JPS6411634B2 - - Google Patents

Info

Publication number
JPS6411634B2
JPS6411634B2 JP17127883A JP17127883A JPS6411634B2 JP S6411634 B2 JPS6411634 B2 JP S6411634B2 JP 17127883 A JP17127883 A JP 17127883A JP 17127883 A JP17127883 A JP 17127883A JP S6411634 B2 JPS6411634 B2 JP S6411634B2
Authority
JP
Japan
Prior art keywords
trioxane
solvent
phase
column
distilled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17127883A
Other languages
Japanese (ja)
Other versions
JPS6064978A (en
Inventor
Kenji Onizuka
Hachiro Kitajima
Yoshinori Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP17127883A priority Critical patent/JPS6064978A/en
Publication of JPS6064978A publication Critical patent/JPS6064978A/en
Publication of JPS6411634B2 publication Critical patent/JPS6411634B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はホルムアルデヒドからトリオキサンを
製造する方法に関し、さらに詳しくはホルムアル
デヒド水溶液を酸触媒で加熱蒸留する際、一段目
の塔でトリオキサンを第一溶剤との共沸混合物と
して塔頂から留出させ、相分離で得られたトリオ
キサン相を二段目の塔でトリオキサン相中に含有
する水、ホルムアルデヒドを第二溶剤との共沸混
合物として塔頂から留出させ、塔底から高純度の
トリオキサンを効率的に得る方法に関する。 一般にトリオキサンはホルムアルデヒド水溶液
を不揮発性の酸触媒の存在下に加熱することによ
つて得られる。工業的な製法としては30〜70重量
%のホルムアルデヒド水溶液を酸触媒の存在下に
加熱蒸留して得られるトリオキサン20〜55重量
%、ホルムアルデヒド10〜35重量%及び水20〜50
重量%からなる粗トリオキサンの留出液を (1) 冷却して晶出したトリオキサンの結晶を過
分離する方法、または (2) 水に不溶ないし難溶の溶剤で液々抽出し、抽
出液を精留してトリオキサンを分離する方法
(特公昭41−6344、特開昭56−87580)、または (3) 水に不溶ないし難溶で水と共沸混合物をつく
る溶剤の存在下で蒸留する方法(特公昭49−
5351、特公昭49−28197) 等が知られている。 ここでホルムアルデヒド水溶液を加熱蒸留して
粗トリオキサンを留出させる場合、トリオキサン
を濃縮させるのに多くの還流を必要とし、特に粗
トリオキサン中の水の含有量が比較的高いため、
これに要するエネルギーは膨大となり経済的に不
利である。 そしてこの場合、ホルムアルデヒドが凝縮器内
で完全に凝縮されずに逸散して、比較的冷却され
た器壁、配管等にパラホルムアルデヒドとして付
着、沈積し、配管及び凝縮器を詰らせ長期運転を
困難にする欠点を有している。 さらに他の製造法として特公昭48−26031にホ
ルムアルデヒド水溶液を酸触媒の存在下に加熱蒸
留して、発生する蒸気をトリオキサンと共沸する
飽和炭化水素溶剤と接触させ、トリオキサンを溶
剤との共沸混合物として留出させ水相と溶剤相に
分離し、溶剤相中に含有される粗トリオキサンを
冷却して晶出させトリオキサンの結晶を得る方法
が開示されている。しかしながらこのような留出
液を冷却して得た晶出物を過分離する方法は、
トリオキサンの結晶中に水およびホルムアルデヒ
ドを含む為、さらに乾燥或いは抽出蒸留等によつ
て精製しなければならず、プロセスが複雑になる
欠点を有している。 本発明者らは以上述べた従来技術に対し省エネ
ルギー、プロセスの簡略化、及びホルムアルデヒ
ドの重合体による配管等の閉塞のトラブル防止の
立場からホルムアルデヒド水溶液を使用する製造
方法を検討した結果、次のことが明らかとなつ
た。 すなわち、トリオキサンと共沸する溶剤につい
てその共沸混合物の組成、相分離状態の安定性、
及び相分離における各成分の分配率等について詳
細に検討を加えたところ トリオキサンは沸点が60〜110℃の飽和脂肪
族炭化水素または飽和脂環式炭化水素の存在下
で、容易に塔頂に留出し得、留出共沸混合物を
トリオキサンの晶出温度以上で冷却凝縮させた
ところ安定な二相溶液を形成すること、 しかもトリオキサンはほとんど粗トリオキサ
ン相へ分配され、相分離により容易に濃縮出来
ること、 塔頂留出物中のトリオキサンの共沸組成が15
〜40重量%と比較的高い為、トリオキサンの共
沸に必要とされる溶剤の添加量が少なくて済こ
と、 粗トリオキサン相に含有される水、ホルムア
ルデヒド等は水に不溶ないし難溶で水と共沸混
合物を形成する溶剤の存在下で共沸蒸留を行う
ことにより塔頂から排出され、塔底より高純度
のトリオキサンが得られること が判明した。 これらの知見をもとに、二段共沸蒸留法を導入
することにより、高純度のトリオキサンを少ない
エネルギーでしかもホルムアルデヒドの重合物の
析出による配管等の閉塞がなく、連続操作可能な
新規な製造方法を見い出し本発明に到達すること
が出来た。 すなわち、ホルムアルデヒド水溶液を酸触媒の
存在下に加熱蒸留して発生する蒸気を一段目の塔
で沸点が60〜110℃でトリオキサンと共沸混合物
を形成する第一溶剤の存在下で気液接触させ、ト
リオキサンを上記第一溶剤との共沸混合物として
留出せしめ、留出蒸気をトリオキサンの晶出温度
以上で冷却凝縮させた後、上記第一溶剤相と粗ト
リオキサン相に相分離させ、該粗トリオキサン相
の全部または一部を二段目の塔に供給し、二段目
の塔で水に不溶ないし難溶でかつ沸点が30〜110
℃の水と共沸する第二溶剤の存在下で蒸留を行
