JPS641332B2 - - Google Patents

Info

Publication number
JPS641332B2
JPS641332B2 JP18750781A JP18750781A JPS641332B2 JP S641332 B2 JPS641332 B2 JP S641332B2 JP 18750781 A JP18750781 A JP 18750781A JP 18750781 A JP18750781 A JP 18750781A JP S641332 B2 JPS641332 B2 JP S641332B2
Authority
JP
Japan
Prior art keywords
power unit
pressure
fluid
elastic member
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18750781A
Other languages
Japanese (ja)
Other versions
JPS5889420A (en
Inventor
Akyoshi Kimura
Masao Ishihama
Toshiaki Abe
Kyoshi Shimada
Shinichi Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP18750781A priority Critical patent/JPS5889420A/en
Priority to US06/438,756 priority patent/US4531484A/en
Priority to EP82110175A priority patent/EP0081085B1/en
Priority to DE8282110175T priority patent/DE3270291D1/en
Publication of JPS5889420A publication Critical patent/JPS5889420A/en
Publication of JPS641332B2 publication Critical patent/JPS641332B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/12Arrangement of engine supports
    • B60K5/1283Adjustable supports, e.g. the mounting or the characteristics being adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/26Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Arrangement Of Transmissions (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Description

【発明の詳細な説明】 この発明はパワーユニツトのマウンテイング装
置、詳しくは、流体の充填された受圧室が画成さ
れた弾性体を車体とパワーユニツトとの間に介装
し、パワーユニツトの二次振動に同期した圧力変
動をアクチユエータにより受圧室内の流体に与
え、この圧力変動が二次振動による流体の圧力変
動と逆位相を有するようアクチユエータを制御
し、パワーユニツトの二次振動を減衰するよう構
成されたマウンテイング装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a mounting device for a power unit, and more specifically, an elastic body having a pressure receiving chamber filled with fluid is interposed between a vehicle body and a power unit, and a mounting device for mounting a power unit is provided. The actuator applies pressure fluctuations in synchronization with the secondary vibrations to the fluid in the pressure receiving chamber, and controls the actuator so that this pressure fluctuation has an opposite phase to the fluid pressure fluctuations caused by the secondary vibrations, thereby damping the secondary vibrations of the power unit. The present invention relates to a mounting device configured as such.

