JPS6412213B2 - - Google Patents

Info

Publication number
JPS6412213B2
JPS6412213B2 JP56192440A JP19244081A JPS6412213B2 JP S6412213 B2 JPS6412213 B2 JP S6412213B2 JP 56192440 A JP56192440 A JP 56192440A JP 19244081 A JP19244081 A JP 19244081A JP S6412213 B2 JPS6412213 B2 JP S6412213B2
Authority
JP
Japan
Prior art keywords
section
melting
resin
screw
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56192440A
Other languages
Japanese (ja)
Other versions
JPS5892545A (en
Inventor
Kenji Nozawa
Sadaji Shimizu
Akikuni Ide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP56192440A priority Critical patent/JPS5892545A/en
Publication of JPS5892545A publication Critical patent/JPS5892545A/en
Publication of JPS6412213B2 publication Critical patent/JPS6412213B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/64Screws with two or more threads
    • B29C48/65Screws with two or more threads neighbouring threads or channels having different configurations, e.g. one thread being lower than its neighbouring thread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/53Screws having a varying channel depth, e.g. varying the diameter of the longitudinal screw trunk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/56Screws having grooves or cavities other than the thread or the channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/565Screws having projections other than the thread, e.g. pins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/575Screws provided with elements of a generally circular cross-section for shearing the melt, i.e. shear-ring elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/585Screws provided with gears interacting with the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱可塑性樹脂成形用押出装置に関す
る。 この種の押出装置では押出量の増大をはかる目
的で種々の発明考案が成されており、一方法とし
てスクリユの供給部におけるスクリユ溝を深くす
るとともに、供給部のシリンダの内壁面を粗面化
を行い、ブリツジ効果、即ち原料がスクリユと一
緒に共回りせずに、ペレツト或いはパウダー等の
輸送を確実に行うことが出来るようにしている。 従つて供給部が通常の平滑な円壁面を有するシ
リンダと比べ材料の喰込が良く、より小径のシリ
ンダでも押出量が多く、しかもシリンダの温度制
御も容易となる。 熱可塑性樹脂の溶融形態に関しては各方面で研
究が行われており、数多くの理論や実験データの
報告がなされているが米国のZ.Tadmor等によつ
て提唱された第1図に示すような溶融モデルによ
つて説明されるのが代表的である。 第1図において1がスクリユ溝内の前方にある
ソリツドベツド(未溶融体)、2がスクリユ溝内
の後方にある溶融体、3がシリンダ5の内壁面に
沿つて出来るメルトフイルムを示す。また4はス
クリユフライトである。 溶融初期の段階では、このモデルのような形態
が画然と維持されるが、溶融が進行し溶融比率が
増大するに伴つて溶融体の干渉によるソリツドベ
ツドの破壊と称される非定常的な現象が生じ押出
変動、未溶融物の混入、或いは気泡の巻込み等良
くない結果をもたらす。この現象は特に高速での
押出において顕著となるため押出機の性能を規制
する最大の要因となつている。 第2図イに示すように特公昭42−11505号等に
よつて提案されているスクリユによれば溶融過程
においてソリツドベツドと溶融体が第2フライト
によつて区分されるので前述したようなソリツド
ベツドの破壊現象が妨げられ易く特定の条件下で
は良好な運転を継続することが出来ない。 しかしながら一般に押出機で取扱う材料の配合
や、物理的性質、成形品の品種或いは要求される
生産量等の条件は広範囲に亘つており各々に対応
する樹脂の溶融形態も千差万別と考えなくてはな
らない。 このような状況下では、ソリツド側通路溝がそ
の終端において閉塞されているような場合、多様
な条件に対する適応性が欠如し例えば末だソリツ
ド状の比較的多量の樹脂が終端近傍へ到達し得る
如き厳しい条件下では、樹脂がしばしば通路溝に
閉塞され押出性能が急激に低下する現象の生じる
ことが確認されている。 上記閉塞現象を防ぐため、外部加熱によつて溶
融を援助することも考えられるが、一般に樹脂は
熱の不良導体であり、また加熱系の構造的制約か
らも多くを期待することはできない。 また形状の異つた何種かのスクリユを用意しそ
れぞれの条件に適合したスクリユを選択し運転す
れば改善できるが経済的ではない。一方、第2図
ロのように特公昭53−145874号、同53−136062号
等に述べられている如き、第2フライト7により
内分されるソリツド側通路の終端8が開放されて
いるスクリユの場合には、樹脂の閉塞現象は防ぐ
ことが出来るが、反面開放形であるため在来形
(フルフライト)スクリユに近い特性を有するこ
ととなり前述した如き多様な押出条件の全てにつ
いて完全な溶融を保証することができない。即ち
一部或いはかなりの未溶融体が次工程へ流出し、
押出製品に好しくない影響を及ぼす恐れがある。 ソリツド側通路溝の断面積変化等を工夫するこ
とによつて或る程度溶融化度を向上させることは
できるが樹脂の完全溶融と非閉塞は基本的に両立
し難い問題であるため、スクリユ形状が複雑にな
る程には顕著な効果がもたらされない。 また異つた複数の通路から次工程へ流出する流
体は当然樹脂温度等の状態量を異にするため、両
者を混合する適当な装置がないと押出製品の均質
性を維持することが困難となる。 本発明は前述のような欠点を取除き、供給部の
改善による押出量の増加を計るとともに、比較的
簡単な構造のスクリユにより押出製品の均質が出
来るような押出装置を提供することである。 次に第3図ないし第9図により本発明による1
実施例を説明すると、11は押出装置で加熱シリ
ンダ12およびフイード部シリンダ13内にスク
リユ14が図示してない駆動装置により回転可能
に嵌挿されている。前記フイード部シリンダ13
は内壁面に複数個の材料の流れに方向に対し次第
に浅くなる軸方向に延びたテーパ溝15が設けて
あり、材料供給口16から投入される材料がスク
リユ14と一緒に共回りしないようにしている。 勿論前記内壁面は前述のように溝でなくても良
く、粗面化しスクリユ14の回転により材料が共
回りしないよう摩擦作用が効果的に行えれば良
い。 また前記フイード部シリンダ13にはスパイラ
ル状の円形溝17が設けてあり、必要に応じて同