い、塔頂から留出した水、ホルムアルデヒド等を
上記第二溶剤と相分離後系外に排出し、塔底から
高純度のトリオキサンを得ることを特徴とするト
リオキサンの製造方法である。 本発明で使用される溶剤は次の通りである。 一段目の塔ではトリオキサンを塔頂に共沸物と
して留出させ、かつトリオキサンの晶出温度以上
で相分離させる為常圧における沸点が60〜110℃
のトリオキサンと共沸する第一溶剤であり、n−
ヘキサン、iso−ヘキサン、n−ヘプタン、iso−
オクタン等の飽和脂肪族炭化水素、シクロヘキサ
ン、メチルシクロヘキサン等の飽和脂環式炭化水
素である。特に好ましくは、沸点が塔頂留出物中
のトリオキサンの共沸組成を高く溶剤の循環量が
少なくて済む80℃以上の溶剤を使用するのが好ま
しいが、特に限定されるものではない。 二段目の塔では、常圧における沸点が30〜110
℃で水に不溶ないしは難溶で水と共沸する第二溶
剤で、例えば塩化エチレン、塩化エチリデン、ク
ロロホルム等の塩素化炭化水素、エチルエーテ
ル、イソプロピルエーテル、エチルブチルエーテ
ル等のエーテル、酢酸メチル、酢酸イソプロピル
等のエステル、メチルエチルケトン、ジエチルケ
トン等のケトン、ベンゼン、ジクロルヘキサン等
の炭化水素が挙げられる。 次に図面により本発明を詳細に説明する。図は
本発明の概略の工程を示す。 一段目の工程において反応缶2に導管1を経て
ホルムアルデヒド水溶液が供給される。反応缶内
のホルムアルデヒドは30〜70重量%、好ましくは
50〜65重量%であり、触媒としては硫酸、燐酸、
ベンゼンスルホン酸、パラトルエンスルホン酸ま
たは陽イオン交換樹脂等公知の方法のものが使用
される。触媒の量はトリオキサンの生成量を低下
させることなく、しかも副反応の生成平衡濃度を
増大せしめない様な量であれば差しつかえない
が、普通全仕込量に対して0.1〜15重量%、好ま
しくは0.5〜10重量%使用することが望ましい。 なお、図では反応缶2と第一蒸留塔3が直結し
ているが、導管により反応器と蒸留塔の形で結合
されていてもよい。 反応缶2で生成したトリオキサンは加熱蒸留さ
れ、一方トリオキサンと共沸する第一溶剤は導管
7を経て第一蒸留塔3を塔頂部に供給され、気液
接触させる。塔頂部より留出するトリオキサン、
水、ホルムアルデヒドと第一溶剤の共沸混合物は
導管4を経て冷却器5で冷却凝縮される。ここで
共沸混合物中のトリオキサンの晶出を防ぐ為、ト
リオキサンの晶出温度以上で冷却される。分離器
6で第一溶剤相と粗トリオキサン相に相分離後、
第一溶剤相は全量導管7を経て塔頂部に還流して
戻す。粗トリオキサン相は導管9を経て全量二段
目の工程に供給される。必要なら粗トリオキサン
相の一部を導管8を経て還流として第一蒸留塔3
の塔頂部に戻し残部を導管9を経て二段目の工程
に供給してもよい。 二段目の工程において、一段目の工程から導管
9を経て第二蒸留塔11へ粗トリオキサン相が供
給され、水に不溶ないし難溶で水と共沸する第二
溶剤を導管15を経て塔頂部に供給し、粗トリオ
キサン相と接触させ、水、ホルムアルデヒド等を
第二溶剤との共沸混合物として塔頂部より導管1
2を経て留出させ、冷却器13で冷却凝縮された
後、分離器14で相分離させ水層は導管16を経
て系外に排出され、溶剤相は導管15を経て第二
蒸留塔11の塔頂部へ還流として戻される。一
方、塔底より導管17を経て本質的に純粋なトリ
オキサンが取得される。 なお、図においては溶剤として水よりも軽いも
のを使用する場合を示したが、水よりも重い溶剤
を使用する場合にも分離器6,14においてそれ
ぞれ第一溶剤相と粗トリオキサン相、第二溶剤相
と水相とが逆転すること以外は同様の装置で行う
ことができる。 以下に本発明の実施例を示す。 実施例 1 装置は1の反応缶とマクマホンを充填させた
塔径35mm、高さ1.8mのステンレス製充填塔とを
直結したものを使用した。 触媒に硫酸を用い、反応缶2で硫酸濃度5重量
%とし、第一溶剤にn−ヘプタンを用いて実験を
行つた。塔頂圧力が大気圧下で塔頂温度が約76℃
付近になつたら導管1から60重量%ホルムアルデ
ヒド水溶液を反応缶2の液面が一定になるように
連続供給し、一方溶剤は導管7を経て207g/時
で循環させた。 一段目共沸蒸留塔3の塔頂より留出したn−ヘ
プタン、トリオキサン、ホルムアルデヒド及び水
の共沸混合物蒸気を凝縮器5でトリオキサンを晶
出させないように65±5℃で冷却凝縮させた後分
離器6で相分離させ、トリオキサン相は導管9を
経て二段目共沸蒸留塔11へ70g/時で供給し
た。蒸留塔3に係る主な導管内液の組成は表−1
に示してある。これによれば粗トリオキサン相中
のトリオキサン濃度は50重量%を超えること、ま
た1カ月以上の運転を行つても凝縮器、配管等に
ホルムアルデヒドの重合物は確認されず連続運転
可能なことが判つた。 次いで二段目共沸蒸留工程において、第二溶剤
に塩化エチレンを用い、粗トリオキサン相を蒸留
塔11の中間部に供給し、再沸器10の温度を
115〜117℃に保持し塔頂温度を約72℃付近で操作
した。塔頂から留出した共沸混合物蒸気は凝縮器
13で冷却凝縮した後、分離器14で相分離させ
溶剤相は導管15を経て336g/時で蒸留塔11
へ還流し水相は導管16を経て32g/時で系外に
排出した。塔底より導管17を経てトリオキサン
が得られ表−1に示す如く高い純度であつた。 一段目工程と同様凝縮器、配管等にホルムアル
デヒドの重合物は確認されず、長期運転可能なこ
とが明らかとなつた。 実施例 2 一段目共沸蒸留工程の第一溶剤にメチルシクロ
ヘキサン、二段目共沸蒸留工程の第二溶剤にベン
ゼンを使用した以外は実施例1と同様にしてホル
ムアルデヒド水溶液からトリオキサンを合成、精
製した結果を表−1に示した。 比較例 実施例1と同じ装置を用い、一段目共沸蒸留方
式の代わりに、溶剤を使用しないで反応蒸留塔か
ら留出する蒸気を凝縮する方法で行つた。反応缶
にホルムアルデヒド60重量%、硫酸5重量%の水
溶液500gを仕込み、反応缶の液面が一定になる
様にホルムアルデヒド60重量%を連続供給し、還
流量を調整して塔頂留出物中のトリオキサン濃度
を54重量%にしたところ、還流比が6以上必要で
あつた。12時間運転後、開放点検したところ凝縮
器の器壁にパラホルムアルデヒドの附着が確認さ
れた。 塔頂留出物のトリオキサンの濃度及び流出量を