車体とパワーユニツトとの間に設けられるマウ
ンテイング装置にあつては、走行時に車体側から
の比較的低周波数大振幅の振動と、パワーユニツ
トの発生する高周波数小振幅の振動と、が負荷さ
れる。この後者の高周波数小振幅の振動は、パワ
ーユニツトの二次振動すなわちエンジンのピスト
ンの往復動に起因して生じる振動を主要素として
おり、この振動が、車体側へは音として伝達さ
れ、車輌の乗心地を悪化させる原因となつてい
る。このため、従来、この高周波振動を減衰する
マウンテイング装置が種々提案され、例えば米国
特許第4154206号明細書に開示されたようなもの
が知られている。その構成を第1図に基づいて説
明すると、1は自動車車体であり、該車体1には
取付け部材2が固定され、取付け部材2には弾性
部材3の一端が固定されている。4は車体1に取
付けられた図示しないエンジンのハウジングであ
り、該ハウジング4にはブラケツト5が固定され
ている。ブラケツト5には弾性部材3の他端が固
定されている。弾性部材3内には室部6が形成さ
れており、該室部6は弾性部材3に固定された蓋
7によつて閉鎖されている。8はハウジング4に
一端が固定された円筒状のケーシングであり、該
ケーシング8は柔軟な弾性材料からなる壁部10
により一端開口が閉止され、他端開口は閉止板1
1により閉止されている。この結果、ケーシング
8、壁部10、閉止板11により室12が画成さ
れる。壁部10にはアクチユエータロツド13の
一端が取付けられており、該アクチユエータロツ
ド13の他端はハウジング4内部のエンジンのク
ランクシヤフトと連動して回転する軸14に取付
けられたカム15と接触している。これらケーシ
ング8と壁部10と閉止板11とアクチユエータ
ロツド13とは全体としてアクチユエータ16を
構成している。アクチユエータ16の室12と弾
性部材3の室部6とには非圧縮性流体が充填され
ており、室12と室部6とは非圧縮性流体で満た
された導管9によつて連通されている。このよう
な構成において、弾性部材3にエンジンのピスト
ンの往復運動によつて生じた振動がハウジング
4、ブラケツト5を介して伝達されると、弾性部
材3はブラケツト5と車体1との間で伸縮する。
この伸縮により室部6内の非圧縮性流体に圧力変
動が発生し、圧力波となつて導管9を通じてアク
チユエータ16の室12へと伝播する。一方、エ
ンジンのクランクシヤフトと連通して軸14が回
転しているため、カム15もこれと一体に回転す
る。その結果、カム15に当接するアクチユエー
タロツド13がカム面に従つて往復運動し、室1
2内の流体に圧力変動を生じさせる。このカム1
5の回転は、エンジンのクランクシヤフトの回
転、換言するとエンジンのピストンの往復運動、
と連動しているため、該往復運動に伴なつて生ず
る振動による弾性部材3の伸縮と同期している。
すなわち、弾性部材3が収縮するとき、カム面の
平坦部がアクチユエータロツド13の先端と接触
する位置に来る。その結果、アクチユエータロツ
ド13は壁部10の弾性復元力により図の右側方
向へ動いて室12が広がり、該室12内の流体に
弾性部材3の室部6と逆の圧力変動を生じさせ
る。逆に、収縮していた弾性部材3が伸長し元の
状態に復帰するときは、カム面の突出部がアクチ
ユエータロツド13を図の左側方向へ動かし、室
12を狭めて該室12内の流体に弾性部材3の室
部6と逆の圧力変動を生じさせる。このように、
弾性部材3で発生する流体の圧力変動をアクチユ
エータ16で吸収することにより該弾性部材3の
動ばね定数を低減することができるので、弾性体
のみで一体形成されたものよりも、より高い周波
数の振動まで吸収できる。
The mounting device installed between the vehicle body and the power unit is subjected to relatively low-frequency, large-amplitude vibrations from the vehicle body side and high-frequency, small-amplitude vibrations generated by the power unit when the vehicle is running. Ru. The latter high-frequency, small-amplitude vibration is mainly composed of secondary vibrations of the power unit, that is, vibrations caused by the reciprocating motion of the engine's pistons, and this vibration is transmitted to the vehicle body as sound and is transmitted to the vehicle body. This causes the ride quality to deteriorate. For this reason, various mounting devices that dampen this high frequency vibration have been proposed in the past, and for example, one disclosed in US Pat. No. 4,154,206 is known. The structure will be explained based on FIG. 1. Reference numeral 1 denotes an automobile body, a mounting member 2 is fixed to the vehicle body 1, and one end of an elastic member 3 is fixed to the mounting member 2. Reference numeral 4 designates an engine housing (not shown) attached to the vehicle body 1, and a bracket 5 is fixed to the housing 4. The other end of the elastic member 3 is fixed to the bracket 5. A chamber 6 is formed within the elastic member 3, and the chamber 6 is closed by a lid 7 fixed to the elastic member 3. Reference numeral 8 denotes a cylindrical casing having one end fixed to the housing 4, and the casing 8 has a wall portion 10 made of a flexible elastic material.
The opening at one end is closed by the closing plate 1, and the opening at the other end is closed by the closing plate 1.
1 is closed. As a result, a chamber 12 is defined by the casing 8, the wall portion 10, and the closing plate 11. One end of an actuator rod 13 is attached to the wall portion 10, and the other end of the actuator rod 13 is attached to a cam 15 attached to a shaft 14 that rotates in conjunction with the crankshaft of the engine inside the housing 4. is in contact with. These casing 8, wall portion 10, closing plate 11, and actuator rod 13 constitute an actuator 16 as a whole. The chamber 12 of the actuator 16 and the chamber 6 of the elastic member 3 are filled with an incompressible fluid, and the chamber 12 and the chamber 6 are communicated by a conduit 9 filled with the incompressible fluid. There is. In such a configuration, when vibrations generated by the reciprocating motion of the engine piston are transmitted to the elastic member 3 via the housing 4 and the bracket 5, the elastic member 3 expands and contracts between the bracket 5 and the vehicle body 1. do.
This expansion and contraction causes pressure fluctuations in the incompressible fluid within the chamber 6, which propagate as pressure waves through the conduit 9 to the chamber 12 of the actuator 16. On the other hand, since the shaft 14 rotates in communication with the engine crankshaft, the cam 15 also rotates together with it. As a result, the actuator rod 13 in contact with the cam 15 reciprocates according to the cam surface, and the chamber 1
This causes pressure fluctuations in the fluid within 2. This cam 1
5 rotation is the rotation of the engine crankshaft, in other words, the reciprocating movement of the engine piston,
Since it is interlocked with the reciprocating movement, it is synchronized with the expansion and contraction of the elastic member 3 due to the vibration that occurs with the reciprocating movement.
That is, when the elastic member 3 contracts, the flat portion of the cam surface comes into contact with the tip of the actuator rod 13. As a result, the actuator rod 13 moves to the right in the figure due to the elastic restoring force of the wall 10, expanding the chamber 12, causing pressure fluctuations in the fluid in the chamber 12 opposite to those in the chamber 6 of the elastic member 3. let Conversely, when the elastic member 3 that had been contracted expands and returns to its original state, the protrusion on the cam surface moves the actuator rod 13 to the left in the figure, narrowing the chamber 12 and causing the inside of the chamber 12 to narrow. This causes pressure fluctuations in the fluid opposite to those in the chamber 6 of the elastic member 3. in this way,
By absorbing fluid pressure fluctuations generated in the elastic member 3 with the actuator 16, the dynamic spring constant of the elastic member 3 can be reduced. It can even absorb vibrations.