溝17内に熱媒体を流すことにより空、水冷が可
能となつている。前記スクリユ14は第5図の詳
細図で示すように原料投入口より開始される供給
部Fと最終計量部Mの中間部に供給部Fより順次
溶融促進部A、混合部Bおよび溶融完了部Cより
構成されている。スクリユ径Dとするとおよそ
5D程度の長さで前記溶融促進部Aは供給部Fの
終端近辺を起点として混合部Bの開始点近辺まで
延在する第1フライト18より外径の小さい第2
フライト19を有し、同第2フライト19により
スクリユ溝内を主として前方のソリツド部の通る
溝19a、後方の溶融体通路19bとに内分し起
点位置でスクリユ溝巾の85〜90%、終点位置で同
じく30〜80%巾となつているとともに、何れの部
分においても滞留の起きないように開口してい
る。前記混合部Bは第6図の詳細図で示すように
前記溶融促進部Aに隣接する下流域にあつて前記
溶融促進部Aより移送されて来た多量の溶融樹脂
体と比較的少量の未溶融体とを均一に混合し次工
程へと送り出すための比較的深溝でビート或いは
ピン20等の補助的混合機能を持つものである。 前記溶融完了部Cは前記混合部Bから送り出さ
れて来た未溶融体を含む樹脂流を完全に溶融する
とともに樹脂温度を均一化するところで前記混合
部Bの下流にシリンダ12の内壁面との間に小間
隙dを保つプランジヤ21を設け、同プランジヤ
21の外周面に貫通しない先止まりの条溝21a
を夫々が連通しないように交互に逆方向に配置し
たものである。22は前記加熱シリンダ12の外
周に設けたヒータである。 本発明による押出装置は前述したようなフイー
ド部シリンダおよびスクリユを備えており、次に
その動作について説明すると、材料供給口16か
ら供給された常温または多少予熱された材料樹脂
は供給部Aを通過する過程でフイード部シリンダ
13の内壁面に設けた前記溝15によりフイード
部シリンダ13の内壁面との摩擦係数が増大され
ているので、スクリユ14の回転により、スクリ
ユ14と共回りすることなく効果的にシリンダ内
部に引き込まれ、前記スパイラル状の円形溝17
内の熱媒体や、ヒータ22とフイード部シリンダ
13内壁面との間に生じる摩擦熱により湿度上昇
し、種々な条件によつて定まる位置即ち供給部F
間において溶融を始め加熱シリンダ12内面と接
する部分に第1図に示すようなメルトフイルム5
が生成する。これらはフライト4の頂部によつて
かき取られてフライト前面側にメルトプール2が
形成され順次その量を増し乍ら前進し、溶融促進
部Aの起点に到達する。 即ちA部起点では既に所定量の溶融が進行して
いる。この条件を満すために前記A部の起点は少
くともソリツドベツドの破壊が開始される位置よ
り上流で、かつ予想される最遅溶融開始点より下
流になくてはならない。 実際は想定される多様な操業条件について理論
や経験別或いは小型試験用押出機による実験によ
つて研究し体積溶融比率が概略13〜18%程度に到
達する位置に設定されるのが望しい。 また溶融体側通路の起点位置における開度(第
7図wm/w×100%)については溶融比率を若
干下回る程度、即ち10〜15%の比率をもつことを
原則とする。但し、予期せぬ操業条件等によつて
当初設計値とはかなり異つた溶融形態例えば溶融
促進部A起点において溶融体側溝の開度より溶融
比率が下回る如き事態が生じた場合でも1部のソ
リツド粒子が溶融体側通路に侵入するだけでスク
リユとしての基本的機能は損われることなく少く
とも在来のスクリユ以上の良好な運転を継続する
ことが可能である。 さて溶融促進部Aにおけるソリツド側通路は前
述のように開始位置近辺でスクリユ溝巾の85〜90
%と比較的大きな対加熱シリンダ接触面積を有す
るため樹脂は適度な圧縮を受けながら加熱シリン
ダ12内面との摩擦作用や外部からの伝熱によつ
て溶融が促進される。該部において溶融の完了し
た加熱シリンダ12内面に接する部分の樹脂(メ
ルトフイルム)は順次第1フライト18より外径
の小なる第2フライト19山部を乗り越えて溶融
体の通路溝19bに流入するため、前述した如き
ソリツドベツドの破壊現象は起らず良好な定常的
状態を維持することができる。 本発明によるスクリユ14は溶融促進部Aにお
いて多様な操業条件の全てに亘つてソリツドベツ
ドに破壊現象を防ぎつゝ尚ソリツド側通路19に
おける材料の閉塞現象をも防止することを目的と
するものであるためソリツドと溶融体の完全な分
離を要求するものではない。従つてソリツド側通
路の横断面積、特に通路巾は実際想定される残在
ソリツドの巾より常に若干多目に設計することを
原則とするものである。全く同様の理由により溶
融促進部Aの終点においてソリツド側通路19は
開放形とし、この点における溝深さは通過する材
料の粒径より多少大きくし、開度(ソリツド部溝
巾/全巾×100%)も通常30〜80%と多目に設定
する。このため高速押出時には当然の事乍ら溶融
促進部A終点において樹脂の溶融は未完了となり
体積比で通常数%〜15%程度の未溶融粒子が残存
することとなるが、本発明によるスクリユは、こ
れらの部分が次工程へ流出することを妨げるもの
ではない。但し、これらの未溶融部分は本発明に
よるスクリユで規定する次の混合部Bおよび溶融
完了部Cにおいて100%溶融し同時に樹脂温度を
均一化させることが可能となつている。 次に、混合部Bにおける動作を第8図によつて
詳しく説明する。 溶融促進部Aにおいてソリツドベツドが破壊さ
れることなく、正常な作用を受けて充分加熱され
少くとも2次転位点以上、融点直下の温度を有し
相当軟化の進んだ未溶融粒子群はソリツド側通路
19aのフライト背面側に偏在している。これら
は混合部Bに流入した後比較的深溝で添付第6図
記載のビート或いはピン20等の補助的撹拌混合
機によつて細分され多量の溶融体内に均一に分
散・混合され乍ら周囲から熱を供給され僅かでは
あるが温度上昇するため一部表面層が溶融しつゝ
溶融完了部Cの各流入側溝21aに侵入する。 該部流路21aは混合部Bと計量部Mの間で貫
通せぬよう何れか一方を閉じた溝を交互に配置し
たものであるため流路21aに流入した樹脂流は
比較的狭い隙間δを通過して隣接する流路21a
に到達する。この過程でまだかなり粘(弾)性の
大きな未溶融体にのみ、瞬間的乍ら非常に有効な
剪断応力が生じるため粒子は変形して薄く引延さ
れ同時に摩擦熱が加わるので一気に融点を越し溶
融が完了する。 本発明によるスクリユによれば、上述したごと
く溶融完了部における剪断は未溶融体側により強
く作用するため既に溶融の完了した部分の温度は
さ程上げることがなくまた優れた混練作用がある
ため樹脂温度全体が均一となり、極めて良好な押
出を行なうことが可能である。 かくの如き理想的な溶融は、本発明で採用する
特公昭43−24493、即ち溶融完了部Cにおけるプ
ランジヤ21によつてのみ達成可能であり他の混
練装置例えば添付第9イ,ロに示すようなダルメ
ージやリングバルブ等では保証されない。 また溶融完了部C単独でもその機能を充分発揮
することが期待できない。即ち、ソリツドベツド
の破壊や閉塞現象に対しては有効でなくまた未溶
融粒子群が一部の溝に集中するとその性能が低下
することは明らかである。 つまり本発明による理想的な効果、即ち押出量
が増加し、しかも物性的に優れた製品を得る押出
装置は溶融促進部A、混合部Bおよび溶融完了部
Cによる総合的な組合せによるスクリユ、および
フイード部シリンダ13における材料の送り込み
の改善により、材料供給量を増加させることによ
り達成される。 以下65〓mmL/D=28の押出機で行われた本発
明による押出装置と従来装置との比較テストの結
果を下記に示す。 実施例 1
