JPS6412310B2 - - Google Patents

Info

Publication number
JPS6412310B2
JPS6412310B2 JP6162182A JP6162182A JPS6412310B2 JP S6412310 B2 JPS6412310 B2 JP S6412310B2 JP 6162182 A JP6162182 A JP 6162182A JP 6162182 A JP6162182 A JP 6162182A JP S6412310 B2 JPS6412310 B2 JP S6412310B2
Authority
JP
Japan
Prior art keywords
acid
water
resin
epoxy
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6162182A
Other languages
Japanese (ja)
Other versions
JPS58179271A (en
Inventor
Tsutomu Kusakawa
Yoshuki Ito
Takashi Hamaguchi
Seiichi Morooka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITOH OIL Manufacturing
Original Assignee
ITOH OIL Manufacturing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITOH OIL Manufacturing filed Critical ITOH OIL Manufacturing
Priority to JP6162182A priority Critical patent/JPS58179271A/en
Publication of JPS58179271A publication Critical patent/JPS58179271A/en
Publication of JPS6412310B2 publication Critical patent/JPS6412310B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、硬化可能なカチオン型水系エポキシ
樹脂被覆用組成物に関するものである。 近時塗料は溶剤型から低溶剤型へ徐々に移行し
つつあるが、エポキシ樹脂塗料においても低溶剤
型塗料、特に水系塗料の開発が進められている。
エポキシ樹脂を水溶性又は水分散性とするために
は、 界面活性剤を使用してエポキシ樹脂を乳化さ
せる方法。 エポキシ樹脂骨格に極性基を導入して可溶化
を図る方法。 の二つの方法がある。このうちの方法は、使用
した界面活性剤のため、一般に得られる塗膜の耐
水性や耐薬品性が溶剤型塗料より劣る。の方法
には、極性基としてカルボキシル基を導入するア
ニオン型と極性基としてアミノ基を導入するカチ
オン型とがあり、かつてはアニオン型が主であつ
たが、アニオン型はソルトスプレー試験のような
条件下では耐食性が著しく低下するため、最近で
は耐食性のすぐれているカチオン型へ急速に転換
が進められ、自動車用を主に実積があげられてい
る。 しかして現在実用化されているカチオン型水系
エポキシ樹脂塗料としては、エポキシ樹脂に第1
級又は第2級アミンを反応させた後酸性物質で中
和したものに硬化剤として水溶性ブロツクイソシ
アネート化合物を配合したものが知られている。
しかしながらこのブロツクイソシアネート化合物
を硬化剤とした容易カチオン型塗料も、焼付けに
たとえば160〜200℃という高温を要すること及び
焼付け時にブロツク剤に起因する多量の揮発物が
発先するという問題点がある。 しかるに本発明者らは鋭意研究を重ねた結果、
(ただしXは二塩基酸からカルボキシル基を除い
た残基、R、R′はアルキレン基、nは0又は正
の整数)で表わされるビスイミダゾリン化合物
(A)と該(A)に対し等モル以上のエポキシ樹
脂(B)との反応物を揮発性の酸により系のPHが
4〜8.5となるように中和した中和物が、水系塗
料又はその他の水系被覆用組成物のビヒクルとし
て好適であることを見出し、本発明を完成するに
至つた。 上記(A)と(B)との反応物は、(A)中の
イミダゾリン環の第3級窒素の触媒作用により
(B)中のエポキシ基に(A)中の水酸基が反応
してエーテル結合を生成すると共に、エポキシ基
の開裂により新たに水酸基が生成し、かつ(B)
を(A)に比し過剰に用いるのでフリーのエポキ
シ基も多数残つている化学構造を主としてとつて
いるものと思われる。即ち本発明はエポキシ基を
余らせてこれを次の硬化に利用するという機構に
関するものである。従つて前述のエポキシ基にア
ミンを付加後イソシアネート化合物で硬化する従
来法とは、同じカチオン型水系エポキシ樹脂の範
ちゆうに属するものとは言え、硬化機構が全く異
なる。 本発明の被覆用組成物は次のようなすぐれた効
果を奏する。 (1) 水系の組成物であるので、溶剤系のような作
業環境の悪化、引火のおそれがない。 (2) 一液型であるので取扱いやすい。 (3) 一液型であるにもかかわらず安定で、長期間
の保存に耐えうる。これは原料ビスイミダゾリ
ン化合物(A)には窒素原子に直結する水素が
ないので、エポキシ基との反応が常温では緩漫
であり、酸塩の状態ではほとんど反応しないこ
と、又N置換型イミダゾリンの立体構造の特殊
性のために、これにエポキシ基を当量以上反応
させても安定な水溶性又は水分散性樹脂が得ら
れること、そのほか(A)を合成する反応は通
常かなりの高温と長時間の減圧下で行われるた
め、(A)中に未反応の低分子アミンの混在が
ほとんどないこと、などによるのではないかと
考えられる。 (4) 硬化反応が、約50〜150℃という制御しやす
い温度で行いうる。又薄膜とすれ常温乾燥型と
することもできる。即ち従来のカチオン型水系
エポキシ樹脂塗料の焼付温度160〜200℃に比し
焼付条件をゆるやかにすることができ、工業上
有利である。 (5) 焼付時の揮発分の発生が少ない。従来のカチ
オン型水系エポキシ樹脂においては焼付時イソ
シアネート化合物のブロツク剤の揮発があつた
が、本発明においてはそのようなことがない。 (6) 金属その他の被塗物に塗料したときの塗膜
は、硬く、耐薬品性、耐食性がすぐれていると
いう特長を有し、かつエポキシ樹脂の脆いとい
う欠点がなく、耐屈曲性、耐衝撃性にもすぐれ
ている。これは本発明の組成物がカチオン型エ
ポキシ樹脂であること、(A)中の二塩基酸残
基の存在が硬化物の内部下塑化に役立つている
ことなどのためと思われる。 本発明においては式 で表わされるビスイミダゾリン化合物Aを用い
る。ここでXは二塩基酸からカルボキシル基を除
いた残基、R、R′はアルキレン基、nは0又は
正の整数である。 上記ビスイミダゾリン化合物(A)は任意の方
法により製造できるが、二塩基酸とヒドロキシア
ルキルエチレンジアミンとを反応させてアミド化
し、からに閉環反応を行う方法が工業上有利であ
る。この方法においては、ヒドロキシアルキルエ
チレンジアミンを過剰に用い、アミド化反応は
150〜200℃で、閉環反応(イミダゾリン化反応)
は180〜260℃でかつ漸進的に減圧度を上げるよう
にして行うのがよい。この反応により上式におい
てn=0の化合物が得られる。nが1以上の化合
物はこれにアルキレンオキサイドを付加すれば得
られる。 二塩基酸としては、マロン酸、コハク酸、グル
タル酸、アジピン酸、ピメリン酸、スベリン酸、
アゼライン酸、セバシン酸、ドデカ2酸、オレイ
ン酸―アクリル酸の付加反応である炭素数21の二
塩基酸、ダイマー酸などが用いられ、酒石酸、リ
ンゴ酸などのオキシ酸も用いることができる。な
お少量割合であれば三塩基酸が混在していてもよ
い。ヒドロキシアルキルエチレンジアミンとして
は、ヒドロキシエチルエチレンジアミン、ヒドロ
キシプロピルエチレンジアミンなどが用いられ
る。必要に応じ付加させるアルキレンオキサイド
としてはエチレンオキサイド、プロピレンオキサ
イド、ブチレンオキサイドなどがあげられる。 上式においてXの炭素数には特に限定はない
が、1〜40とするのが適当であり、好ましくは4
〜38の範囲から選ぶ。Rの炭素数は2〜4とする
のが通常であり、好ましくは2とする。R′の炭
素数も2〜4とするのが適当であり、好ましくは
2とする。nは0〜4或いはそれ以上とするが、
nの数値が大きくなると塗膜の耐水性が低下する
傾向にあるので、好ましくはnは0とする。 次にエポキシ樹脂(B)としては、ビスフエノ
ールA又はビスフエノールFとエピクロルヒドリ
ン又はジクロルヒドリンとを反応させて得られる
エポキシ樹脂が好適に用いられる。そのほかノボ
ラツク樹脂のポリグリシジルエーテル、アミノフ
エノールのポリグリシジルエーテル、レゾルシン
のジグリシジルエーテル、テトラブロモビスフエ
ノールAのジグリシジルエーテル、ヒドロキシ安
息香酸のグリシジルエーテル又はエステル、多価
アルコールのポリグリシジルエーテル、ポリカル
ボン酸のポリグリシジルエステル、ポリメチルグ
リシジルエーテル又はエステルなども用いられる
が、これらはビスフエノールA又はF型エポキシ
樹脂に比しては塗膜性能が劣るので、それ単独で
用いるよりもビスフエノールA又はF型エポキシ
樹脂と併用することが多い。 エポキシ樹脂(B)の分子量やエポキシ当量に
は特に制限はなく、分子量約300〜3800、エポキ
シ当量約150〜3300のものがいずれも用いられる。
特に好ましい範囲は分子量約330〜3000、エポキ
シ当量約170〜2100である。 ビスイミダゾリン化合物(A)とエポキシ樹脂
(B)との反応比は得られる樹脂の性質に大きな
影響を及ぼす。本発明においては(A)に対し
(B)を等モル以上用いる。(B)の割合が余りに
小さいと塗膜の耐水性、耐薬品性等の性質が不充
分となり、得られる樹脂の安定性も良くない。な
お(B)の割合が余りに大きくなると水溶性又は
水分散性が不足したり、焼付に厳しい条件が要求
されるようになるので、好ましくは(A)1モル
に対し(B)を1.1〜5モル、特に1.2〜4.5モルの
範囲から選ぶのがよい。 (A)と(B)との反応に際し反応溶媒は用い
なくてもよい場合があるが、多くの場合は系の増
粘を避けるため溶媒を用いることが望ましい。固
型エポキシ樹脂を用いる場合は溶媒の使用が必須
となる。溶媒としてはイソプロパノール、エチル
セロソルブ、ブチルセロソルブなど水と相溶する
溶媒が好ましい。これらの溶媒は最終製品中にそ
のまま残すことができる。 反応温度と時間は主としてエポキシ樹脂(B)
の種類によつて左右され、ビスイミダゾリン化合
物(A)の種類には余り関係しない。(B)とし
てビスフエノールA型エポキシ樹脂を用いた場合
は、一般にエポキシ当量の小さい樹脂ほど反応し
やすいので低温、短時間でよく、エポキシ当量の
大きい樹脂ほど反応しにくくなるので高温、長時
間となる。 (A)と(B)との反応後は、反応物を揮発性
の酸で中和する。揮発性の酸とは、硬化しない焼
付時の温度で小なくとも部分的に、好ましくは実
質上完全に揮発するような酸を言い、具体的には
ギ酸、酢酸、プロピオン酸、酪酸、乳酸、アクリ
ル酸、メタクリル酸、ヘキサヒドロ安息香酸フツ
化水素、塩酸、臭化水素酸などの有機又は無機の
酸が例示できる。特に好ましい酸は酢酸及び乳酸
である。 中和は、系のPHが4〜8.5、特に5〜8となる
ように行うことが望ましい。中和不足でPHが8を
越えると、充分な親水性が得られず、一方酸の添
加が過剰となりPHが4未満になると、対象物が金
属の場合発錆を生じるようになる。 この中和と同時に又はその後に、系に適当量の
水、或いはアルコール類やケトン類など水混和性
溶剤と水との混合液を加えて所望の濃度に調整す
る。この希釈に先立ち、必要に応じ反応溶媒の回
収を行うこともできる。 本発明の被覆用組成物を上記で得られた中和物
を主剤としてなるが、そのほか必要に応じ充填
剤、顔料、染料、可塑剤、安定剤、消泡剤、レベ
リング剤、垂れ防止剤、防錆剤など公知の添加剤
を配合してもよい。又本発明の趣旨を損わない範
囲で他の公知の硬化剤を併用してもよい。 本発明の組成物は噴霧、ローラーコーテイン
グ、はけ塗り、浸漬塗り、カーテンフローコー
ト、電着、その他任意の方法により対象物に塗布
される。対象物は金属をはじめ、スレート板、ア
スベスト板、木板、合板、プラスチツク面、ガラ
ス、コンクリートなど種々のものがあげられる。 塗布後の硬化ないし焼付けは約50〜150℃とい
う比較的おだやかな条件で行いうる。もちろんも
つと高温であつても差支えない。又塗布厚、エポ
キシ樹脂の種類などを選べば常温硬化も可能であ
る。 本発明の被覆用組成物は、一般塗料用、電着塗
料用、印刷用など広く被覆用に用いることができ
る。 次に実施例をあげて本発明の被覆用組成物をさ
らに説明する。以下「%」となるのは重量%を表
わすものとする。 実施例 1 ダイマー酸(ヘンケル日本株式会社製バーサダ
イム216)280g(0.5モル)とヒドロキシエチル
エチレンジアミン156g(1.5モル)とをかくはん
機、温度計、還流冷却管、検水管を備えた反応器
に仕込み、150〜180℃で3時間反応させた。この
間18gの水が検水管に流出した。ついで約3時間
かけて180℃から210℃までゆつくりと加熱昇温
し、その間常圧から約10mmHgまで漸進的に減圧
度を上げた。これによりさらに18gの水と過剰の
アミンが流出した。以上の操作により 式 (ただし、XはC34H66〜62、RはCH2CH2)で表
わされるビスイミダゾリン化合物のコハク色の粘
稠液体約345gが得られた。 次に上記で得たビスイミダゾリン化合物35g
(0.05モル)と予め調製しておいたビスフエノー
ルA型固型エポキシ樹脂(油化シエルエポキシ株
式会社製エピコート1001、エポキシ当量450〜
500、分子量約900)の80%ブチルセロソルブ溶液
