落下し、適宜受槽8の下部に設けられ
たマグネツトバルブ9によつて炉外に取出され
る。 この炉本体は気密性が要求されており、外気
(酸素)が侵入しないようになつている。例えば
原料を原料供給槽3内に装入した後は炉蓋1を用
いて水封ポツト2により外気の侵入を防ぎ、また
既に炉内に侵入している酸素の追出しには窒素ボ
ンベ15により炉内にN2ガスを吹込み酸素をパ
ージするようになつている。 炭材が原料供給槽3から加熱炉兼乾燥器4に落
下し、電極板20の電気抵抗熱により炭材を加熱
し水分および揮発分の大部分を取り除き通電性を
良くした炭材は賦活炉5にて450〜500℃の過熱水
蒸気11を吹出しノズル11′から炉内の赤熱炭
材に吹付け水性ガス反応を起させる。この結果、
CからCO、H2、CO2、CH4、などのガスが発生
しそのガスは電極20上に設けられたガス吸引孔
19を経てガス冷却機10に導かれ冷水により間
接冷却を受けて外部に取出される。加熱炉兼乾燥
炉4および賦活炉5には極板があり通電により温
度が上昇し耐火物をいためるので周壁を冷空気1
6により冷風ダクト16′を用いて炉壁を冷却し
保護している。冷却水13は冷却槽6、水封ポツ
ト2の水封用に用いられ、使用後はそれぞれ排出
される。原料の供給槽3の下部に原料のホツパー
内最低レベルを測定するレベル計17を置き、ア
ラームでしらせる様になつている。受槽内のレベ
ルはレベル計18によつて測定される。加熱炉4
の上、下と賦活炉5の上、下にそれぞれ測温計
T1,T2が設けられ、また加熱炉兼乾燥炉4、賦
活炉5、冷却槽6の圧力測定用マノメーター12
がそれぞれ設置されている。 つぎに基礎実験からの知見に基いて完成した、
本発明の装置の構造、作用、機能等について第2
図および第3図を参照しつつ説明する。 先ず原料を系外から空気輸送し、ユニローダー
21内に装入する。原料がユニローダー21の下
部のマグネツトバルブ22より原料供給ホツパー
23内に落下し、さらにその下部のマグネツトバ
ルブ24により原料供給槽25を経て乾燥炉2
6、加熱炉27、賦活炉(上)28、賦活炉
(中)29、賦活炉(下)30、冷却槽31、排
出機32、受槽33の順に降下するようにこの装
置は組立てられている。このうち26〜30まで
の各ゾーンの対向内壁に一対の電極板35が埋設
されさらに各ゾーン毎に炉空間の断面横方向に3
等分間隔で、かつ対向壁にそれぞれ平行に同一寸
法の電極板36を2個づつ懸垂させた構造になつ
ている。冷却槽31の下部には製品の排出機32
を置き、排出された製品は受槽33に貯えられ、
マグネツトバルブ34によつて炉外へ活性炭とし
て排出される。ユニローダー21にはバツグフイ
ルター37が設けられ原料粉塵を捕集するように
なつている。原料供給ホツパー23にはレベルサ
ミツト指示計LS1が設置されている。原料供給槽
25には、レベル最低指示計LS2とアラーム発信
機LA1が設置されている。温度指示計38は第2
図に示されているように26,27,28,2
9,30の各電極間の3室に上下、すなわち(5
段×6ケ)の数だけ設置されている他、冷却槽3
1にも設けられている。蒸気温度は29において
測定される。炉内圧は26,27,28,29,
30,31、のそれぞれの炉壁部分から圧力指示
計39によつて測定される。過熱蒸気は過熱蒸気
はボイラー40によつて発生され、賦活炉(上)
28と賦活炉(中)29との中間部および賦活炉
(中)29と賦活炉(下)30との中間部から電
極板によつて区切られた3室に蒸気噴出ノズルに
よつて吹込まれる。第3図に示されているように
賦活炉(上)28と賦活炉(中)29との中間部
においては41〜41のスチームパイプはいず
れも28ゾーンの電極板直下に設けられ、降下す
る炭材層に対して斜め左上、斜め右上に向つて過
熱蒸気が噴出するようになつており、また賦活炉
(中)29と賦活炉(下)30との中間部では4
2〜42″のスチームパイプは29ゾーンの電極
板間すなわち等分割された3室から降下する炭材
層の3室のそれぞれの中心部下方に設置され、そ
れぞれに斜め上左右、斜め下左右に過熱蒸気が噴
出するノズル群が設けられている。冷却水43は
ガス冷却機44および冷却槽31に供給され排水
として冷却後再使用されるかまたは系外へ排出さ
れる。冷却用空気45は炉の電極板部分の外周壁
の冷却を行うために用いられる。窒素ガスボンベ
46からのN2ガスは炉内を不活性雰囲気とする
ために用いられ、炉内圧測定検出用パイプを利用
してN2ガスを必要に応じて吹込めるよう設備さ
れている。 上記のような構造を有する本発明の活性炭の連
続装置の特徴およびその装置による効果はつぎの
ように総括することができる 1 原料供給槽25の下部に乾燥炉26を設け電
極板35,36,36,35によつて加熱し、
炭材中の水分、揮発分等の一部を揮散させるこ
とにより、炭材が賦活し易いように賦活条件を
調整することができた。 2 電極板が対向壁中に設けられた一対の相対す
る電極板35対35だけの場合では炉室内の間
隔があきすぎて、炭材が炉室内空間を上から下
へ下降する際温度のバラツキの制御がむつかし
いが、炉室内の乾燥、加熱、賦活(上、中、
下)の各ゾーン毎に、炉室空間を電極板36の
2ケを相互に並行に横方向に等間隔に設置して
3室に分割したことにより温度上昇の均一化が
達せられ、製品の品質向上に寄与するところ大
であつた。 3 一段の賦活ゾーンだけでは、炭材の賦活の均
一化が不充分であることから賦活ゾーンを上、
中、下の多段とすることにより昇温も、賦活も
充分均一化できることがわかつた。 4 従来は賦活炉室の賦活ゾーンの下部の横方向
の中心部に蒸気パイプを炉内方向に挿入し、パ
イプ円周面に刻まれたノズル孔によつて吹付け
ていたが、これでは炭材炉の局部にブローホー
ルを造り易く、抵抗の少い通気容易な部分だけ
に蒸気流が集中し、賦活が不均一となつた。本
発明の装置ではスチームパイプ41および42
の二つのノズル管群とし、41,41′,4
1″,41の一群を、降下してつくる炭材層
に斜め上向き方向に蒸気がそれぞれの炭材層に
吹付けられるように配列し、また42,42′,
42″の一群を各スチームパイプから炭材降下
方向に対し蒸気が斜め上方に吹付けられる2列
のノズル群と、蒸気が斜め下向きに吹付けられ
る2列のノズル群になるように配列したことに
よつて、下降中の炭材層を充分に撹拌し更に炭
材を左右横方向に移動し均質化を促すことがで
きた。 つぎに本発明装置を用いた活性炭製造試験結果
を旧装置を用いたときの試験結果と比較しつつ説
明する。 実施例 原料炭材として、第1表および第2表に示す品
質を有するココナツツ・チヤーを使用した。
The present invention relates to an apparatus for continuously producing activated carbon. Generally, activated carbon is produced using a fluidized fluidized furnace, rotary kiln, Hereschoff type multi-bed furnace, multi-stage fluidized bed furnace, etc. Raw carbon material is charged into the furnace continuously or batchwise, heated to raise the temperature, and then steam is released as appropriate. It is manufactured by injecting a large amount and activating it. Both methods have various problems regarding equipment, and it is difficult to obtain homogeneous activated carbon. The present inventors used a conventionally used activated carbon regeneration device as a production furnace, conducted basic experiments for modification, made improvements where necessary, and investigated various problems that were caused by the conventional device. We have completed an activated carbon continuous production device of the present invention that can solve the problem. The main problems that occurred in the above experiment are as follows. (1) Insufficient gas suction power in the furnace due to obstruction of ventilation in the coal seam due to steam condensation phenomenon (-50m/m water column