The present invention relates to an extrusion device for molding thermoplastic resin. In this type of extrusion device, various inventions and ideas have been made for the purpose of increasing the amount of extrusion.One method is to deepen the screw groove in the feed section of the screw and to roughen the inner wall surface of the cylinder in the feed section. This makes it possible to reliably transport pellets, powder, etc. without the bridge effect, that is, the raw materials do not rotate together with the screw. Therefore, compared to a cylinder in which the supply section has a normal smooth circular wall surface, the material can be absorbed better, even a cylinder with a smaller diameter can extrude a large amount, and the temperature of the cylinder can be easily controlled. Research has been conducted in various fields regarding the melting morphology of thermoplastic resins, and many theories and experimental data have been reported. It is typically explained using a melting model. In FIG. 1, numeral 1 indicates a solid bed (unmelted material) at the front of the screw groove, 2 indicates a molten material at the rear of the screw groove, and 3 indicates a melt film formed along the inner wall surface of the cylinder 5. Also, 4 is Skrill Flight. At the initial stage of melting, the morphology as shown in this model is clearly maintained, but as melting progresses and the melting ratio increases, an unsteady phenomenon called destruction of the solid bed due to interference of the melt occurs. This causes unfavorable results such as extrusion fluctuations, contamination of unmelted substances, or entrainment of air bubbles. This phenomenon becomes particularly noticeable during extrusion at high speeds, and is therefore the biggest factor regulating the performance of extruders. As shown in Figure 2A, according to the screw proposed in Japanese Patent Publication No. 11505/1973, the solid bed and the molten material are separated by the second flight during the melting process, so that the solid bed as described above is Destructive phenomena are easily prevented and good operation cannot be continued under certain conditions. However, in general, there are a wide range of conditions such as the composition of materials handled by extruders, physical properties, types of molded products, and required production volume, and it is important to note that the melting forms of resins corresponding to each are also infinitely different. must not. Under such circumstances, if the solid side passage groove is blocked at its end, it lacks adaptability to various conditions and, for example, a relatively large amount of resin in the form of a solid may reach the vicinity of the end. It has been confirmed that under such severe conditions, the resin often becomes clogged in the channel grooves, resulting in a sharp drop in extrusion performance. In order to prevent the above-mentioned clogging phenomenon, it is possible to assist melting by external heating, but resin is generally a poor conductor of heat, and much cannot be expected due to the structural limitations of the heating system. In addition, it can be improved by preparing several types of screws with different shapes and selecting and operating the screw that suits each condition, but this is not economical. On the other hand, as shown in FIG. In this case, resin clogging phenomenon can be prevented, but on the other hand, since it is an open type, it has characteristics similar to conventional (full-flight) screws, and complete melting cannot be achieved under all of the various extrusion conditions described above. cannot be guaranteed. In other words, some or a considerable amount of unmelted material flows out to the next process,