125g(0.11モル)とをかくはん機、温合計、還
流冷却管を備えた反応器に仕込み、かきまぜなが
ら60〜80℃に加熱した。反応が進むに従つて系は
しだいに増粘した。30分後50%酢酸水溶液8gを
投入した中和し、さらに水188gを投入したとこ
ろ、淡黄色半透明の樹脂液356gが得られた。こ
の樹脂液の樹脂分は38%、PHは6.6、粘度はガー
ドナーホルトでHであつた。 この樹脂涎を容器に入れて室内に保存したが、
2ケ月を経ても硬化、分離を起さず、粘度の変化
もなかつた。 又この樹脂液をベーカーアプリケーターを使つ
て鋼板上に塗布し、130℃で30分間焼付けて、20
±2μの膜厚の塗膜を得、塗膜物性を測定した。 以上の結果を第1表に示す 実施例 2 実施例1で得たビスイミダゾリン化合物35g
(0.05モル)とビスフエノールA型固型エポキシ
樹脂(油化シエルエポキシ株式会社製エピコート
1004、エポキシ当量900〜1000、分子量約1400)
の70%ブチルセロソルブ溶液200g(0.1モル)と
を反応器に仕込み、60〜70℃に20分間、さらに70
〜80℃で20分間反応させ、ついで50%酢酸水溶液
7gを投入して中和し、水218gを加えて稀釈し
たところ、エマルシヨン460gが得られた。この
エマルシヨンの樹脂分は38%、PHは6.7、粘度は
ガードナーホルトでF―Gであつた。 このエマルシヨンの安定性及びこのエマルシヨ
ンを鋼板上に塗布し、130℃で30分間焼付けたと
きの塗膜物性を第1表に示す。 実施例 3 実施例1で得たビスイミダゾリン化合物35g
(0.05モル)、ビスフエノールF型液状エポキシ樹
脂(大日本インキ化学工業株式会社製エピクロン
830、エポキシ当量175、分子量350)70g(0.2モ
ル)及びエチルセロソルブ20gを反応器に仕込
み、かきまぜながら加熱していつたところ、60℃
で内容混合物が透明になつた。70〜80℃で加熱を
継続すると、系はしだいに増粘していつた。30分
後反応を終了し、50%酢酸水溶液7gを加えて中
和し、水130gを加えて稀釈したところ、エマル
シヨン262gが得られた。このエマルシヨンの樹
脂分は40%、PHは6.7、粘度はガードナーホルト
でUであつた。 このエマルシヨンの安定性及びこのエマルシヨ
ンを鋼板上に塗布し、130℃で30分間焼付けたと
きの塗膜物性を第1表に示す。 実施例 4 実施例1で得たビスイミダゾリン化合物35g
(0.05モル)、ビスフエノールA型液状エポキシ樹
脂(油化シエルエポキシ株式会社製エピコート
828、エポキシ当量184〜194、分子量約380)40g
(0.105モル)、ビスフエノールA型固型エポキシ
樹脂(油化シエルエポキシ株式会社製エピコート
1001、エポキシ当量450〜500、分子量約900)の
80%ブチルセロソルブ溶液40g(0.035モル)及
びブチルセロソルブ20gを反応器に仕込み、60〜
70℃で45分間反応させ、ついで50%酢酸水溶液7
gを加えて中和し、さらに水126gを加えて稀釈
したところ、淡黄色透明の樹脂液268gが得られ
た。この樹脂液の樹脂分は40%、PHは6.5、粘度
はガードナーホルトTであつた。 この樹脂液の安定性及びこの樹脂液を鋼板上に
塗布し、130℃で30分間焼付けたときの塗膜物性
を第1表に示す。 実施例 5 オレイン酸―アクリル酸付加物(ウエストバコ
ー社製ダイアシツド1550)176g(0.5モル)とヒ
ドロキシエチルエチレンジアミン156g(1.5モ
ル)とを実施例1の場合と同様にして反応させる
ことにより、式 で表わされるビスイミダゾリン化合物を得た。 次に上記で得たビスイミダゾリン化合物240g
(0.05モル)、ビスフエノール型固型エポキシ樹脂
(油化シエルエポキシ株式会社製エピコート1001、
エポキシ当量450〜500、分子量約900)135g
(0.15モル)及びブチルセロソルブ30gを反応器
に仕込み、60〜75℃で1時間反応させ、ついで50
%乳酸水溶液7.5gを加えて中和し、さらに水201
gを加えて稀釈したところ、淡黄色透明の樹脂液
397gが得られた。この樹脂液の樹脂分は40%、
PHは6.6、粘度はガードナーホルトでU―Vであ
つた。 この樹脂液の安定性及びこの樹脂液を鋼板上に
塗布し、130℃で30分間焼付けたときの塗膜物性
を第1表に示す。 実施例 6 セバシン酸202g(1モル)とヒドロキシエチ
ルエチレンジアミン270g(2.6モル)とを実施例
1の場合と同様にして反応させることによりオク
タメチレンビスN―ヒドロキシエチルイミダゾリ
ンを合成した。 次に上記で得たオクタメチレンビスN―ヒドロ
キシエチルイミダゾリン10g(0.03モル)、ビス
フエノールA型固型エポキシ樹脂(油化シエルケ
ミカル株式会社製エピコート1001、エポキシ当量
450〜500、分子量約900)81g(0.09モル)及び
ブチルセロソルブ20gを反応器に仕込み、55〜65
℃で1時間、65〜75℃で15分間反応させ、ついで
50%酢酸水溶液4gを加えて中和し、さらに水
122gを加えて稀釈したところ、半透明の樹脂液
237gが得られた。この樹脂液の樹脂分は38%、
PHは6.6、粘度はガードナーホルトでN+であつ
た。 この樹脂液の安定性及びこの樹脂液を鋼板上に
塗布し、130℃で30分間焼付けたときの塗膜物性
を第1表に示す。 実施例 7 アジピン酸146g(1モル)とヒドロキシエチ
ルエチレンジアミン230g(約2.2モル)とを実施
例1の場合と同様にして反応させることによりテ
トラメチレンビスN―ヒドロキシエチルイミダゾ
リンを合成した。 次に上記で得たテトラメチレンビスN―ヒドロ
キシエチルイミダゾリン7g(約0.025モル)、ビ
スフエノールA型固型エポキシ樹脂(油化シエル
ケミカル株式会社製エピコート1007、エポキシ当
量1750〜2100、分子量約2900)の60%ブチルセロ
ソルブ溶液150g(0.031モル)及びブチルセロソ
ルブ30gを反応器に仕込み、80〜105℃で60分間
反応させ、ついで50%酢酸水溶液3gを加えて中
和し、さらに水130gを加えて稀釈したところ、
淡黄色透明の樹脂液が得られた。この樹脂液の樹
脂分は30%、PHは6.5、粘度はガードナーホルト
でUであつた。 この樹脂液の安定性及びこの樹脂液を鋼板上に
塗布し、130℃で30分間焼付けたときの塗膜物性
を第1表に示す。 実施例 8 ビスフエノールA型固型エポキシ樹脂(油化シ
エルケミカル株式会社製エピコート1001、エポキ
シ当量450〜500、分子量約900)270g(0.3モル)
をブチルセロソルブ80gに溶解し、これに実施例
7で得たテトラメチレンビスN―ヒドロキシエチ
ルイミダゾリン28g(0.1モル)を加えた。この
混合物を60〜70℃で20分間、70〜75℃で10分間反
応させた後50%酢酸水溶液18gを加えて中和し、
さらに水40gを加えて稀釈したところ、エマルシ
ヨン805gが得られた。このエマルシヨンの樹脂
分は37%、PHは7.0、粘度はガードナーホルトで
Jであつた。 この樹脂液の安定性及びこの樹脂液を鋼板上に
塗布し、130℃で30分間焼付けたときの塗膜物性
を第1表に示す。
The present invention relates to a curable cationic water-based epoxy resin coating composition. In recent years, paints have been gradually shifting from solvent-based to low-solvent paints, and low-solvent paints, especially water-based paints, are being developed in epoxy resin paints as well.
In order to make epoxy resin water-soluble or water-dispersible, there is a method of emulsifying the epoxy resin using a surfactant. A method that aims at solubilization by introducing polar groups into the epoxy resin skeleton. There are two methods. Due to the surfactant used in these methods, the water resistance and chemical resistance of the coating film obtained is generally inferior to that of solvent-based coatings. There are two types of methods: an anion type in which a carboxyl group is introduced as a polar group, and a cation type in which an amino group is introduced as a polar group. Since the corrosion resistance deteriorates significantly under these conditions, there has recently been a rapid shift to the cationic type, which has excellent corrosion resistance, and has been used mainly for automobiles. However, the cationic water-based epoxy resin paints that are currently in practical use are epoxy resins.
It is known to react a primary or secondary amine, neutralize it with an acidic substance, and then mix a water-soluble blocked isocyanate compound as a curing agent.
However, this easily cationic paint using a blocking isocyanate compound as a curing agent also has the problem that a high temperature of, for example, 160 to 200 DEG C. is required for baking, and a large amount of volatile matter due to the blocking agent is released during baking. However, as a result of intensive research by the present inventors,
formula (However, X is a residue obtained by removing the carboxyl group from a dibasic acid, R and R' are alkylene groups, and n is 0 or a positive integer.) Bisimidazoline compound (A) represented by: A neutralized product obtained by neutralizing the reaction product with the above epoxy resin (B) with a volatile acid so that the pH of the system becomes 4 to 8.5 is suitable as a vehicle for water-based paints or other water-based coating compositions. We have discovered that this is the case, and have completed the present invention. The reaction product of (A) and (B) above is formed by the reaction of the hydroxyl group in (A) with the epoxy group in (B) by the catalytic action of the tertiary nitrogen of the imidazoline ring in (A), resulting in an ether bond. At the same time, a new hydroxyl group is generated by cleavage of the epoxy group, and (B)