or more). (2) Uneven addition of steam due to blockage of steam injection holes. (3) Blockage of gas suction pipe. (4) Functional failure of the discharger due to water wetting of the discharged activated carbon. (5) Blockage of gas pipes due to tar generation. (6) Increase in furnace pressure (deterioration of air permeability) due to more than 10% of the charged material having a particle size of -1m/m. (7) Poor dispersion of steam. (8) Large variation in furnace temperature. The present inventors solved these problems as follows. (1) The capacity of the in-furnace gas suction ejector was increased to about 10 times that of the above device to solve the problem of insufficient suction power. (2) Since the steam injection hole is open facing the direction in which the raw material falls, the rate at which the raw material enters is particularly high if the pressure inside the furnace becomes negative. This goal was achieved by installing a canopy above the steam pipe nozzle opening to prevent raw materials from falling and entering. (3) CO, CO 2 , H 2 , N 2 generated by activation of raw materials
Since the gas suction pipes of the above are horizontal and easily clogged due to accumulation of raw materials, the purpose was achieved by slanting the gas inlet to keep it below the angle of repose and installing a shielding plate above the suction hole. (4) It was thought that the deterioration in the function of the ejector due to water wetting of the ejected activated carbon was caused by the cooling and condensation of steam in the cooling tank at the top of the ejector, so when the cooling of the cooling tank was stopped, the ejector The functional impairment disappeared. (5) A gas suction hole was installed directly above the electrode plate so that it could react with steam and CO or CO 2 gas at the same time as tar generation. (6) The problem was solved by excluding the raw material particle size of -1m/m. (7) Regarding the decentralization of steam injection, two
A staged blowing method was adopted, in which the material was sprayed diagonally from below or above onto the descending material. (8) Fluctuations in furnace temperature are a problem that seriously affects product variations, but the present inventors inserted a plurality of electrode plates between opposing electrode plates in the furnace wall, and By narrowing the gap and energizing it, we reduced the variation in temperature. The present inventors further improved the method by extending and combining the activation zones in the height direction in order to equalize the temperature and activation, thereby making it possible to equalize the temperature and compensate for the activation. Next, an outline of the structure of a conventional energized activated carbon regeneration device will be explained with reference to FIG. The furnace body is a vertical rectangular tube with a raw material supply tank 3 at the top, and below it are a heating furnace/drying furnace 4, an activation furnace 5, a cooling tank 6, an ejector 7, and a receiving tank 8, which are assembled together. It's summery. Their inner circumferences are lined with refractory castable bricks, and their outer circumferences are wrapped with cylindrical iron plates. Electrode plates 20 of the same capacity are installed on a pair of opposing walls of the heating furnace/drying furnace 4 and the activation furnace 5, respectively. The activated carbon material in the activation furnace 5 descends, is cooled in a cooling tank 6, and then falls into a receiving tank 8 due to the rotation of the discharger 7, and is transferred to the furnace by a magnetic valve 9 provided at the bottom of the receiving tank 8 as appropriate. taken outside. This furnace body is required to be airtight so that outside air (oxygen) cannot enter. For example, after charging the raw materials into the raw material supply tank 3, the furnace cover 1 is used to prevent outside air from entering with the water seal pot 2, and the nitrogen cylinder 15 is used to remove oxygen that has already entered the furnace. N2 gas is blown into the tank to purge oxygen. The carbonaceous material falls from the raw material supply tank 3 into the heating furnace/dryer 4, and the carbonaceous material is heated by the electric resistance heat of the electrode plate 20 to remove most of the moisture and volatile matter and improve the electrical conductivity.The carbonaceous material is then transferred to the activation furnace. In Step 5, superheated steam 11 at 450 to 500°C is blown from the nozzle 11' onto the red-hot carbonaceous material in the furnace to cause a water gas reaction. As a result,