しかしながら、一般に流体中を伝播する圧力波
は流体の種類により伝播速度が決定されるため、
ある距離だけ離れた2点間では該圧力波の位相に
ずれが生ずる。この位相のずれは周波数の増大と
ともに増大する。例えば、4サイクル直列4気筒
エンジンを搭載した自動車のエンジンマウント装
置の弾性部材とアクチユエータとの距離が1m
で、流体が水、圧力伝播速度が1800m/secであ
る場合を仮定すると、エンジンの回転速度が
1200rpmで40Hzの周波数の振動が生じ、圧力波の
波長が45m、弾性部材とアクチユエータとにおけ
る圧力波の位相のずれは8度となる。また、回転
速度が2400rpmでは周波数80Hzの振動が生じ、圧
力波の波長22.5m、位相のずれは16度となる。こ
の結果、前述したような従来の自動車用エンジン
マウント装置において行なつているように、弾性
部材の振動と同期させてアクチユエータロツドを
作動させていたのでは、圧力波の位相のずれによ
りエンジン回転速度が増大するにつれて、弾性部
材で発生した非圧縮性流体の圧力変動をアクチユ
エータで完全に吸収できなくなる、すなわち周波
数の高いエンジンの振動を吸収できなくなる、た
めこもり音が発生するという問題点があつた。
However, in general, the propagation speed of pressure waves propagating in a fluid is determined by the type of fluid, so
A phase shift occurs in the pressure waves between two points separated by a certain distance. This phase shift increases with increasing frequency. For example, the distance between the elastic member and actuator of the engine mount device of a car equipped with a 4-cycle in-line 4-cylinder engine is 1 m.
So, assuming that the fluid is water and the pressure propagation velocity is 1800 m/sec, the engine rotational speed is
Vibration with a frequency of 40 Hz occurs at 1200 rpm, the wavelength of the pressure wave is 45 m, and the phase shift of the pressure wave between the elastic member and the actuator is 8 degrees. Furthermore, when the rotation speed is 2400 rpm, vibrations with a frequency of 80 Hz occur, the wavelength of the pressure wave is 22.5 m, and the phase shift is 16 degrees. As a result, if the actuator rod is actuated in synchronization with the vibration of the elastic member, as is done in the conventional automobile engine mount device as described above, the phase shift of the pressure waves will cause the engine As the rotational speed increases, the actuator becomes unable to completely absorb the pressure fluctuations of the incompressible fluid generated in the elastic member, that is, it becomes unable to absorb the high-frequency vibrations of the engine, leading to the generation of muffled noise. It was hot.

この発明は、このような従来の問題点に着目し
てなされたもので、車体とパワーユニツトとの間
に介装されて該パワーユニツトの二次振動に伴い
伸縮変形する弾性部材と、該弾性部材内に容積変
化自在に画成されて流体が充填される受圧室と、
前記パワーユニツトの二次振動に同期した信号を
出力する振動検出手段と、所定の制御信号に従つ
て動作し、前記パワーユニツトの二次振動と同一
周波数で、かつ位相が制御された圧力変動を発生
し、該圧力変動を所定管路長の導管内の流体を介
して前記受圧室内の流体に与えるアクチユエータ
とを備えるとともに、前記導管の管路長および該
導管内に介在する流体を伝播する圧力波の伝播速
度に対応して前記振動検出手段からの信号を遅延
させ、該遅延信号を前記所定の制御信号として出
力する位相整合回路と、を備えて、上記問題点を
解決することを目的としている。
The present invention has been made by focusing on such conventional problems. a pressure receiving chamber defined within the member so as to be able to change its volume and filled with fluid;
vibration detection means that outputs a signal synchronized with the secondary vibration of the power unit; and vibration detection means that operates according to a predetermined control signal and detects pressure fluctuations at the same frequency as the secondary vibration of the power unit and whose phase is controlled. and an actuator that generates the pressure fluctuation and applies the pressure fluctuation to the fluid in the pressure receiving chamber through the fluid in the conduit having a predetermined length, and the pressure that propagates through the length of the conduit and the fluid interposed within the conduit. In order to solve the above-mentioned problems, the present invention is provided with a phase matching circuit that delays a signal from the vibration detection means in accordance with the wave propagation speed and outputs the delayed signal as the predetermined control signal. There is.

以下、この発明を図面に基づいて説明する。 The present invention will be explained below based on the drawings.

第2図乃至第4図は、この発明の一実施例を示
す図である。
FIG. 2 to FIG. 4 are diagrams showing an embodiment of the present invention.

まず構成を説明すると、21は自動車の車体、
22は図示しないパワーユニツトのハウジングに
設けられたブラケツトであり、これら車体21と
ブラケツト22との間には、マウント23が介装
されている。このマウント23は、ブラケツト2
2にボルト24およびナツト25により固定され
た枠体26と、同様に車体21にボルト27およ
びナツト28により固定された枠体29と、これ
ら枠体26,29間に配設され、それぞれの枠体
26,29に接着剤ないし加硫接着等により固着
された弾性部材30と、を備えて構成されてい
る。弾性部材30には、図中上方を開口した中空
状の凹部30aが形成され、この凹部30aは、
上方の枠体26に形成されて下方を開口した凹部
26aとともに受圧室31を画成する。この受圧
室31は、非圧縮性流体が充填されるとともに、
弾性部材30から延出して凹部30aを画成した
側壁30bの変形に応じてその容積が変化する。
また、上方の枠体26には、空気抜き用のバルブ
32と、後述するアクチユエータに接続する継手
33と、が設けられ、これらのバルブ32と継手
33とは受圧室31に開口している。
First, to explain the configuration, 21 is the car body,
Reference numeral 22 denotes a bracket provided on the housing of the power unit (not shown), and a mount 23 is interposed between the vehicle body 21 and the bracket 22. This mount 23 is attached to the bracket 2
A frame body 26 is fixed to the vehicle body 21 with bolts 24 and nuts 25, and a frame body 29 is similarly fixed to the vehicle body 21 with bolts 27 and nuts 28. The elastic member 30 is fixed to the bodies 26 and 29 with an adhesive or vulcanization adhesive. The elastic member 30 is formed with a hollow recess 30a that is open at the top in the figure.
A pressure receiving chamber 31 is defined together with a recess 26a formed in the upper frame 26 and opened at the bottom. This pressure receiving chamber 31 is filled with incompressible fluid, and
The volume changes according to the deformation of the side wall 30b extending from the elastic member 30 and defining the recess 30a.
Further, the upper frame body 26 is provided with an air vent valve 32 and a joint 33 connected to an actuator to be described later, and these valves 32 and joints 33 open into the pressure receiving chamber 31.