Since it is used in excess compared to (A), it seems that it mainly has a chemical structure in which a large number of free epoxy groups remain. That is, the present invention relates to a mechanism in which epoxy groups are left over and used for subsequent curing. Therefore, the curing mechanism is completely different from the conventional method described above in which an amine is added to an epoxy group and then cured with an isocyanate compound, although they belong to the same category of cationic water-based epoxy resins. The coating composition of the present invention has the following excellent effects. (1) Since it is a water-based composition, there is no risk of deterioration of the working environment or ignition like with solvent-based products. (2) Easy to handle as it is a one-component type. (3) Despite being a one-component type, it is stable and can withstand long-term storage. This is because the raw material bisimidazoline compound (A) does not have hydrogen directly bonded to the nitrogen atom, so the reaction with the epoxy group is slow at room temperature, and there is almost no reaction in the acid salt state. Due to its unique three-dimensional structure, a stable water-soluble or water-dispersible resin can be obtained even if an equivalent amount or more of epoxy groups are reacted with it.In addition, the reaction to synthesize (A) is usually at a considerably high temperature and for a long time. This is thought to be due to the fact that since the reaction is carried out under reduced pressure, there is almost no unreacted low-molecular-weight amine mixed in (A). (4) The curing reaction can be carried out at easily controllable temperatures of about 50-150°C. It can also be made into a thin film and dried at room temperature. That is, compared to the baking temperature of 160 to 200° C. for conventional cationic water-based epoxy resin paints, the baking conditions can be made gentler, which is industrially advantageous. (5) Less volatile matter is generated during baking. In conventional cationic water-based epoxy resins, the isocyanate compound blocking agent volatilizes during baking, but this does not occur in the present invention. (6) When applied to metals and other objects, the coating film is hard, has excellent chemical resistance, and corrosion resistance, and does not have the drawbacks of brittleness of epoxy resin, and has good flexibility and durability. It also has excellent impact resistance. This seems to be because the composition of the present invention is a cationic epoxy resin and the presence of dibasic acid residues in (A) helps in internal plasticization of the cured product. In the present invention, the formula A bisimidazoline compound A represented by is used. Here, X is a residue obtained by removing the carboxyl group from a dibasic acid, R and R' are alkylene groups, and n is 0 or a positive integer. Although the above-mentioned bisimidazoline compound (A) can be produced by any method, it is industrially advantageous to react a dibasic acid with a hydroxyalkyl ethylene diamine to amidate it, followed by a ring-closing reaction. In this method, hydroxyalkylethylenediamine is used in excess and the amidation reaction is
Ring-closing reaction (imidazolination reaction) at 150-200℃
It is preferable to carry out the reaction at a temperature of 180 to 260°C while gradually increasing the degree of vacuum. This reaction yields a compound where n=0 in the above formula. A compound in which n is 1 or more can be obtained by adding alkylene oxide to this. Dibasic acids include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid,
Azelaic acid, sebacic acid, dodecadiic acid, a dibasic acid having 21 carbon atoms which is an addition reaction of oleic acid and acrylic acid, dimer acid, etc. are used, and oxyacids such as tartaric acid and malic acid can also be used. Note that a tribasic acid may be mixed as long as it is in a small proportion. As the hydroxyalkylethylenediamine, hydroxyethylethylenediamine, hydroxypropylethylenediamine, etc. are used. Examples of the alkylene oxide that may be added if necessary include ethylene oxide, propylene oxide, and butylene oxide. In the above formula, the number of carbon atoms in X is not particularly limited, but it is appropriate to set it to 1 to 40, preferably 4.
Choose from a range of ~38. The number of carbon atoms in R is usually 2 to 4, preferably 2. It is appropriate that R' has 2 to 4 carbon atoms, preferably 2 carbon atoms. n is 0 to 4 or more,
If the numerical value of n becomes large, the water resistance of the coating film tends to decrease, so preferably n is set to 0. Next, as the epoxy resin (B), an epoxy resin obtained by reacting bisphenol A or bisphenol F with epichlorohydrin or dichlorohydrin is preferably used. In addition, polyglycidyl ether of novolac resin, polyglycidyl ether of aminophenol, diglycidyl ether of resorcinol, diglycidyl ether of tetrabromobisphenol A, glycidyl ether or ester of hydroxybenzoic acid, polyglycidyl ether of polyhydric alcohol, polycarbonate. Acid polyglycidyl esters, polymethylglycidyl ethers, or esters are also used, but these have inferior coating performance compared to bisphenol A or F type epoxy resins, so bisphenol A or esters are preferable to using them alone. It is often used in combination with F-type epoxy resin. There are no particular restrictions on the molecular weight or epoxy equivalent of the epoxy resin (B), and any resin having a molecular weight of about 300 to 3,800 and an epoxy equivalent of about 150 to 3,300 can be used.
A particularly preferred range is a molecular weight of about 330 to 3,000 and an epoxy equivalent of about 170 to 2,100. The reaction ratio between the bisimidazoline compound (A) and the epoxy resin (B) has a great influence on the properties of the resulting resin. In the present invention, (B) is used in an amount equal to or more than the amount of (A). If the proportion of (B) is too small, the properties such as water resistance and chemical resistance of the coating film will be insufficient, and the stability of the resulting resin will also be poor. If the ratio of (B) is too large, water solubility or water dispersibility may be insufficient or severe conditions will be required for baking, so preferably 1.1 to 5 mol of (B) to 1 mol of (A). It is preferable to select moles, especially from the range of 1.2 to 4.5 moles. Although there are cases where it is not necessary to use a reaction solvent during the reaction between (A) and (B), in many cases it is desirable to use a solvent to avoid thickening of the system. When using a solid epoxy resin, the use of a solvent is essential. The solvent is preferably a solvent that is compatible with water, such as isopropanol, ethyl cellosolve, butyl cellosolve. These solvents can remain in the final product. The reaction temperature and time mainly depend on the epoxy resin (B).