一定にした場合の塔頂の凝縮器から冷却水等によ
り消費するエネルギーを従来技術と比較したとこ
ろ、本発明方法が従来技術よりも約70%節約され
ることが判つた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing trioxane from formaldehyde, and more specifically, when an aqueous formaldehyde solution is heated and distilled using an acid catalyst, trioxane is distilled as an azeotropic mixture with a first solvent in the first column. The trioxane phase obtained by phase separation is distilled from the top of the column, and the water and formaldehyde contained in the trioxane phase are distilled from the top of the column as an azeotropic mixture with the second solvent, and the trioxane phase obtained by phase separation is distilled from the top of the column as an azeotropic mixture with the second solvent. This invention relates to a method for efficiently obtaining trioxane of high purity. Generally, trioxane is obtained by heating an aqueous formaldehyde solution in the presence of a nonvolatile acid catalyst. As an industrial method, 20-55% by weight of trioxane obtained by heating and distilling a 30-70% by weight formaldehyde aqueous solution in the presence of an acid catalyst, 10-35% by weight of formaldehyde and 20-50% by weight of water is used.
A distillate of crude trioxane consisting of % by weight is extracted by (1) cooling and excessively separating trioxane crystals, or (2) liquid extraction with a solvent that is insoluble or sparingly soluble in water, and the extract is extracted. Method of separating trioxane by rectification (Japanese Patent Publication No. 41-6344, Japanese Patent Publication No. 56-87580), or (3) method of distillation in the presence of a solvent that is insoluble or sparingly soluble in water and forms an azeotrope with water. (Tokuko Showa 49-
5351, Special Publication No. 49-28197), etc. are known. When distilling crude trioxane by heating the formaldehyde aqueous solution, a lot of reflux is required to concentrate the trioxane, and especially since the water content in the crude trioxane is relatively high,
The energy required for this is enormous and is economically disadvantageous. In this case, formaldehyde is not completely condensed in the condenser and evaporates, adhering to and depositing as paraformaldehyde on relatively cooled vessel walls, piping, etc., clogging the piping and condenser and causing long-term operation. It has drawbacks that make it difficult. Furthermore, another production method was developed in Japanese Patent Publication No. 48-26031, in which an aqueous formaldehyde solution was heated and distilled in the presence of an acid catalyst, and the generated vapor was brought into contact with a saturated hydrocarbon solvent that was azeotropic with trioxane. A method is disclosed in which a mixture is distilled out, separated into an aqueous phase and a solvent phase, and the crude trioxane contained in the solvent phase is cooled and crystallized to obtain trioxane crystals. However, this method of over-separating the crystallized product obtained by cooling the distillate is