34は弾性部材30の側壁30b外周に設けら
れた拘束板である。この拘束板34は、車体21
とパワーユニツトとが変位するとき、側壁30b
の膨出、陥入を阻止して側壁30bが伸縮変形を
行うよう規制している。また、この拘束板34の
一部は下方に屈曲したストツパ34aを形成し、
下方の枠体29との間にゴム様の弾性体35を挾
着し、マウント23の過度の変位を規制してい
る。
34 is a restraining plate provided on the outer periphery of the side wall 30b of the elastic member 30. This restraint plate 34
When the power unit and the side wall 30b are displaced, the side wall 30b
This restricts the expansion and contraction of the side wall 30b by preventing the expansion and invagination of the side wall 30b. Further, a part of this restraint plate 34 forms a stopper 34a bent downward,
A rubber-like elastic body 35 is clamped between the mount 23 and the lower frame 29 to prevent excessive displacement of the mount 23.

36は弾性部材30に画成された受圧室31に
継手33および導管37を介して接続された油圧
発生器である。この油圧発生器36は、シリンダ
ーボデー38と、このシリンダーボデー38内に
摺動自在に収納されてシリンダボデー38内に2
つの室38a,38bを画成するピストン39
と、外気に開放した室38bに収納されてピスト
ン39を他方の室38a側に所定の弾性力で付勢
するスプリング40と、を有している。この他方
の室38aは前記導管37を介して前記受圧室3
1に連通されるとともに、導管37とともに非圧
縮性流体が充填されている。したがつて、ピスト
ン39の移動に伴い室38aがその容積変化を生
じて、室38a内の流体に圧力変動が生じると、
この圧力変動が導管37を経て受圧室31へ伝達
されることとなる。また、ピストン39には、前
記スプリング40を遊挿してシリンダボデー38
の外へ突出するピストンロツド41の一端が固着
され、このピストンロツド41の他端は加振器4
2に係合している。この加振器42は、後述する
制御手段により駆動されるソレノイド42aを有
してピストンロツド41を振動させ、この振動を
ピストン38に伝達してピストン39を変位させ
るものである。なお、前記スプリング40は、パ
ワーユニツトの静定時にマウント23に負荷され
る荷重に対抗する圧力を、受圧室31内の流体に
与えている。これら油圧発生器36および加振器
42は、アクチユエータ43を構成する。
36 is a hydraulic pressure generator connected to a pressure receiving chamber 31 defined in the elastic member 30 via a joint 33 and a conduit 37. The hydraulic pressure generator 36 includes a cylinder body 38, and is slidably housed within the cylinder body 38 and has two parts inside the cylinder body 38.
Piston 39 defining two chambers 38a, 38b
and a spring 40 housed in the chamber 38b open to the outside air and urging the piston 39 toward the other chamber 38a with a predetermined elastic force. This other chamber 38a is connected to the pressure receiving chamber 3 via the conduit 37.
1 and is filled with an incompressible fluid together with a conduit 37. Therefore, when the volume of the chamber 38a changes with the movement of the piston 39, and a pressure fluctuation occurs in the fluid within the chamber 38a,
This pressure fluctuation is transmitted to the pressure receiving chamber 31 via the conduit 37. Further, the spring 40 is loosely inserted into the piston 39 and the cylinder body 38
One end of a piston rod 41 protruding outside is fixed, and the other end of this piston rod 41 is attached to the vibrator 4.
2 is engaged. This vibrator 42 has a solenoid 42a driven by a control means to be described later, vibrates the piston rod 41, transmits this vibration to the piston 38, and displaces the piston 39. The spring 40 applies pressure to the fluid in the pressure receiving chamber 31 against the load applied to the mount 23 when the power unit is statically fixed. These hydraulic pressure generator 36 and vibrator 42 constitute an actuator 43.

