JPS6412353B2 - - Google Patents

Info

Publication number
JPS6412353B2
JPS6412353B2 JP56019914A JP1991481A JPS6412353B2 JP S6412353 B2 JPS6412353 B2 JP S6412353B2 JP 56019914 A JP56019914 A JP 56019914A JP 1991481 A JP1991481 A JP 1991481A JP S6412353 B2 JPS6412353 B2 JP S6412353B2
Authority
JP
Japan
Prior art keywords
water
pump
cooling water
residual heat
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56019914A
Other languages
Japanese (ja)
Other versions
JPS57135398A (en
Inventor
Hiroshi Machiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56019914A priority Critical patent/JPS57135398A/en
Publication of JPS57135398A publication Critical patent/JPS57135398A/en
Publication of JPS6412353B2 publication Critical patent/JPS6412353B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 この発明は原子力発電所などの原子炉設備に備
えられる残留熱除去系設備に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a residual heat removal system installed in nuclear reactor equipment such as a nuclear power plant.

残留熱除去系設備は原子炉停止時に炉心の崩壊
熱および顕熱を除去し、また主蒸気系配管等の破
断事故などの非常時に炉心の最終的な冷却をなす
もので、その冷却水には一般に海水を使用してい
る。すなわち、上記残留熱除去系設備は従来海岸
線の付近に海水を導いて貯える取水槽を備えてな
り、この取水槽または近傍に設備されたポンプ室
の取水ポンプで海水を汲み上げて原子炉建屋に供
給するようになつている。したがつて、このよう
な残留熱除去系設備には上記取水槽と原子炉建屋
とを結ぶ海水配管が必要になるものであつた。こ
の海水配管は炉心の最終的な冷却に用いられるも
のであるため、上記原子炉建屋と同等の高い耐震
性が要求されるものであり、このため、この海水
配管を配設するにはたとえば岩盤を貫通して形成
したトンネル状の取水路内に上記海水配管を配設
するのが最も望ましい。しかし、このような取水
路内に上記海水配管を配設するためには、この取
水路内に上記取水ポンプを起動するための駆動モ
ータ用電源ケーブルを配設する必要があるばかり
ではなく、海水配管および上記電源ケーブルの保
守点検を行うために作業員の人通路、取水路内空
調設備および照明設備などを設ける必要がある。
このため、上記取水路の断面積を大きく確保しな
ければならず、たとえばその断面積に40m2程を要
するものであつた。この結果、このような断面積
の大きな取水路を岩盤内に形成するには多大な土
木工事費を要するばかりではなく、海水配管およ
び電源ケーブルなどの配設やこれらの保守点検に
多大な労力を必要とする不具合があつた。
Residual heat removal system equipment removes decay heat and sensible heat from the core when the reactor is shut down, and also performs the final cooling of the core in the event of an emergency such as a rupture accident in the main steam system piping. Generally seawater is used. In other words, the residual heat removal system is conventionally equipped with a water intake tank that guides and stores seawater near the coastline, and pumps up seawater using the water intake tank or a water intake pump in a pump room installed nearby and supplies it to the reactor building. I'm starting to do that. Therefore, such residual heat removal system equipment required seawater piping to connect the water intake tank and the reactor building. Since this seawater piping is used for the final cooling of the reactor core, it is required to have high seismic resistance equivalent to that of the reactor building. It is most desirable to arrange the seawater piping within a tunnel-shaped intake channel formed by penetrating the seawater. However, in order to install the seawater piping in such an intake channel, it is not only necessary to install a power cable for the drive motor to start the water intake pump in the intake channel, but also to install the seawater piping in the intake channel. In order to perform maintenance and inspection of the piping and the power cables mentioned above, it is necessary to provide a passageway for workers, air conditioning equipment in the intake channel, lighting equipment, etc.
For this reason, it was necessary to secure a large cross-sectional area for the intake channel, for example, the cross-sectional area required about 40 m 2 . As a result, creating an intake channel with such a large cross-sectional area within the bedrock not only requires a large amount of civil engineering costs, but also requires a great deal of effort to install seawater piping and power cables, and to maintain and inspect them. There was a problem that required it.