It depends on the type of bisimidazoline compound (A), and has little to do with the type of bisimidazoline compound (A). When a bisphenol A type epoxy resin is used as (B), in general, resins with lower epoxy equivalents react more easily, so low temperatures and short times are sufficient; resins with higher epoxy equivalents are less likely to react, so high temperatures and long periods of time are sufficient. Become. After the reaction between (A) and (B), the reactants are neutralized with a volatile acid. Volatile acid refers to an acid that volatilizes at least partially, preferably substantially completely, at the baking temperature without curing, and specifically includes formic acid, acetic acid, propionic acid, butyric acid, lactic acid, Examples include organic or inorganic acids such as acrylic acid, methacrylic acid, hexahydrobenzoic acid, hydrogen fluoride, hydrochloric acid, and hydrobromic acid. Particularly preferred acids are acetic acid and lactic acid. Neutralization is preferably carried out so that the pH of the system is 4 to 8.5, particularly 5 to 8. If the pH exceeds 8 due to insufficient neutralization, sufficient hydrophilicity will not be obtained, while if the addition of acid is excessive and the pH becomes less than 4, rust will occur if the object is a metal. Simultaneously with or after this neutralization, an appropriate amount of water or a mixture of water and a water-miscible solvent such as alcohols or ketones is added to the system to adjust the desired concentration. Prior to this dilution, the reaction solvent can be recovered if necessary. The coating composition of the present invention is composed of the neutralized product obtained above as a main ingredient, and in addition, fillers, pigments, dyes, plasticizers, stabilizers, antifoaming agents, leveling agents, anti-sagging agents, etc. Known additives such as rust preventives may also be blended. Other known curing agents may also be used in combination without departing from the spirit of the present invention. The composition of the present invention is applied to the object by spraying, roller coating, brushing, dipping, curtain flow coating, electrodeposition, or any other method. Targets include a variety of materials including metal, slate boards, asbestos boards, wood boards, plywood, plastic surfaces, glass, and concrete. Curing or baking after application can be performed under relatively mild conditions of about 50 to 150°C. Of course, there is no problem even if the temperature is high. It is also possible to cure at room temperature by selecting the coating thickness, type of epoxy resin, etc. The coating composition of the present invention can be used for a wide variety of coatings such as general paints, electrodeposition paints, and printing. Next, the coating composition of the present invention will be further explained with reference to Examples. Hereinafter, "%" refers to % by weight. Example 1 280 g (0.5 mol) of dimer acid (Versadime 216 manufactured by Henkel Japan Co., Ltd.) and 156 g (1.5 mol) of hydroxyethylethylenediamine were charged into a reactor equipped with a stirrer, a thermometer, a reflux condenser tube, and a water sample tube. The reaction was carried out at 150-180°C for 3 hours. During this time, 18g of water leaked into the test tube. Then, the temperature was slowly increased from 180°C to 210°C over about 3 hours, and during this time the degree of vacuum was gradually increased from normal pressure to about 10 mmHg. This caused an additional 18 g of water and excess amine to flow out. By the above operations, the formula About 345 g of an amber viscous liquid of a bisimidazoline compound represented by (X is C34H66-62 and R is CH2CH2 ) was obtained. Next, 35g of the bisimidazoline compound obtained above
(0.05 mol) and a pre-prepared bisphenol A type solid epoxy resin (Epicoat 1001 manufactured by Yuka Ciel Epoxy Co., Ltd., epoxy equivalent 450~
500, molecular weight approximately 900) 80% butyl cellosolve solution
125 g (0.11 mol) was charged into a reactor equipped with a stirrer, a thermostat, and a reflux condenser, and heated to 60 to 80°C while stirring. As the reaction progressed, the system gradually thickened. After 30 minutes, 8 g of a 50% acetic acid aqueous solution was added for neutralization, and 188 g of water was added to obtain 356 g of a pale yellow, translucent resin liquid. The resin content of this resin liquid was 38%, the pH was 6.6, and the Gardner-Holt viscosity was H. I put this resin saliva in a container and stored it indoors, but
Even after two months, no hardening or separation occurred, and there was no change in viscosity. Also, apply this resin liquid on a steel plate using a Baker applicator, bake it at 130℃ for 30 minutes, and apply it to the steel plate for 20 minutes.
A coating film with a thickness of ±2μ was obtained and the physical properties of the coating film were measured. The above results are shown in Table 1 Example 2 35g of bisimidazoline compound obtained in Example 1
(0.05 mol) and bisphenol A type solid epoxy resin (Epicoat manufactured by Yuka Ciel Epoxy Co., Ltd.)
1004, epoxy equivalent 900-1000, molecular weight approximately 1400)
200g (0.1 mol) of 70% butyl cellosolve solution was charged into a reactor, heated to 60-70℃ for 20 minutes, and then heated to 70℃ for 20 minutes.
The mixture was allowed to react at ~80°C for 20 minutes, then neutralized by adding 7 g of a 50% aqueous acetic acid solution, and diluted by adding 218 g of water to obtain 460 g of an emulsion. The resin content of this emulsion was 38%, the pH was 6.7, and the Gardner-Holt viscosity was FG. Table 1 shows the stability of this emulsion and the physical properties of the coating film when this emulsion was applied onto a steel plate and baked at 130°C for 30 minutes. Example 3 35g of bisimidazoline compound obtained in Example 1