This may have an unfavorable effect on the extruded product. Although it is possible to improve the degree of melting to some extent by changing the cross-sectional area of the solid side passage groove, it is fundamentally difficult to achieve both complete melting of the resin and non-occlusion. The more complex the process, the less significant the effect will be. Also, since the fluids flowing out from different passages to the next process naturally have different state quantities such as resin temperature, it will be difficult to maintain the homogeneity of the extruded product unless there is an appropriate device to mix the two fluids. . The object of the present invention is to provide an extrusion device that eliminates the above-mentioned drawbacks, increases the extrusion rate by improving the feeding section, and makes the extruded product homogeneous using a relatively simple screw structure. Next, with reference to FIGS. 3 to 9, 1 according to the present invention
To explain the embodiment, reference numeral 11 denotes an extrusion device, and a screw 14 is rotatably inserted into a heating cylinder 12 and a feed section cylinder 13 by a drive device (not shown). The feed section cylinder 13
A plurality of taper grooves 15 extending in the axial direction are provided on the inner wall surface, and the grooves become shallower in the direction of the material flow, to prevent the material input from the material supply port 16 from rotating together with the screw 14. ing. Of course, the inner wall surface does not have to be a groove as described above, but it is sufficient that the inner wall surface is roughened so that frictional action can be effectively performed so that the material does not rotate together with the rotation of the screw 14. Further, the feed portion cylinder 13 is provided with a spiral circular groove 17, and cooling by air or water is possible by flowing a heat medium into the groove 17 as necessary. As shown in the detailed view of FIG. 5, the screw 14 is located between the supply section F starting from the raw material input port and the final measuring section M, and sequentially includes a melting promotion section A, a mixing section B, and a melting completion section from the supply section F. It is composed of C. If the screw diameter is D, then approximately
The melting promoting section A has a length of about 5D and extends from near the end of the supply section F to near the starting point of the mixing section B. The second flight 18 has a smaller outer diameter than the first flight 18.
The second flight 19 divides the inside of the screw groove into a groove 19a in which the solid part mainly passes in the front and a molten material passage 19b in the rear. It is also 30 to 80% wide at certain points, and is open to prevent stagnation in any part. As shown in the detailed view of FIG. 6, the mixing section B is located in the downstream area adjacent to the melting promotion section A, and contains a large amount of molten resin transferred from the melting promotion section A and a relatively small amount of unmixed resin. It has a relatively deep groove and an auxiliary mixing function such as a beat or pin 20 for uniformly mixing the molten material and sending it to the next process. The melting completion section C completely melts the resin flow containing the unmelted material sent out from the mixing section B and equalizes the resin temperature. A plunger 21 is provided to maintain a small gap d between the plungers 21 and a stopper groove 21a that does not penetrate through the outer peripheral surface of the plunger 21.
are arranged alternately in opposite directions so that they do not communicate with each other. 22 is a heater provided on the outer periphery of the heating cylinder 12. The extrusion device according to the present invention is equipped with the feed section cylinder and screw as described above. Next, its operation will be explained. The material resin supplied from the material supply port 16 at room temperature or slightly preheated passes through the supply section A. During this process, the friction coefficient with the inner wall surface of the feed cylinder 13 is increased by the groove 15 provided on the inner wall surface of the feed cylinder 13. The spiral circular groove 17