44はパワーユニツトの回転に同期した信号を
出力する振動検出手段であり、この振動検出手段
44は、たとえばクランク軸の一回転あたり複数
のパルス信号(本実施例においては2個)のパル
ス信号を出力するクランク角センサあるいはデイ
ストリビユータ等が用いられ、このパルス信号A
を位相整合回路45へ出力する。位相整合回路4
5は、第3図のブロツク図および各回路の出力波
形を表わした第4図のタイミングチヤートに示す
ように、振動検出手段44の出力するパルス信号
Aの波形を整形する波形整形回路46と、この波
形整形回路46の出力する信号Bの位相を、導管
37内に充填される流体の圧力伝播速度、導管3
7の管路長さおよびパワーユニツトの回転数に対
応して遅延するデイレイ回路47と、このデイレ
イ回路47の出力するトリガパルス信号Cを所定
のパルス幅を有した方形波信号Dとして出力する
デユーテイ比設定回路48と、から構成されてい
る。さらに、この位相整合回路45の出力する信
号すなわちデユーテイ比設定回路48の出力する
信号Dは、スイツチング回路49に入力し、スイ
ツチング回路49を作動させる。スイツチング回
路49は、信号Dに同期して電源回路50と加振
器42を接続し、第4図の信号Eで示される駆動
電圧をソレノイド42aに印加し、励磁する。す
なわち、この加振器42は、位相整合回路45で
制御されて、油圧発生器36を駆動するため、油
圧発生器36の発生する圧力変動が受圧室31内
に到達した際に、受圧室31内にパワーユニツト
の二次振動により生じる流体の圧力変動と、逆位
相を有して同期することとなる。なお、上述した
それぞれの波形整形回路46、デイレイ回路4
7、デユーテイ比設定回路48およびスイツチン
グ回路49は、電源回路50から電力供給を受け
ている。
Reference numeral 44 denotes a vibration detection means that outputs a signal synchronized with the rotation of the power unit, and this vibration detection means 44 outputs, for example, a plurality of pulse signals (two in this embodiment) per revolution of the crankshaft. A crank angle sensor or distributor is used to output this pulse signal A.
is output to the phase matching circuit 45. Phase matching circuit 4
5 is a waveform shaping circuit 46 that shapes the waveform of the pulse signal A output from the vibration detection means 44, as shown in the block diagram of FIG. 3 and the timing chart of FIG. 4 showing the output waveforms of each circuit; The phase of the signal B output from the waveform shaping circuit 46 is determined by the pressure propagation velocity of the fluid filled in the conduit 37,
a delay circuit 47 that delays in accordance with the length of the pipe 7 and the rotational speed of the power unit; and a duty circuit that outputs the trigger pulse signal C output from the delay circuit 47 as a square wave signal D having a predetermined pulse width. It is composed of a ratio setting circuit 48. Further, the signal output from the phase matching circuit 45, that is, the signal D output from the duty ratio setting circuit 48, is input to the switching circuit 49, and the switching circuit 49 is activated. The switching circuit 49 connects the power supply circuit 50 and the vibrator 42 in synchronization with the signal D, and applies a drive voltage indicated by the signal E in FIG. 4 to the solenoid 42a to excite it. That is, the vibrator 42 is controlled by the phase matching circuit 45 to drive the hydraulic pressure generator 36, so that when the pressure fluctuation generated by the hydraulic pressure generator 36 reaches the pressure receiving chamber 31, the vibration exciter 42 drives the hydraulic pressure generator 36. This results in synchronization with the fluid pressure fluctuations caused by secondary vibrations of the power unit, with an opposite phase. Note that each of the waveform shaping circuits 46 and delay circuits 4 described above
7. The duty ratio setting circuit 48 and the switching circuit 49 receive power from the power supply circuit 50.

このような構成を有したマウンテイング装置に
あつては、パワーユニツトが回転している間、そ
のエンジンのピストンの往復動に起因して、パワ
ーユニツトの回転数の2倍の周波数を有した二次
振動が負荷される。このため、この振動により弾
性部材30が伸縮し受圧室31が容積変化を生じ
て、受圧室31内の流体にパワーユニツトの回転
数の2倍の周波数を有した圧力変動が生じる。ま
た、振動検出手段44も、パワーユニツトの回転
に同期した同一周波数の信号Aを位相整合回路4
5に出力し、アクチユエータ43が駆動される。
しかるに、アクチユエータ43の油圧発生器36
が生じる流体の圧力変動は、前述したように、受
圧室31内にパワーユニツトの振動により生じる
流体の圧力変動と、受圧室31内で同期した逆位
相の圧力変動として導管37を経て伝達される。
したがつて、パワーユニツトと車体21とが離間
する方向に変位して弾性部材30が伸張し、受圧
室31内の流体圧力が低圧側に変動するとき、ア
クチユエータ43の生じた圧力変動は導管37を
経て高圧側の位相で受圧室31に到達する。この
ため、互いの圧力変動が相殺され、パワーユニツ
トと車体21との変位を減衰することとなる。ま
た、パワーユニツトと車体21とが接近する方向
に変位して弾性部材30が収縮し、受圧室31内
の流体圧力が高圧側に変動するとき、同様に、ア
クチユエータ43の生じた圧力変動は、導管37
を経て受圧室31に低圧側の位相を有して到達
し、パワーユニツトの振動による圧力変動を吸収
する。このように、パワーユニツトの二次振動に
起因して弾性部材30の変形により生じた受圧室
31内の流体の圧力変動が、位相整合回路45に
より位相を整合された信号で駆動されるアクチユ
エータ43の生じた圧力変動で相殺されるため、
弾性部材30の動バネ定数を低減することが可能
となり、これにより、弾性部材30がさらに高い
周波数の振動をも緩衝可能となる。
In the case of a mounting device having such a configuration, while the power unit is rotating, due to the reciprocating movement of the piston of the engine, there is a two-way motor with a frequency twice the number of rotations of the power unit. Next vibration is applied. Therefore, the elastic member 30 expands and contracts due to this vibration, causing a volume change in the pressure receiving chamber 31, and a pressure fluctuation occurs in the fluid within the pressure receiving chamber 31 with a frequency twice the rotational speed of the power unit. Further, the vibration detection means 44 also transmits a signal A of the same frequency synchronized with the rotation of the power unit to the phase matching circuit 44.
5, and the actuator 43 is driven.
However, the hydraulic pressure generator 36 of the actuator 43
As mentioned above, the pressure fluctuation of the fluid that occurs is transmitted via the conduit 37 as a synchronized and opposite phase pressure fluctuation within the pressure receiving chamber 31 with the fluid pressure fluctuation that occurs in the pressure receiving chamber 31 due to the vibration of the power unit. .
Therefore, when the power unit and the vehicle body 21 are displaced in the direction of separation, the elastic member 30 is expanded, and the fluid pressure in the pressure receiving chamber 31 fluctuates to the low pressure side, the pressure fluctuation caused by the actuator 43 is transferred to the conduit 37. It reaches the pressure receiving chamber 31 in a phase on the high pressure side. Therefore, the pressure fluctuations cancel each other out, and the displacement between the power unit and the vehicle body 21 is attenuated. Similarly, when the power unit and the vehicle body 21 are displaced in the direction toward each other, the elastic member 30 contracts, and the fluid pressure in the pressure receiving chamber 31 fluctuates toward the high pressure side, the pressure fluctuation caused by the actuator 43 is conduit 37
It reaches the pressure receiving chamber 31 with a phase on the low pressure side, and absorbs pressure fluctuations caused by vibrations of the power unit. In this way, the pressure fluctuation of the fluid in the pressure receiving chamber 31 caused by the deformation of the elastic member 30 due to the secondary vibration of the power unit causes the actuator 43 to be driven by a signal whose phase is matched by the phase matching circuit 45. This is offset by the pressure fluctuations caused by
It becomes possible to reduce the dynamic spring constant of the elastic member 30, and thereby the elastic member 30 becomes able to buffer even higher frequency vibrations.