(0.05 mol), bisphenol F type liquid epoxy resin (Dainippon Ink & Chemicals Co., Ltd., Epiclon)
830, epoxy equivalent weight 175, molecular weight 350) and 20 g of ethyl cellosolve were placed in a reactor and heated while stirring, resulting in a temperature of 60°C.
The content mixture became clear. As heating continued at 70-80°C, the system gradually thickened. After 30 minutes, the reaction was completed, and 7 g of 50% acetic acid aqueous solution was added to neutralize it, and 130 g of water was added to dilute it, yielding 262 g of emulsion. This emulsion had a resin content of 40%, a pH of 6.7, and a Gardner-Holt viscosity of U. Table 1 shows the stability of this emulsion and the physical properties of the coating film when this emulsion was applied onto a steel plate and baked at 130°C for 30 minutes. Example 4 35g of bisimidazoline compound obtained in Example 1
(0.05 mol), bisphenol A type liquid epoxy resin (Epicoat manufactured by Yuka Ciel Epoxy Co., Ltd.)
828, epoxy equivalent weight 184-194, molecular weight approximately 380) 40g
(0.105 mol), bisphenol A type solid epoxy resin (Epicoat manufactured by Yuka Ciel Epoxy Co., Ltd.)
1001, epoxy equivalent 450-500, molecular weight approximately 900)
Charge 40 g (0.035 mol) of 80% butyl cellosolve solution and 20 g of butyl cellosolve into a reactor,
React at 70℃ for 45 minutes, then add 50% acetic acid aqueous solution 7
When the mixture was neutralized by adding 126 g of water and further diluted with 126 g of water, 268 g of a pale yellow transparent resin liquid was obtained. The resin content of this resin liquid was 40%, the pH was 6.5, and the viscosity was Gardner-Holt T. Table 1 shows the stability of this resin liquid and the physical properties of the coating film when this resin liquid was applied onto a steel plate and baked at 130°C for 30 minutes. Example 5 By reacting 176 g (0.5 mol) of an oleic acid-acrylic acid adduct (Diacid 1550 manufactured by West Baco) and 156 g (1.5 mol) of hydroxyethylethylenediamine in the same manner as in Example 1, the formula A bisimidazoline compound represented by was obtained. Next, 240g of the bisimidazoline compound obtained above
(0.05 mol), bisphenol type solid epoxy resin (Epicoat 1001 manufactured by Yuka Ciel Epoxy Co., Ltd.,
Epoxy equivalent 450-500, molecular weight approx. 900) 135g
(0.15 mol) and 30 g of butyl cellosolve were charged into a reactor, reacted at 60 to 75°C for 1 hour, and then
Neutralize by adding 7.5 g of lactic acid aqueous solution, and then add 201 g of water.
When diluted by adding g, a pale yellow transparent resin liquid was obtained.
397g was obtained. The resin content of this resin liquid is 40%,
The pH was 6.6 and the viscosity was UV according to Gardner-Holt. Table 1 shows the stability of this resin liquid and the physical properties of the coating film when this resin liquid was applied onto a steel plate and baked at 130°C for 30 minutes. Example 6 OctamethylenebisN-hydroxyethylimidazoline was synthesized by reacting 202 g (1 mol) of sebacic acid and 270 g (2.6 mol) of hydroxyethylethylenediamine in the same manner as in Example 1. Next, 10 g (0.03 mol) of octamethylene bis N-hydroxyethylimidazoline obtained above, bisphenol A type solid epoxy resin (Epicote 1001 manufactured by Yuka Ciel Chemical Co., Ltd., epoxy equivalent
450-500, molecular weight approximately 900) and 20 g of butyl cellosolve were charged into a reactor, and 55-65
℃ for 1 hour, 65-75℃ for 15 minutes, and then
Neutralize by adding 4g of 50% acetic acid aqueous solution, then add water
When diluted by adding 122g, a translucent resin liquid was obtained.
237g was obtained. The resin content of this resin liquid is 38%,
The pH was 6.6 and the viscosity was Gardner-Holt N + . Table 1 shows the stability of this resin liquid and the physical properties of the coating film when this resin liquid was applied onto a steel plate and baked at 130°C for 30 minutes. Example 7 TetramethylenebisN-hydroxyethylimidazoline was synthesized by reacting 146 g (1 mol) of adipic acid and 230 g (about 2.2 mol) of hydroxyethylethylenediamine in the same manner as in Example 1. Next, 7 g (about 0.025 mol) of tetramethylene bis N-hydroxyethylimidazoline obtained above, bisphenol A type solid epoxy resin (Epicote 1007 manufactured by Yuka Ciel Chemical Co., Ltd., epoxy equivalent 1750-2100, molecular weight about 2900) 150 g (0.031 mol) of a 60% butyl cellosolve solution and 30 g of butyl cellosolve were charged into a reactor and reacted at 80 to 105°C for 60 minutes, then neutralized by adding 3 g of a 50% aqueous acetic acid solution, and further diluted by adding 130 g of water. However,
A pale yellow transparent resin liquid was obtained. The resin content of this resin liquid was 30%, the pH was 6.5, and the Gardner-Holt viscosity was U. Table 1 shows the stability of this resin liquid and the physical properties of the coating film when this resin liquid was applied onto a steel plate and baked at 130°C for 30 minutes. Example 8 Bisphenol A type solid epoxy resin (Epicote 1001 manufactured by Yuka Ciel Chemical Co., Ltd., epoxy equivalent 450-500, molecular weight approximately 900) 270 g (0.3 mol)
was dissolved in 80 g of butyl cellosolve, and 28 g (0.1 mol) of tetramethylenebisN-hydroxyethylimidazoline obtained in Example 7 was added thereto. This mixture was reacted at 60 to 70°C for 20 minutes and at 70 to 75°C for 10 minutes, and then neutralized by adding 18 g of 50% acetic acid aqueous solution.
When diluted by further adding 40 g of water, 805 g of emulsion was obtained. This emulsion had a resin content of 37%, a pH of 7.0, and a Gardner-Holt viscosity of J. Table 1 shows the stability of this resin liquid and the physical properties of the coating film when this resin liquid was applied onto a steel plate and baked at 130°C for 30 minutes.