この発明はこのような事情にもとづいてなされ
たもので、その目的とするところは、工事費およ
び配設費を低減するとともに保守点検を容易に行
うことのできる原子炉の残留熱除去系設備を提供
することにある。
This invention was made based on these circumstances, and its purpose is to provide residual heat removal system equipment for nuclear reactors that can reduce construction and installation costs and facilitate maintenance and inspection. It is about providing.

以下、この発明の一実施例を図面にもとづいて
説明する。
An embodiment of the present invention will be described below based on the drawings.

図中1は原子炉建屋であつて、この原子炉建屋
1内には原子炉格納容器2が配置されているとと
もに、この原子炉格納容器2内には原子炉圧力容
器3が格納されている。また、原子炉建屋1には
一体に残留熱除去系設備のポンプ室4が設けられ
ている。このポンプ室4は下部に取水槽5を備え
てなり、この取水槽5は海Cに連通されている。
すなわち、取水槽5と海Cとは取水路7で連通さ
れ、この取水路7を通じて海水が上記取水槽5に
導かれるようになつている。また、取水路7は原
子炉建屋1が構築されている岩盤Aを掘削して形
成されるもので、その断面積はたとえば3ないし
4m2程度となつている。なお、Bは表層土であ
る。そして、上記ポンプ室4内には取水槽5から
海水を汲み上げる取水ポンプ8が設置されてい
る。この取水ポンプ8は中間熱交換器9に冷却水
配管である海水配管10で接続されており、汲み
上げた海水をこの中間熱交換器9に供給して2次
冷却水の冷却を行なつたのち、排水管11を介し
て海Cに戻すものである。なお、12は開閉弁で
ある。そして、上記中間熱交換器9は原子炉建屋
1内に配備されている残留熱除去系の残留熱熱交
換器13に上記2次冷却水の通路である2次循環
路14で接続されており、またこの残留熱熱交換
器13は上記原子炉圧力容器3に1次冷却水の通
路である1次循環路15で接続されている。な
お、16は原子炉圧力容器3内の炉心を冷却する
上記1次冷却水の循環ポンプであり、また17は
この1次冷却水を上記残留熱熱交換器13によつ
て冷却する上記2次冷却水の循環ポンプである。
In the figure, 1 is a reactor building, in which a reactor containment vessel 2 is arranged, and a reactor pressure vessel 3 is housed within this reactor containment vessel 2. . Further, the reactor building 1 is integrally provided with a pump room 4 for residual heat removal system equipment. This pump room 4 is equipped with a water intake tank 5 at its lower part, and this water intake tank 5 is communicated with the sea C.
That is, the water intake tank 5 and the sea C are communicated through an intake channel 7, and seawater is guided to the water intake tank 5 through the intake channel 7. The intake channel 7 is formed by excavating the bedrock A on which the reactor building 1 is constructed, and its cross-sectional area is, for example, about 3 to 4 m 2 . In addition, B is surface soil. A water intake pump 8 for pumping up seawater from the water intake tank 5 is installed in the pump room 4. This water intake pump 8 is connected to an intermediate heat exchanger 9 by a seawater pipe 10 which is a cooling water pipe, and after supplying the pumped seawater to this intermediate heat exchanger 9 and cooling the secondary cooling water. , and is returned to the sea C via the drain pipe 11. Note that 12 is an on-off valve. The intermediate heat exchanger 9 is connected to a residual heat exchanger 13 of a residual heat removal system installed in the reactor building 1 through a secondary circulation path 14 which is a passage for the secondary cooling water. The residual heat exchanger 13 is connected to the reactor pressure vessel 3 through a primary circulation path 15, which is a path for primary cooling water. Note that 16 is the primary cooling water circulation pump that cools the core in the reactor pressure vessel 3, and 17 is the secondary cooling water circulation pump that cools the primary cooling water by the residual heat exchanger 13. This is a cooling water circulation pump.