第5図および第6図には、それぞれ他の実施例
を示す。なお、第2図乃至第4図に示したパワー
ユニツトのマウンテイング装置と同一の部分には
同一の番号を付して、その説明および図示は省略
する。
Other embodiments are shown in FIGS. 5 and 6, respectively. Note that the same parts as those of the power unit mounting device shown in FIGS. 2 to 4 are designated by the same numbers, and explanations and illustrations thereof will be omitted.

第5図に示したパワーユニツトのマウンテイン
グ装置は、油圧発生器36を、弾性変形可能な金
属ベロー51と、この金属ベローの両端を液密的
に閉止して金属ベロー51とともに室52を画成
する端蓋53,54と、により構成している。こ
の一方の端蓋53には、加振器42に係合するロ
ツド55が係合するとともに、他方の端蓋54は
導管37をフレアナツト54′により接続し、室
52と受圧室31とを連通している。したがつ
て、加振器42が駆動されれば、金属ベロー51
が変形して室52が容積変化を生じ、この容積変
形による流体の圧力変動が導管37を介して受圧
室31へ伝達される。なお、この室52内には、
静定時にマウント23に負荷されるパワーユニツ
トの荷重に対抗するよう加圧された流体が充填さ
れる。他の構成、作用は前述の実施例と同様であ
る。
In the power unit mounting device shown in FIG. 5, a hydraulic generator 36 is mounted on an elastically deformable metal bellows 51, and both ends of the metal bellows are closed liquid-tightly to define a chamber 52 together with the metal bellows 51. It is constituted by end covers 53 and 54 that form the same. A rod 55 that engages with the vibrator 42 is engaged with one end cover 53, and the other end cover 54 connects the conduit 37 with a flare nut 54' to communicate the chamber 52 and the pressure receiving chamber 31. are doing. Therefore, when the vibrator 42 is driven, the metal bellows 51
is deformed to cause a volume change in the chamber 52, and fluid pressure fluctuations due to this volume deformation are transmitted to the pressure receiving chamber 31 via the conduit 37. In addition, in this chamber 52,
The mount 23 is filled with pressurized fluid to counteract the load of the power unit applied to the mount 23 during static settling. Other configurations and operations are similar to those of the previous embodiment.

また、第6図に示したパワーユニツトのマウン
テイング装置は、油圧発生器36を、シリンダボ
デー56,56′と、このシリンダボデー56,
56′にオーリング61により液密的に固着して
受圧室31に連通した室57を画成するダイヤフ
ラム58と、このダイヤフラム58に固着されて
加振器42に係合するロツド59と、ダイヤフラ
ム58を室57が圧縮される方向に付勢するスプ
リング60と、により構成している。この油圧発
生器36においても、加振器42が駆動されれ
ば、ロツド59を介してダイヤフラム58が変形
する。したがつて、室57が容積変化を生じ、流
体に圧力変動が生じ、この圧力変動が導管37を
介して受圧室31に伝達される。なお、スプリン
グ60は、静定時にマウント23に負荷されるパ
ワーユニツトの荷重に対抗する圧力を室57内の
流体に与えている。
Furthermore, the power unit mounting device shown in FIG.
56', a diaphragm 58 fluid-tightly fixed by an O-ring 61 to define a chamber 57 communicating with the pressure receiving chamber 31; a rod 59 fixed to the diaphragm 58 and engaged with the vibrator 42; 58 and a spring 60 that biases the chamber 57 in the direction in which it is compressed. Also in this hydraulic generator 36, when the vibrator 42 is driven, the diaphragm 58 is deformed via the rod 59. Therefore, the chamber 57 undergoes a volume change, causing a pressure fluctuation in the fluid, and this pressure fluctuation is transmitted to the pressure receiving chamber 31 via the conduit 37. Note that the spring 60 applies pressure to the fluid in the chamber 57 that counteracts the load of the power unit applied to the mount 23 during static settling.