【表】 (注) 安定性は、室内に2ケ月放置後観察。 ゴバン目式験は、1mm巾に縦横にカツターで
傷をつけたときの、セロハン粘着テープによる
剥離残数。 鉛筆硬度は、三菱ユニ鉛筆使用、荷重1Kg。 耐衝撃性は、デユポン衝撃試験器を使用し、
500gのおもり(おもりの先端の球状撃ち型の
径1/16インチその他)を50cmの高さから落下さ
せ、塗面の損傷を調べた。 トルエンラビングテストは、トルエンを浸し
た脱脂綿で塗面を100往復擦つて判定。 耐沸騰水性は、沸騰水中に3時間浸漬して判
定。 耐アルカリ性は、5%苛性ソーダ水溶液中に
25℃で48時間浸漬して判定。 耐酸性は、5%硫酸中に25℃で48時間浸漬し
て判定。 耐ソルトスプレー性は、塩水を150時間スプ
レー後のクロスカツト部のサビ幅。 実施例 9 実施例7で得たテトラメチレンビスN―ヒドロ
キシエチルイミダゾリン1モルにエチレンオキサ
イドを1〜4モル反応させたものを用いたほかは
実施例7と同様の実験を行つた。結果は耐沸水性
が実施例7に比しては若干劣つたほかは実施例7
の場合と同様良好であつた。 実施例 10 実施例1で得たビスイミダゾリン化合物70g
(0.1モル)とビスフエノールA型液状エポキシ樹
脂(油化シエルケミカル株式会社製エピコート
828、エポキシ当量184〜194、分子量約380)114
gとエチルセロソルブ30gとを55〜65℃で50分間
反応させてから、50%酢酸水溶液16gを投入して
中和し、さらに水475gで稀釈し、淡黄色透明の
樹脂液613gを得た。この樹脂液の樹脂分は30%、
PHは6.6、粘度はガードナーホルトでGであつた。 この樹脂液を鋼板に塗布し、室温乾燥させた。
1ケ月後の塗膜を試験した結果は次の通りであつ
た。 ゴバン目試験 70/100 鉛筆硬度 3H 耐衝撃性 1/8×300×50 耐屈曲性 2φパス トルエンラビングテスト 100回変化なし 耐沸騰水性 異状なし
[Table] (Note) Stability was observed after being left indoors for 2 months. The Gobanme test is the number of scratches left after being removed by cellophane adhesive tape when a 1mm-wide scratch is made vertically and horizontally with a cutter. Pencil hardness: Mitsubishi Uni Pencil, load: 1Kg. Impact resistance was measured using a Dupont impact tester.
A 500g weight (a spherical shot-shaped tip with a diameter of 1/16 inch, etc.) was dropped from a height of 50cm, and damage to the painted surface was examined. The toluene rubbing test is determined by rubbing the coated surface 100 times with absorbent cotton soaked in toluene. Boiling water resistance is determined by immersing in boiling water for 3 hours. Alkali resistance is measured in 5% caustic soda aqueous solution.
Judgment was made after soaking at 25℃ for 48 hours. Acid resistance was determined by immersion in 5% sulfuric acid at 25°C for 48 hours. Salt spray resistance is the rust width of the crosscut after being sprayed with salt water for 150 hours. Example 9 An experiment similar to Example 7 was conducted except that 1 mole of tetramethylenebisN-hydroxyethylimidazoline obtained in Example 7 was reacted with 1 to 4 moles of ethylene oxide. The results were similar to Example 7 except that the boiling water resistance was slightly inferior to Example 7.
It was as good as in the case of . Example 10 70g of bisimidazoline compound obtained in Example 1
(0.1 mol) and bisphenol A type liquid epoxy resin (Epicoat manufactured by Yuka Ciel Chemical Co., Ltd.)
828, epoxy equivalent weight 184-194, molecular weight approximately 380) 114
g and 30 g of ethyl cellosolve were reacted at 55 to 65° C. for 50 minutes, neutralized by adding 16 g of a 50% acetic acid aqueous solution, and further diluted with 475 g of water to obtain 613 g of a pale yellow transparent resin liquid. The resin content of this resin liquid is 30%,
The pH was 6.6 and the viscosity was G according to Gardner-Holt. This resin liquid was applied to a steel plate and dried at room temperature.
The results of testing the coating film after one month were as follows. Goban test 70/100 Pencil hardness 3H Impact resistance 1/8 x 300 x 50 Bending resistance 2φ pass Toluene rubbing test No change 100 times Boiling water resistance No abnormality