次に、このような構成による一実施例の作用を
説明すると、原子炉の停止時には上記取水槽5か
ら海水を取水ポンプ8で汲み上げて上記中間熱交
換器9に供給することにより、まず2次循環路1
4内の2次冷却水の冷却を行なう。そして、上記
残留熱熱交換器13を介し、上記2次冷却水によ
つて1次循環路15内の1次冷却水の冷却を行な
うことにより、停止時における炉心の崩壊熱およ
び顕熱を除去できるものである。
Next, to explain the operation of an embodiment with such a configuration, when the reactor is shut down, the seawater is pumped up from the water intake tank 5 by the water pump 8 and supplied to the intermediate heat exchanger 9, so that the secondary Circulation route 1
Cools the secondary cooling water in 4. By cooling the primary cooling water in the primary circulation path 15 with the secondary cooling water via the residual heat exchanger 13, decay heat and sensible heat of the core during shutdown are removed. It is possible.

そして、このような構成による一実施例によれ
ば、原子炉建屋1と一体にポンプ室4を設けて、
このポンプ室4の下部に取水槽5を設けるように
したから、この取水槽5と海Cとを連通させる取
水路7は海水を導くだけの断面積を有すればよ
く、たとえばその断面積は上記したように3ない
し4m2程度で充分なものとなる。このため、従来
の海水配管や人通路などを配設する取水路に比べ
てその断面積が約1/10程度で済むことから、その
土木工事が容易になる。この結果、上記取水路7
の土木工事費を大幅に削減できるばかりではな
く、この取水路7には定期点検のための空調およ
び照明設備を必要としない。また、上記取水路7
が岩盤A内に形成されるとともに取水ポンプ8以
降の残留熱除去系設備が上記岩盤A上に構築され
た原子炉建屋1およびこの原子炉建屋1と一体で
あるポンプ室4内に配備されていることから、こ
のような残留熱除去系設備の構成物は全て地震時
に上記岩盤Aと同一の挙動を示すとともに、上記
構成物間に相対的な変位を生ぜしめることがな
く、その耐震性を充分に確保できるものである。
また、取水槽5と原子炉建屋1すなわち中間熱交
換器9とを結ぶ海水配管10の長さがこの原子炉
建屋1およびポンプ室4内で済むことから、従来
のものに比べ大幅に短縮されることになる。な
お、この短縮できる長さは原子炉建屋1の設置場
所によつて異なるものであるが、数10mから数
100mにも及ぶものである。このため、この海水
配管10ばかりではなく、上記取水ポンプ8を起
動するための駆動モータ用電源ケーブルの配設を
大幅に削減できることから、その設備費を低減で
きるばかりではなく、これらの保守点検を容易に
行なうことができる。
According to one embodiment with such a configuration, the pump room 4 is provided integrally with the reactor building 1,
Since the water intake tank 5 is provided in the lower part of the pump chamber 4, the intake channel 7 that communicates the water intake tank 5 with the sea C only needs to have a cross-sectional area large enough to guide the seawater. As mentioned above, about 3 to 4 m 2 is sufficient. As a result, the cross-sectional area is only about 1/10 that of conventional intake channels that have seawater piping, pedestrian walkways, etc., making civil engineering work easier. As a result, the intake channel 7
Not only can civil engineering costs be significantly reduced, but the intake channel 7 does not require air conditioning or lighting equipment for periodic inspection. In addition, the above intake channel 7
is formed in the bedrock A, and the residual heat removal system equipment after the water intake pump 8 is installed in the reactor building 1 built on the bedrock A and the pump room 4 that is integrated with this reactor building 1. Therefore, all the components of such residual heat removal system exhibit the same behavior as the rock A mentioned above during an earthquake, and there is no relative displacement between the components, which improves its earthquake resistance. It is possible to secure sufficient amounts.
In addition, the length of the seawater pipe 10 connecting the water intake tank 5 and the reactor building 1, that is, the intermediate heat exchanger 9, can be completed within the reactor building 1 and the pump room 4, so it can be significantly shortened compared to conventional pipes. That will happen. The length that can be shortened varies depending on the installation location of the reactor building 1, but it can range from several tens of meters to several tens of meters.
It is as long as 100 meters. Therefore, not only the seawater piping 10 but also the power cable for the drive motor for starting the water intake pump 8 can be significantly reduced, which not only reduces equipment costs but also reduces maintenance and inspection. It can be done easily.