Since trioxane crystals contain water and formaldehyde, it must be further purified by drying or extractive distillation, which has the disadvantage of complicating the process. The present inventors investigated a manufacturing method using an aqueous formaldehyde solution from the standpoint of energy saving, process simplification, and prevention of troubles such as clogging of pipes, etc. caused by formaldehyde polymers in contrast to the conventional technology described above.As a result, the following findings were made. It became clear. In other words, the composition of the azeotrope of the solvent azeotropic with trioxane, the stability of the phase separation state,
We conducted a detailed study on the distribution ratio of each component during phase separation, and found that trioxane easily remains at the top of the column in the presence of saturated aliphatic hydrocarbons or saturated alicyclic hydrocarbons with a boiling point of 60 to 110°C. When the distilled azeotrope is cooled and condensed above the crystallization temperature of trioxane, a stable two-phase solution is formed; most of the trioxane is distributed into the crude trioxane phase, and it can be easily concentrated by phase separation. , the azeotropic composition of trioxane in the overhead distillate is 15
Since it is relatively high at ~40% by weight, only a small amount of solvent is required for azeotropic trioxane distillation, and water, formaldehyde, etc. contained in the crude trioxane phase are insoluble or poorly soluble in water and are not soluble in water. It has been found that by performing azeotropic distillation in the presence of a solvent that forms an azeotrope, trioxane is discharged from the top of the column and highly purified trioxane is obtained from the bottom of the column. Based on these findings, by introducing a two-stage azeotropic distillation method, we have developed a new method for producing high-purity trioxane using less energy and which can be operated continuously without clogging pipes due to precipitation of formaldehyde polymers. We found a method and were able to arrive at the present invention. That is, the vapor generated by heating and distilling an aqueous formaldehyde solution in the presence of an acid catalyst is brought into gas-liquid contact in the first stage column in the presence of a first solvent that has a boiling point of 60 to 110°C and forms an azeotrope with trioxane. , trioxane is distilled out as an azeotropic mixture with the first solvent, the distilled vapor is cooled and condensed at a temperature higher than the crystallization temperature of trioxane, and then phase-separated into the first solvent phase and the crude trioxane phase. All or a part of the trioxane phase is supplied to the second column, and the second column supplies the trioxane phase to the second column.