Claims (1)

【特許請求の範囲】 1 式 (ただしXは二塩基酸からカルボキシル基を除い
た残基、R、R′はアルキレン基、nは0又は正
の整数)で表わされるビスイミダゾリン化合物
(A)と該(A)に対し等モル以上のエポキシ樹
脂(B)との反応物を揮発性の酸により系のPHが
4〜8.5となるように中和した中和物を主剤とし
てなる被覆用組成物。 2 Rがエチレン基でnが0である特許請求の範
囲第1項記載の組成物。 3 (A)と(B)との反応比が、(A)1モル
に対し(B)1.1〜5モルである特許請求の範囲
第1項記載の組成物。
[Claims] 1 formula (However, X is a residue obtained by removing the carboxyl group from a dibasic acid, R and R' are alkylene groups, and n is 0 or a positive integer.) Bisimidazoline compound (A) represented by: A coating composition containing as a main ingredient a neutralized product obtained by neutralizing the reaction product with the above epoxy resin (B) with a volatile acid so that the pH of the system becomes 4 to 8.5. 2. The composition according to claim 1, wherein R is an ethylene group and n is 0. 3. The composition according to claim 1, wherein the reaction ratio of (A) and (B) is 1.1 to 5 moles of (B) per 1 mole of (A).
JP6162182A 1982-04-12 1982-04-12 Coating composition Granted JPS58179271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6162182A JPS58179271A (en) 1982-04-12 1982-04-12 Coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6162182A JPS58179271A (en) 1982-04-12 1982-04-12 Coating composition