さらに、上記取水ポンプ8および開閉弁12も
また原子炉建屋1と一体になつたポンプ室4内に
配置されていることから、これら取水ポンプ8お
よび開閉弁12への接近が容易となり、その作動
の確認や操作および保守点検を容易に行えるもの
である。
Furthermore, since the water intake pump 8 and the on-off valve 12 are also arranged in the pump room 4 integrated with the reactor building 1, access to the water intake pump 8 and the on-off valve 12 is easy, and the operation of the water intake pump 8 and on-off valve 12 is facilitated. This allows for easy confirmation, operation, and maintenance/inspection.

なお、この発明は上記一実施例に限定されるも
のではない。たとえば上記ポンプ室が原子炉建屋
と一体に設けられるということはこの実施例のよ
うにポンプ室が原子炉建物と一体に隣接して設け
られるものに限らず、このポンプ室を原子炉建屋
内に設けるようにしてもよい。また、上記中間熱
交換器は必ずしも必要ではなく、上記海水配管を
直接残留熱熱交換器に接続して、海水で1次冷却
水を冷却するようにしてもよい。
Note that the present invention is not limited to the above embodiment. For example, the fact that the pump room is installed integrally with the reactor building does not necessarily mean that the pump room is installed adjacent to the reactor building as in this embodiment; It may also be provided. Further, the intermediate heat exchanger is not necessarily necessary, and the seawater piping may be directly connected to the residual heat exchanger to cool the primary cooling water with seawater.

以上説明したようにこの発明は、原子炉建屋と
一体にポンプ室を設けて、このポンプ室内もしく
は近傍に取水槽を配置するとともに、このポンプ
室内に取水ポンプを配置し、上記取水槽とこの取
水槽に貯えられる冷却水の水源とを取水路で連通
してなることを特徴とする。したがつて、上記取
水槽と原子炉建屋とを結ぶ冷却水配管の長さを大
幅に短縮できることから、この冷却水配管などの
設備を削減できるとともにその保守点検を容易に
行うことができるものである。また、一方上記取
水路は上記冷却水配管などが配設されるものでな
いから、冷却水が充分に導かれるだけの断面積を
有すれば充分であり、このためその断面積を小さ
くすることができる。この結果、上記取水路を形
成するための土木工事費を大幅に削減することが
できるなど、その効果は大である。
As explained above, the present invention provides a pump room integrated with a reactor building, a water intake tank is arranged in or near this pump room, and a water intake pump is arranged in this pump room. It is characterized by being connected to a water source of cooling water stored in a water tank through an intake channel. Therefore, since the length of the cooling water piping connecting the water intake tank and the reactor building can be significantly shortened, the number of equipment such as this cooling water piping can be reduced and its maintenance and inspection can be easily performed. be. On the other hand, since the above-mentioned intake channel does not have the above-mentioned cooling water piping, etc., it is sufficient to have a cross-sectional area that allows sufficient cooling water to be introduced, and therefore, it is not possible to reduce the cross-sectional area. can. As a result, the civil engineering costs for forming the above-mentioned intake channel can be significantly reduced, and the effects are great.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の一実施例を示し、第1図は原
子炉建屋の縦断面図、第2図は第1図中−線
に沿う断面図である。 1……原子炉建屋、4……ポンプ室、5……取
水槽、7……取水路、8……取水ポンプ、10…
…海水配管(冷却水配管)。
The drawings show an embodiment of the present invention, in which FIG. 1 is a longitudinal sectional view of a nuclear reactor building, and FIG. 2 is a sectional view taken along the line - in FIG. 1... Reactor building, 4... Pump room, 5... Water intake tank, 7... Intake channel, 8... Water intake pump, 10...
...Seawater piping (cooling water piping).