これら第5図および第6図の油圧発生器36に
よれば、それぞれの油圧発生器36の室52,5
7が金属ベロー51またはダイヤフラム58によ
り密閉されているため、流体のリークのおそれが
少く信頼性の高い油圧発生器36が得られる。
According to the oil pressure generators 36 shown in FIGS. 5 and 6, the chambers 52 and 5 of each oil pressure generator 36 are
7 is sealed by the metal bellows 51 or the diaphragm 58, a highly reliable hydraulic generator 36 with less risk of fluid leakage can be obtained.

以上説明してきたように、この発明によれば、
車体とパワーユニツトとの間に介装されて該パワ
ーユニツトの二次振動に伴い伸縮変形する弾性部
材と、該弾性部材内に容積変化自在に画成されて
流体が充填される受圧室と、前記パワーユニツト
の二次振動に同期した信号を出力する振動検出手
段と、所定の制御信号に従つて動作し、前記パワ
ーユニツトの二次振動と同一周波数で、かつ位相
が制御された圧力変動を発生し、該圧力変動を所
定管路長の導管内の流体を介して前記受圧室内の
流体に与えるアクチユエータとを備えるととも
に、前記導管の管路長および該導管内に介在する
流体を伝播する圧力波の伝播速度に対応して前記
振動検出手段からの信号を遅延させ、該遅延信号
を前記所定の制御信号として出力する位相整合回
路と、を備えてパワーユニツトのマウンテイング
装置を構成したため、弾性部材の動バネ定数を低
減することが可能となり、これにより、弾性部材
がより高い周波数域の振動吸収能を向上すること
が可能となるという効果が得られる。
As explained above, according to this invention,
an elastic member that is interposed between the vehicle body and the power unit and expands and contracts in response to secondary vibrations of the power unit; a pressure receiving chamber that is defined within the elastic member so as to be able to change its volume and is filled with fluid; vibration detection means that outputs a signal synchronized with the secondary vibration of the power unit; and vibration detection means that operates according to a predetermined control signal and detects pressure fluctuations at the same frequency as the secondary vibration of the power unit and whose phase is controlled. and an actuator that generates the pressure fluctuation and applies the pressure fluctuation to the fluid in the pressure receiving chamber through the fluid in the conduit having a predetermined length, and the pressure that propagates through the length of the conduit and the fluid interposed within the conduit. Since the power unit mounting device is equipped with a phase matching circuit that delays the signal from the vibration detection means in accordance with the wave propagation speed and outputs the delayed signal as the predetermined control signal, the elastic It becomes possible to reduce the dynamic spring constant of the member, thereby achieving the effect that the elastic member can improve its ability to absorb vibrations in a higher frequency range.