Publications (2)

Publication Number Publication Date
JPS58179271A JPS58179271A (en) 1983-10-20
JPS6412310B2 true JPS6412310B2 (en) 1989-02-28

Family

ID=13176427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6162182A Granted JPS58179271A (en) 1982-04-12 1982-04-12 Coating composition

Country Status (1)

Country Link
JP (1) JPS58179271A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127360A (en) * 1985-11-27 1987-06-09 Kansai Paint Co Ltd Coating composition for resin

Also Published As

Publication number Publication date
JPS58179271A (en) 1983-10-20

Similar Documents

Publication Publication Date Title
US4598131A (en) Catalysts for curable coating vehicle based upon aminoalkyloxy silanes and organic isocyanates
KR100211079B1 (en) Cationic resin and capped polyisocyanate curing agent suitable for use in electrodeposition
EP0119769B1 (en) Heat-curable resin coating composition
US4628076A (en) Curable coating vehicle based upon aminoalkyloxy silanes and organic isocyanates
US4992516A (en) Modified epoxy resin/amine adduct by reacting polyamine/monoepoxide modifier, polyepoxy resins and amines
JP2016522851A (en) Epoxy resin composition
EP0166906B1 (en) A process for coating a corroded metal surface on the basis of polyoxyalkyleneamine modified epoxy resins
WO2000068466A1 (en) Process for applying a lead-free coating to untreated metal substrates via electrodeposition
JPH0834833A (en) Elastic epoxy resin - curing agent system
PL129210B1 (en) Method of manufacture of binders on the base of esters of epoxy resins
US4297255A (en) Adduct and its use
US4317757A (en) Water-thinnable epoxy resin-sulphanilic acid binder compositions
US5891960A (en) Coating compositions with citric acid containing polymers for enhanced adhesion to substrates
US4321304A (en) Beta-diketone-epoxy resin reaction products blended with monomeric or polymeric phosphonium salts useful for providing corrosion resistance
JPH03157130A (en) Pigment dispersant, its preparation and coating composition for use in cathode electrodeposition
JPS6412310B2 (en)
US4435529A (en) Tannin-epoxy reaction products and compositions thereof
JPS60221467A (en) Manufacture of cathodically depositable binders
JPH11171977A (en) Amine curing agent and curing resin composition containing the same
JPH04359075A (en) Thermosetting aqueous coating compound composition
US2967172A (en) Catalyzed epoxy coatings and articles coated therewith
AU5117898A (en) Stable, one package coating compositions and process for coating
JP2612457B2 (en) Curable resin and its curing method
JP3344746B2 (en) Epoxy resin having aminomethylene group, use thereof, binder containing this epoxy resin, electrodeposition coating method using this binder, and coating obtained by the binder
JP2003034713A (en) Aqueous epoxy resin dispersion