Humidity increases due to the heat medium inside and the frictional heat generated between the heater 22 and the inner wall surface of the feed section cylinder 13, and the position is determined depending on various conditions, that is, the supply section F.
A melt film 5 as shown in FIG.
is generated. These are scraped off by the top of the flight 4 to form a melt pool 2 on the front side of the flight, and the melt pool 2 gradually increases in volume and advances until it reaches the starting point of the melt promotion zone A. That is, a predetermined amount of melting has already progressed at the starting point of part A. In order to satisfy this condition, the starting point of part A must be at least upstream of the point where the solid bed begins to break and downstream of the expected slowest melting start point. In reality, it is preferable to study various possible operating conditions by theory, experience, or experiments using a small test extruder, and to set the volume melting ratio at a position that reaches about 13 to 18%. In addition, the degree of opening (wm/w x 100% in Fig. 7) at the starting point of the molten material side passage is, in principle, slightly lower than the melting ratio, that is, the ratio is 10 to 15%. However, even if a situation occurs where the melting form is quite different from the initially designed value due to unexpected operating conditions, for example, the melting ratio is lower than the opening of the melt side gutter at the starting point of the melt promotion zone A, a portion of the solid Even if particles just enter the melt side passage, the basic function of the screw is not impaired, and it is possible to continue operating at least better than conventional screws. Now, as mentioned above, the solid side passage in the melting promotion section A has a screw groove width of 85 to 90 mm near the starting position.
Since the resin has a relatively large contact area with the heating cylinder 12, the resin is moderately compressed and its melting is promoted by frictional action with the inner surface of the heating cylinder 12 and heat transfer from the outside. In this part, the resin (melt film) in the part in contact with the inner surface of the heating cylinder 12, which has been completely melted, gradually passes over the mountain part of the second flight 19, which has a smaller outer diameter than the first flight 18, and flows into the molten material passage groove 19b. Therefore, the phenomenon of destruction of the solid bed as described above does not occur, and a good steady state can be maintained. The screw 14 according to the present invention is intended to prevent the phenomenon of destruction of the solid bed under all various operating conditions in the melting promotion section A, and also to prevent the phenomenon of material clogging in the solid side passage 19. Therefore, complete separation of solid and melt is not required. Therefore, as a general rule, the cross-sectional area of the solid side passage, especially the passage width, should always be designed to be slightly larger than the actual width of the remaining solid. For exactly the same reason, the solid side passage 19 is made open at the end point of the melting promotion section A, and the groove depth at this point is slightly larger than the particle size of the material passing through, and the opening degree (solid section groove width / total width × 100%) is usually set to a high value of 30 to 80%. For this reason, during