また、第5図および第6図に示したパワーユニ
ツトのマウンテイング装置においては、受圧室に
連通したアクチユエータの室を、それぞれ金属ベ
ローあるいはダイヤフラムで密閉して構成したた
め、流体のリークのおそれが無くなり、より信頼
性の高いマウンテイング装置を得ることができ
る。
In addition, in the power unit mounting device shown in Figures 5 and 6, the actuator chambers communicating with the pressure receiving chamber are sealed with metal bellows or diaphragms, eliminating the risk of fluid leakage. , a more reliable mounting device can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のパワーユニツトのマウンテイン
グ装置を断面して示す図、第2図はこの発明の一
実施例にかかるパワーユニツトのマウンテイング
装置を断面して電気的回路とともに示す概略図、
第3図は第2図のパワーユニツトのマウンテイン
グ装置の電気的回路部分を詳示するブロツク図、
第4図は第3図の電気的回路の作動をその出力波
形とともに示すタイミングチヤート図、第5図は
この発明の他の実施例にかかるパワーユニツトの
マウンテイング装置のアクチユエータを詳示する
断面図、第6図はこの発明のさらに他の実施例に
かかるパワーユニツトのマウンテイング装置のア
クチユエータを詳示する断面図である。 21……車体、22……ブラケツト(パワーユ
ニツト)、23……マウント、30……弾性部材、
31……受圧室、43……アクチユエータ、44
……振動検出手段、45……位相整合回路。
FIG. 1 is a cross-sectional view of a conventional power unit mounting device, and FIG. 2 is a schematic cross-sectional view of a power unit mounting device according to an embodiment of the present invention together with an electric circuit.
FIG. 3 is a block diagram showing in detail the electrical circuit portion of the power unit mounting device of FIG. 2;
FIG. 4 is a timing chart showing the operation of the electrical circuit shown in FIG. 3 together with its output waveform, and FIG. 5 is a sectional view showing in detail the actuator of a power unit mounting device according to another embodiment of the present invention. and FIG. 6 is a sectional view showing in detail an actuator of a power unit mounting device according to still another embodiment of the present invention. 21...Vehicle body, 22...Bracket (power unit), 23...Mount, 30...Elastic member,
31... Pressure receiving chamber, 43... Actuator, 44
... Vibration detection means, 45 ... Phase matching circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 車体とパワーユニツトとの間に介装されて該
パワーユニツトの二次振動に伴い伸縮変形する弾
性部材と、該弾性部材内に容積変化自在に画成さ
れて流体が充填される受圧室と、前記パワーユニ
ツトの二次振動に同期した信号を出力する振動検
出手段と、所定の制御信号に従つて動作し、前記
パワーユニツトの二次振動と同一周波数で、かつ
位相が制御された圧力変動を発生し、該圧力変動
を所定管路長の導管内の流体を介して前記受圧室
内の流体に与えるアクチユエータとを備えるとと
もに、前記導管の管路長および該導管内に介在す
る流体を伝播する圧力波の伝播速度に対応して前
記振動検出手段からの信号を遅延させ、該遅延信
号を前記所定の制御信号として出力する位相整合
回路を備えたことを特徴とするパワーユニツトの
マウンテイング装置。
1. An elastic member that is interposed between the vehicle body and the power unit and expands and contracts in response to secondary vibrations of the power unit, and a pressure receiving chamber that is defined within the elastic member so as to be able to change its volume and is filled with fluid. , a vibration detection means that outputs a signal synchronized with the secondary vibration of the power unit, and a pressure fluctuation that operates according to a predetermined control signal and has the same frequency as the secondary vibration of the power unit and whose phase is controlled. and an actuator that generates the pressure fluctuation and applies the pressure fluctuation to the fluid in the pressure receiving chamber via the fluid in the conduit having a predetermined length, and propagates the length of the conduit and the fluid interposed in the conduit. A mounting device for a power unit, comprising a phase matching circuit that delays a signal from the vibration detection means in accordance with the propagation speed of a pressure wave and outputs the delayed signal as the predetermined control signal.
JP18750781A 1981-11-20 1981-11-20 Mounting device for power unit Granted JPS5889420A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18750781A JPS5889420A (en) 1981-11-20 1981-11-20 Mounting device for power unit
US06/438,756 US4531484A (en) 1981-11-20 1982-11-03 Vibration responsive mounting arrangement for automotive engine or the like
EP82110175A EP0081085B1 (en) 1981-11-20 1982-11-04 Vibration responsive mounting arrangement for automotive engine or the like
DE8282110175T DE3270291D1 (en) 1981-11-20 1982-11-04 Vibration responsive mounting arrangement for automotive engine or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18750781A JPS5889420A (en) 1981-11-20 1981-11-20 Mounting device for power unit

Publications (2)

Publication Number Publication Date
JPS5889420A JPS5889420A (en) 1983-05-27
JPS641332B2 true JPS641332B2 (en) 1989-01-11

Family

ID=16207268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18750781A Granted JPS5889420A (en) 1981-11-20 1981-11-20 Mounting device for power unit

Country Status (1)

Country Link
JP (1) JPS5889420A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3419437A1 (en) * 1984-05-24 1985-11-28 Metzeler Kautschuk GmbH, 8000 München TWO-CHAMBER ENGINE MOUNT WITH HYDRAULIC DAMPING
JPS60252835A (en) * 1984-05-28 1985-12-13 Mitsubishi Motors Corp Car body vibration reducing device

Also Published As

Publication number Publication date
JPS5889420A (en) 1983-05-27

Similar Documents

Publication Publication Date Title
US4650170A (en) Vibration-proofing device
JP2564691B2 (en) Hydraulic buffer type rubber seat
EP0081085B1 (en) Vibration responsive mounting arrangement for automotive engine or the like
US4391435A (en) Suspension device
JPH0219643Y2 (en)
US7210674B2 (en) Fluid-filled vibration damping device
JPS5821131B2 (en) Rubber bearing device with hydraulic damping effect
JP2001221277A (en) Liquid pressure type active vibration-proofing support stand and active vibration-proofing system in which the support stand is incorporated
JPH06323360A (en) Vibration damping supporter
JP3707294B2 (en) Pneumatic active vibration isolator
JP3025904B2 (en) Anti-vibration device
JP3455563B2 (en) Fluid elastic support
JP3879156B2 (en) Vibration absorber
JPS641332B2 (en)
JPS60179543A (en) Mounting device for power unit
JPS59103045A (en) Power unit mounting device
JPH1182611A (en) Pneumatic excitation type active vibration isolation device
JP3039105B2 (en) Cylindrical anti-vibration mount, power plant supporting device using the cylindrical anti-vibration mount, and method of controlling cylindrical anti-vibration mount in power plant supporting device
JPS5889421A (en) Mounting device for power unit
JPH0226336A (en) Fluid-sealed type engine mount
JPS6134179Y2 (en)
JP3409568B2 (en) Anti-vibration support device
JPS59103044A (en) Power unit mounting device
JP3782215B2 (en) Pneumatic vibration type active damper
JP3039104B2 (en) Vibration-proof mount, power plant support device using the vibration-proof mount, and method of controlling vibration-proof mount in power plant support device