Claims (1)

【特許請求の範囲】 1 原子炉建屋と一体にポンプ室を設けて、この
ポンプ室内もしくは近傍に残留熱除去系の冷却水
を貯える取水槽を配置するとともに、上記ポンプ
室内に上記取水槽から冷却水を汲み上げ上記残留
熱除去系の冷却水配管を通じてこの冷却水を圧送
する取水ポンプを配置し、上記取水槽と上記冷却
水の水源とを取水路で連通してなることを特徴と
する原子炉の残留熱除去系設備。 2 前記取水路は岩盤を掘削して形成されている
ことを特徴とする特許請求の範囲第1項記載の原
子炉の残留熱除去系設備。
[Scope of Claims] 1. A pump room is provided integrally with the reactor building, and a water intake tank for storing cooling water for the residual heat removal system is arranged in or near the pump room, and cooling water is supplied from the water intake tank into the pump room. A nuclear reactor characterized in that a water intake pump is disposed to pump water and force-feed the cooling water through the cooling water piping of the residual heat removal system, and the water intake tank and the water source of the cooling water are communicated through an intake channel. residual heat removal equipment. 2. The residual heat removal system equipment for a nuclear reactor according to claim 1, wherein the intake channel is formed by excavating rock.
JP56019914A 1981-02-13 1981-02-13 Residual heat removal system facility of reactor Granted JPS57135398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56019914A JPS57135398A (en) 1981-02-13 1981-02-13 Residual heat removal system facility of reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56019914A JPS57135398A (en) 1981-02-13 1981-02-13 Residual heat removal system facility of reactor

Publications (2)

Publication Number Publication Date
JPS57135398A JPS57135398A (en) 1982-08-20
JPS6412353B2 true JPS6412353B2 (en) 1989-02-28

Family

ID=12012476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56019914A Granted JPS57135398A (en) 1981-02-13 1981-02-13 Residual heat removal system facility of reactor

Country Status (1)

Country Link
JP (1) JPS57135398A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2759542B2 (en) * 1990-04-18 1998-05-28 株式会社日本コンラックス vending machine
JP5647562B2 (en) * 2011-04-28 2014-12-24 日立Geニュークリア・エナジー株式会社 External power supply and freshwater receiving facility, power supply and freshwater supply ship, and power supply and freshwater supply system comprising them

Also Published As

Publication number Publication date
JPS57135398A (en) 1982-08-20

Similar Documents

Publication Publication Date Title
US5011652A (en) Nuclear power facilities
US4080256A (en) Nuclear reactor apparatus
US9697914B2 (en) Nuclear power plant and passive containment cooling system
US4689194A (en) Nuclear reactor plant with a small high temperature reactor operating with spherical fuel elements
US2743224A (en) Submerged reactor
US4595555A (en) Power plants
JP2983290B2 (en) Heat release equipment for nuclear reactors, especially pressurized water reactors
JPS639889A (en) Nuclear power device
JP6550479B2 (en) Waste heat exhaust ventilation system for spent fuel dry storage of nuclear power plants
JPS6184588A (en) Underground type nuclear power plant
JPS6412353B2 (en)
US3205140A (en) Nuclear reactor installation
JP2014232059A (en) Reactor auxiliary machine cooling facility
JP2013249711A (en) Building foundation structure
KR20120070594A (en) Emergency reactor core cooling device and nuclear reactor facility
JPH0380277B2 (en)
JPH052959B2 (en)
JPS5963596A (en) Main steam stop valve structure of atomic power plant
KR820000931B1 (en) Nuclear reactor apparatus
Braun et al. Nuclear reactor apparatus
JP2928610B2 (en) Nuclear facilities
PLANT POOL-TYPE LMFBR PLANT 1000 MWe PHASE A-EXTENSION 1 DESIGN
Woodruff et al. SRE and HNPF Operating and Modification Experience
PURDY ARMY PACKAGE POWER REACTOR
JPH0511592B2 (en)