high-speed extrusion, as a matter of course, the melting of the resin is incomplete at the end point of the melt-promoting zone A, and unmelted particles of approximately several to 15% by volume remain.However, the screw according to the present invention This does not prevent these parts from flowing to the next process. However, these unmelted portions are 100% melted in the next mixing section B and melting completion section C defined by the screw according to the present invention, and at the same time it is possible to equalize the resin temperature. Next, the operation in the mixing section B will be explained in detail with reference to FIG. In the melting promotion zone A, the solid bed is not destroyed and is sufficiently heated under normal action, and the group of unmelted particles, which have a temperature at least above the secondary dislocation point and just below the melting point, and have undergone considerable softening, enter the solid side passage. It is unevenly distributed on the back side of the flight of 19a. After flowing into the mixing section B, these are finely divided by an auxiliary stirring mixer such as a beat or pin 20 shown in the attached Fig. 6 in relatively deep grooves, and are uniformly dispersed and mixed within a large amount of melt, while being separated from the surroundings. As heat is supplied and the temperature rises, albeit slightly, a portion of the surface layer melts and enters each inlet side groove 21a of the melting completion section C. The flow path 21a is formed by alternately arranging grooves with one side closed so as not to penetrate between the mixing portion B and the measuring portion M, so that the resin flow flowing into the flow path 21a flows through a relatively narrow gap δ. The adjacent flow path 21a passing through
reach. In this process, a momentary but very effective shear stress is generated only in the unmolten material, which is still quite viscous (elastic), so the particles are deformed and stretched thin, and at the same time frictional heat is added, so that the melting point is quickly exceeded. Melting is complete. According to the screw according to the present invention, as described above, the shear in the melted part acts more strongly on the unmelted material side, so the temperature of the already melted part does not rise much, and the excellent kneading action is achieved, so the resin temperature increases. The whole is uniform, and it is possible to perform extremely good extrusion. Such ideal melting can only be achieved by the plunger 21 in the melting completion section C, as described in Japanese Patent Publication No. 43-24493 adopted in the present invention. This is not guaranteed with dalmage or ring valves. Moreover, it cannot be expected that the melted part C alone can sufficiently exhibit its function. That is, it is clear that it is not effective against the destruction or clogging phenomenon of solid beds, and that its performance deteriorates when unmelted particles concentrate in some grooves. In other words, the extrusion apparatus that achieves the ideal effect of the present invention, that is, increases the extrusion rate and produces a product with excellent physical properties, is a screw system that has a comprehensive combination of the melt accelerating section A, the mixing section B, and the melting completion section C; This is achieved by improving the feeding of material in the feed section cylinder 13 by increasing the material feed rate. The results of a comparative test between the extrusion apparatus according to the present invention and a conventional apparatus, which were conducted using an extruder with a 65 mm L/D=28, are shown below. Example 1