Gases such as CO, H 2 , CO 2 , CH 4 , etc. are generated from C, and the gases are led to the gas cooler 10 through the gas suction hole 19 provided on the electrode 20, where they are indirectly cooled with cold water and sent to the outside. is taken out. The heating furnace/drying furnace 4 and the activation furnace 5 have electrode plates, and the temperature rises when energized and damages the refractories, so cool air 1 is applied to the surrounding wall.
6, a cold air duct 16' is used to cool and protect the furnace wall. The cooling water 13 is used for sealing the cooling tank 6 and the water sealing pot 2, and is discharged after use. A level meter 17 for measuring the lowest level of the raw material in the hopper is placed at the bottom of the raw material supply tank 3, and an alarm is activated. The level in the tank is measured by a level meter 18. Heating furnace 4
Thermometers are placed above and below the activation furnace 5.
T 1 and T 2 are provided, and a manometer 12 for measuring the pressure of the heating furnace/drying furnace 4, the activation furnace 5, and the cooling tank 6 is provided.
are installed respectively. Next, we completed a system based on the findings from basic experiments.
Part 2 regarding the structure, operation, function, etc. of the device of the present invention.
This will be explained with reference to the figures and FIG. First, raw materials are pneumatically transported from outside the system and charged into the uniloader 21. The raw material falls into the raw material supply hopper 23 from the magnetic valve 22 at the lower part of the Uniloader 21, and then passes through the raw material supply tank 25 by the magnetic valve 24 at the lower part and is transferred to the drying furnace 2.
6. This device is assembled so that the heating furnace 27, the activation furnace (top) 28, the activation furnace (middle) 29, the activation furnace (bottom) 30, the cooling tank 31, the ejector 32, and the receiving tank 33 descend in this order. . A pair of electrode plates 35 are embedded in the opposing inner walls of each zone from 26 to 30, and three
It has a structure in which two electrode plates 36 of the same size are suspended at equal intervals and parallel to the opposing walls. A product discharger 32 is installed at the bottom of the cooling tank 31.
The discharged product is stored in the receiving tank 33,
The activated carbon is discharged out of the furnace by the magnetic valve 34. The uniloader 21 is provided with a bag filter 37 to collect raw material dust. A level summit indicator LS 1 is installed in the raw material supply hopper 23. The raw material supply tank 25 is equipped with a minimum level indicator LS 2 and an alarm transmitter LA 1 . Temperature indicator 38 is the second
26, 27, 28, 2 as shown in the figure
There are three chambers between each electrode of 9 and 30, upper and lower, that is, (5
In addition to the number of cooling tanks (3 x 6)
1 is also provided. Steam temperature is measured at 29. Furnace pressure is 26, 27, 28, 29,
The pressure is measured from the respective furnace wall portions 30 and 31 by pressure indicators 39. The superheated steam is generated by the boiler 40, and the superheated steam is generated by the activation furnace (upper).
The steam is blown into three chambers separated by electrode plates from the intermediate part between 28 and the activation furnace (middle) 29 and the intermediate part between the activation furnace (middle) 29 and the activation furnace (lower) 30 by a steam jet nozzle. It will be done. As shown in Fig. 3, in the intermediate part between the activation furnace (top) 28 and the activation furnace (middle) 29, steam pipes 41 to 41 are all provided directly under the electrode plate of zone 28, and descend. Superheated steam is ejected diagonally to the upper left and to the upper right with respect to the carbonaceous layer, and in the middle part between the activation furnace (middle) 29 and the activation furnace (bottom) 30,
Steam pipes of 2 to 42 inches are installed between the electrode plates of 29 zones, that is, below the center of each of the three chambers of the carbonaceous layer descending from the three equally divided chambers, and are installed diagonally upward to the left and right, and diagonally downward to the left and right. A group of nozzles from which superheated steam is ejected is provided.Cooling water 43 is supplied to a gas cooler 44 and a cooling tank 31, and is cooled as waste water and then reused or discharged to the outside of the system.Cooling air 45 is It is used to cool the outer peripheral wall of the electrode plate part of the furnace.N2 gas from the nitrogen gas cylinder 46 is used to create an inert atmosphere inside the furnace, and N2 gas is used to cool the outer peripheral wall of the electrode plate part of the furnace. 2 gases can be injected as needed.The features and effects of the continuous activated carbon apparatus of the present invention having the above-described structure can be summarized as follows.1 Raw material supply tank 25 A drying oven 26 is provided at the bottom of the drying oven 26 and heated by electrode plates 35, 36, 36, 35.
By volatilizing part of the moisture, volatile matter, etc. in the carbonaceous material, activation conditions could be adjusted so that the carbonaceous material could be easily activated. 2 If the electrode plates are only a pair of opposing electrode plates 35 to 35 provided in the opposing walls, the gap in the furnace chamber is too large, resulting in temperature variations as the carbon material descends from top to bottom in the furnace chamber space. Although it is difficult to control the drying, heating, and activation (top, middle,
For each zone (lower), the furnace chamber space is divided into three chambers by installing two electrode plates 36 in parallel with each other at equal intervals in the lateral direction, thereby achieving a uniform temperature rise and improving product quality. This greatly contributed to quality improvement. 3. Since it is insufficient to homogenize the activation of carbonaceous material with only one activation zone,
It was found that temperature rise and activation could be made sufficiently uniform by using multiple stages in the middle and bottom. 4 Conventionally, a steam pipe was inserted into the center of the lower part of the activation zone in the activation furnace chamber, and the steam was sprayed through a nozzle hole cut into the circumferential surface of the pipe. Blowholes were easily created in localized areas of the wood furnace, and steam flow was concentrated only in areas with low resistance and easy ventilation, resulting in uneven activation. In the device of the invention, the steam pipes 41 and 42
The two nozzle tube groups are 41, 41', 4
A group of 42, 42', 41 are arranged so that steam is blown obliquely upward onto the carbonaceous layer formed by descending, and 42, 42',
A group of 42" was arranged from each steam pipe so that there were two rows of nozzle groups in which steam was blown diagonally upwards with respect to the descending direction of the carbonaceous material, and two rows of nozzle groups in which steam was blown diagonally downwards. As a result, we were able to sufficiently stir the descending carbonaceous layer and move the carbonaceous material laterally to the left and right to promote homogenization. This will be explained while comparing with the test results when used.Example Coconut chir having the quality shown in Tables 1 and 2 was used as the raw carbon material.