【表】 実施例 2【table】 Example 2

【表】 上記実験では押出品中に未溶融物や気泡は全く
認められなかつた。 また上記実施例は何れも性能の上限を示すもの
ではない。このように本発明によるスクリユによ
れば在来型スクリユの少くとも150%更には200%
以上の性能向上を望むことが可能である。
[Table] In the above experiment, no unmelted substances or bubbles were observed in the extruded product. Further, none of the above embodiments indicates an upper limit of performance. As described above, the screw according to the present invention has a reduction rate of at least 150% and even 200% of that of the conventional screw.
It is possible to hope for the above performance improvement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は溶融初期における樹脂の態様を示す説
明図、第2図は従来装置に用いるスクリユの図。
第3図は本発明による1実施例を示す図。第4図
はその説明図で第3図の断面−図。第5図は
スクリユの詳細図、第6図は第5図の“イ”部詳
細図、第7図は溶融促進部の起点における樹脂配
布状態を示す説明図、第8図は溶融促進部の終点
における樹脂配布状態を示す説明図、第9図は他
の混練装置を示す図。 13……フイード部シリンダ、14……スクリ
ユ、18……第1フライト、19……第2フライ
ト、20……ピン、21……プランジヤ。
FIG. 1 is an explanatory diagram showing the state of the resin at the initial stage of melting, and FIG. 2 is a diagram of a screw used in a conventional device.
FIG. 3 is a diagram showing one embodiment according to the present invention. FIG. 4 is an explanatory diagram thereof, and is a cross-sectional view of FIG. 3. Figure 5 is a detailed view of the screw, Figure 6 is a detailed view of the "A" part in Figure 5, Figure 7 is an explanatory diagram showing the state of resin distribution at the starting point of the melt promoting part, and Figure 8 is a detailed view of the melt promoting part. An explanatory diagram showing the resin distribution state at the end point, and FIG. 9 is a diagram showing another kneading device. 13...Feed section cylinder, 14...Screw, 18...First flight, 19...Second flight, 20...Pin, 21...Plunger.

Claims (1)

【特許請求の範囲】 1 熱可塑性樹脂成形用押出装置において、材料
投入口より開始される供給部と最終計量部の中間
に供給部側より順次下記(1)、(2)、(3)にて規定され
る溶融促進部A、混合部Bおよび溶融完了部Cよ
り構成される部分を有するスクリユと、下記(4)に
規定するフイードシリンダを有する熱可塑性樹脂
成形用押出装置。 (1) 前記供給部終端近辺を起点とし混合部Bの開
始点近辺まで延在する第1フライトより外径の
小なる第2フライトを有し、該第2フライトに
よつて樹脂通路溝が前方の主としてソリツド部
通路溝と後方の溶融体通路溝とに内分される割
合が該部起点位置において概略85〜90%(ソリ
ツド部溝巾/全巾×100%、以下同じ)終点位
置において概略30〜80%で、何れの部分におい
ても明らかにしていることを特徴とする溶融促
進部A。 (2) 前記溶融促進部Aと隣接する下流域にあつて
前工程から流出される多量の樹脂溶融体と比較
的少量の未溶融体とを均一に混合した後、次工
程へ送出するための比較的深溝でビート或いは
ピン等の補助的混合機能を有する混合部B。 (3) 前記混合部Bより流入する未溶融体を含む樹
脂流を瞬時に完全溶融すると同時に樹脂温度を
均一化ならしめるために前記混合部Bの下流に
シリンダ内壁面との間に小間隙を持つプランジ
ヤ部を設け、同プランジヤ外周面に貫通しない
先止まりの条溝を夫々が連通しないように交互
に逆方向に配置した溶融完了部C。 (4) 前記スクリユの供給部区間の始点から5ピツ
チ相当の間を強制フイード区域とし、同区域に
おけるシリンダ内壁面に複数個の原料の流れ方
向に対し次第に浅くなる軸方向に延びたテーパ
溝または任意の粗面としたフイードシリンダ。
[Claims] 1. In an extrusion device for molding thermoplastic resin, the following steps (1), (2), and (3) are performed sequentially from the supply section between the supply section starting from the material input port and the final measuring section. An extrusion device for molding a thermoplastic resin, comprising a screw having a portion constituted by a melting promotion section A, a mixing section B, and a melting completion section C defined as follows, and a feed cylinder defined in (4) below. (1) A second flight having a smaller outer diameter than the first flight starts from near the end of the supply section and extends to near the start of the mixing section B, and the second flight allows the resin passage groove to move forward. The proportion of the solid part mainly divided into the solid part passage groove and the rear melt passage groove is approximately 85 to 90% at the starting point position (solid part groove width/total width x 100%, the same applies hereinafter) at the end point position. 30 to 80% of the melting promoted part A is characterized in that it is clear in any part. (2) Located in the downstream area adjacent to the melt promotion section A, a large amount of molten resin flowing out from the previous process and a relatively small amount of unmelted material are uniformly mixed and then sent to the next process. Mixing section B has a relatively deep groove and has an auxiliary mixing function such as a beat or pin. (3) In order to instantaneously completely melt the resin flow containing unmelted material flowing from the mixing section B, and at the same time equalize the resin temperature, a small gap is provided downstream of the mixing section B between the inner wall surface of the cylinder and the resin flow including unmelted material. A melting completion part C is provided with a plunger part that has a plunger part, and has first-stop grooves that do not penetrate the outer peripheral surface of the plunger and are alternately arranged in opposite directions so that they do not communicate with each other. (4) The area corresponding to 5 pitches from the starting point of the feeding section of the screw is defined as a forced feed area, and the inner wall surface of the cylinder in this area is provided with a plurality of taper grooves or grooves extending in the axial direction that gradually become shallower in the flow direction of the raw materials. Feed cylinder with arbitrary rough surface.
JP56192440A 1981-11-30 1981-11-30 Extruder for molding thermoplastic resin Granted JPS5892545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56192440A JPS5892545A (en) 1981-11-30 1981-11-30 Extruder for molding thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56192440A JPS5892545A (en) 1981-11-30 1981-11-30 Extruder for molding thermoplastic resin