【表】【table】

【表】 第3表は旧装置および本発明装置によつて、同
一原料から得られたココナツツ活性炭製品の粒度
分布を示し、第4表は同一原料を使用した両装置
による操業および製品品質の比較を示す。
[Table] Table 3 shows the particle size distribution of coconut activated carbon products obtained from the same raw material using the old equipment and the equipment of the present invention, and Table 4 shows a comparison of the operation and product quality of both equipment using the same raw material. shows.

【表】【table】

【表】 第4表において、本発明による製品の方がメチ
レンブルー、ヨウ素等の吸着率が大きく、またベ
ンゼンの吸収率が大きいことによつて示されるよ
うに、旧装置による製品よりも品質的にすぐれて
いる。また収率も大きい。 以上を要約すれば本発明の装置は、設備費も安
く、熱効率良く操業でき、またすぐれた品質の活
性炭を歩留りよく製造することの可能な、技術的
にも経済的にも効果の大きい活性炭の連続通電式
装置であるということができる。
[Table] In Table 4, the product according to the present invention has a higher adsorption rate for methylene blue, iodine, etc., and a higher absorption rate for benzene. It is excellent. Also, the yield is high. To summarize the above, the apparatus of the present invention has low equipment costs, can be operated with high thermal efficiency, and can produce activated carbon of excellent quality with a high yield, and is highly effective both technically and economically. It can be said that it is a continuous energization type device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の通電式活性炭再生装置の構造の
概略図であり、第2図は本発明の装置の構造の概
略図である。第3図は本発明の装置の過熱水蒸気
吹込みの状態を示す図である。 (図面中の主な符号の説明) 3……原料供給
槽、4……加熱炉兼乾燥炉、5……賦活炉、6…
…冷却槽、7……排出機、8……受槽、11′…
…過熱水蒸気吹出しノズル、20……電極、25
……原料供給槽、26……乾燥炉、27……加熱
炉、28……賦活炉(上)、29……賦活炉
(中)、30……賦活炉(下)、31……冷却槽、
32……排出機、33……受槽、35……電極
板、36……電極板、41〜41……スチーム
パイプ、42〜42″……スチームパイプ。
FIG. 1 is a schematic diagram of the structure of a conventional energized activated carbon regeneration device, and FIG. 2 is a schematic diagram of the structure of the device of the present invention. FIG. 3 is a diagram showing the state of superheated steam injection in the apparatus of the present invention. (Explanation of main symbols in the drawings) 3... Raw material supply tank, 4... Heating furnace/drying oven, 5... Activation furnace, 6...
...cooling tank, 7...discharge machine, 8...receiving tank, 11'...
... Superheated steam blowing nozzle, 20 ... Electrode, 25
... Raw material supply tank, 26 ... Drying furnace, 27 ... Heating furnace, 28 ... Activation furnace (top), 29 ... Activation furnace (middle), 30 ... Activation furnace (bottom), 31 ... Cooling tank ,
32... Discharge machine, 33... Receiving tank, 35... Electrode plate, 36... Electrode plate, 41-41... Steam pipe, 42-42''... Steam pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 密閉竪型炉室内において、原料炭材に電極に
よつて直接通電し、かつ過熱水蒸気を送り込み、
乾燥、加熱、賦活、冷却の一連の工程を連続的に
行なう活性炭の製造装置において、前記各工程を
行なうゾーンの内壁を角筒状に形成し、かつ賦活
ゾーンは、上、中、下の3段階とし、乾燥、加
熱、賦活の各ゾーンの対向内壁に電極を内設し、
各ゾーン毎に炉空間の断面横方向に等間隔に、か
つ対向壁にそれぞれ平行に複数の電極板を設置す
ると共に、上段賦活ゾーンの下部には電極板直下
部に、また中段賦活ゾーンの下部には2電極板間
隙直下部に過熱水蒸気の吹込口を設けたことを特
徴とする活性炭の製造装置。
1. In a closed vertical furnace chamber, the raw carbon material is directly energized through electrodes, and superheated steam is fed into it.
In an activated carbon production apparatus that continuously performs a series of steps of drying, heating, activation, and cooling, the inner wall of the zone in which each of the above steps is performed is formed into a rectangular tube shape, and the activation zones are divided into three regions: upper, middle, and lower. electrodes are installed on the inner walls facing each of the drying, heating, and activation zones.
A plurality of electrode plates are installed in each zone at equal intervals in the lateral direction of the cross-section of the furnace space and parallel to the opposing wall, and the lower part of the upper activation zone is directly below the electrode plate, and the lower part of the middle activation zone is installed. An activated carbon production apparatus characterized in that a superheated steam inlet is provided directly below the gap between two electrode plates.
JP58091084A 1983-05-24 1983-05-24 Apparatus for producing activated carbon Granted JPS59217612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58091084A JPS59217612A (en) 1983-05-24 1983-05-24 Apparatus for producing activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58091084A JPS59217612A (en) 1983-05-24 1983-05-24 Apparatus for producing activated carbon

Publications (2)

Publication Number Publication Date
JPS59217612A JPS59217612A (en) 1984-12-07
JPS641403B2 true JPS641403B2 (en) 1989-01-11

Family

ID=14016647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58091084A Granted JPS59217612A (en) 1983-05-24 1983-05-24 Apparatus for producing activated carbon

Country Status (1)

Country Link
JP (1) JPS59217612A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524599Y2 (en) * 1989-02-08 1993-06-22

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674124B2 (en) * 1985-12-27 1994-09-21 松下電器産業株式会社 Activation furnace and activation method
JPH0725529B2 (en) * 1990-08-15 1995-03-22 平洋商事株式会社 Energizing device for activated carbon material
US5406582A (en) * 1993-08-03 1995-04-11 Du Plessis; Cornelius Apparatus and process for activation and reactivation of carbon by electrical resistance heating in the presence of steam
JP5873615B2 (en) * 2008-12-16 2016-03-01 株式会社クレハ環境 Activated carbon activation regeneration furnace, and gas purification method and apparatus using the same
JP2015221441A (en) * 2015-08-26 2015-12-10 株式会社クレハ環境 Activation regeneration furnace for active charcoal, and method and apparatus for gas purification utilizing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524599Y2 (en) * 1989-02-08 1993-06-22

Also Published As

Publication number Publication date
JPS59217612A (en) 1984-12-07

Similar Documents

Publication Publication Date Title
EP0471357B1 (en) Method and apparatus for producing active carbon using carbon-containing material
JP2914198B2 (en) Coking furnace coal charging method and apparatus
JPS641403B2 (en)
US4207061A (en) Top-shaped lime kiln
US3947001A (en) Combustion system
JP6274126B2 (en) Ferro-coke production equipment
SU1009276A3 (en) Dry coke quenching apparatus
US2672491A (en) Electric arc furnace and cover with electrodes and feed conduits
JPH0710514A (en) Device for producing active carbon activated with internal heating steam
JP2000226618A (en) Method for recovering exhaust heat in cooler for sintered ore and cooler for sintered ore
KR20130098601A (en) Sintering apparatus and controlling method thereof
CN205990415U (en) A kind of monolayer for being reduced directly the mode of production heats and frequency modulation type rotary hearth furnace
SU940829A1 (en) Gas distributing grate for fluidised bed apparatus
KR100543184B1 (en) equipments for improving the permeability of sintering bed
RU2499035C1 (en) Method of activating coal particles in vertical axially symmetrical annular chamber
CN216205319U (en) Pyrite feeding device and roasting equipment thereof
CN216727291U (en) Vertical regenerative furnace for granular waste activated carbon
US4347614A (en) Apparatus for refining ferrosilicon
SU565689A1 (en) Apparatus for purifying high-temperature gases
CN212417972U (en) Continuous waste activated carbon regeneration furnace
JP4022655B2 (en) Heating method of coal particles charged near the top of coke carbonization furnace
US244199A (en) Process of drying molds for casting pipes and apparatus therefor
SU866372A1 (en) Shaft cooler of lumpy material
RU2138748C1 (en) Furnace for combined annealing of raw powder
US2497106A (en) Apparatus for pyrolytic conversion of hydrocarbons