Publications (2)

Publication Number Publication Date
JPS5892545A JPS5892545A (en) 1983-06-01
JPS6412213B2 true JPS6412213B2 (en) 1989-02-28

Family

ID=16291335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56192440A Granted JPS5892545A (en) 1981-11-30 1981-11-30 Extruder for molding thermoplastic resin

Country Status (1)

Country Link
JP (1) JPS5892545A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1002469A4 (en) * 1988-08-12 1991-02-19 Euro Stel P V B A Procedure for improving the melting process in injection moulding machinesand the screws for the realisation thereof
JPH02295721A (en) * 1989-05-10 1990-12-06 Mitsubishi Heavy Ind Ltd Screw for single screw extruder
DE69112715T2 (en) * 1990-06-15 1996-02-22 Tonen Sekiyukagaku Kk Multi-layer plastic fuel tank.
JP5752404B2 (en) * 2010-12-20 2015-07-22 東洋機械金属株式会社 Injection molding machine

Also Published As

Publication number Publication date
JPS5892545A (en) 1983-06-01

Similar Documents

Publication Publication Date Title
US3941535A (en) Extrusion device
US4155655A (en) Apparatus for additive feeding
US5215764A (en) Extruder mixing screw
US4752136A (en) Extruder injection apparatus and method
US5816698A (en) Screw and plasticating apparatus and method
US6136246A (en) Screw extruder with improved dispersive mixing elements
USRE23880E (en) Extruder
US4000884A (en) Extruder screw
EP1711322B1 (en) Apparatus for plasticating thermoplastics
US4639143A (en) Extrusion screw
US3685804A (en) Mixing apparatus and method
WO1985001911A1 (en) Uniaxial kneading extruder
US5798077A (en) Screw for plasticating apparatus and method of use
EP1583641A2 (en) Intermeshing element mixer
JP2001522736A (en) Screw extruder with various different mixing elements
US3866890A (en) Apparatus for simultaneous plasticating and mixing
JPS6316247B2 (en)
US4085461A (en) Screw-type plastics extruder
US6497508B1 (en) Plasticating process, apparatus and screw with mixing
US3300810A (en) Extruder
US6672753B1 (en) Apparatus for plasticating thermoplastics
US6488399B1 (en) Apparatus for plasticating thermoplastics
JPS6412213B2 (en)
JPS582056B2 (en) Thermoplastic resin molding screw
US3590430A (en) Screw extruder