Distillation is carried out in the presence of a second solvent that is azeotropic with water at ℃, and water, formaldehyde, etc. distilled from the top of the column are phase-separated from the second solvent and discharged outside the system, and high-purity trioxane is produced from the bottom of the column. This is a method for producing trioxane characterized by obtaining the following. The solvents used in the present invention are as follows. In the first column, trioxane is distilled out as an azeotrope at the top of the column, and phase separation occurs above the crystallization temperature of trioxane, so the boiling point at normal pressure is 60 to 110℃.
is the first solvent azeotropic with trioxane of n-
hexane, iso-hexane, n-heptane, iso-
These are saturated aliphatic hydrocarbons such as octane, and saturated alicyclic hydrocarbons such as cyclohexane and methylcyclohexane. Particularly preferably, a solvent with a boiling point of 80° C. or higher is used, which increases the azeotropic composition of trioxane in the overhead distillate and requires less circulation of the solvent, but the solvent is not particularly limited. In the second column, the boiling point at normal pressure is 30 to 110.
A second solvent that is insoluble or sparingly soluble in water and azeotropic with water at ℃, such as chlorinated hydrocarbons such as ethylene chloride, ethylidene chloride, and chloroform, ethers such as ethyl ether, isopropyl ether, and ethyl butyl ether, methyl acetate, and acetic acid. Examples include esters such as isopropyl, ketones such as methyl ethyl ketone and diethyl ketone, and hydrocarbons such as benzene and dichlorohexane. Next, the present invention will be explained in detail with reference to the drawings. The figure shows the general steps of the invention. In the first step, an aqueous formaldehyde solution is supplied to the reaction vessel 2 through the conduit 1. Formaldehyde in the reaction vessel is 30-70% by weight, preferably
50 to 65% by weight, and catalysts include sulfuric acid, phosphoric acid,
Known methods such as benzenesulfonic acid, p-toluenesulfonic acid or cation exchange resins are used. The amount of catalyst may be any amount as long as it does not reduce the amount of trioxane produced and also does not increase the equilibrium concentration of side reaction products, but it is usually 0.1 to 15% by weight based on the total amount charged, preferably. It is desirable to use 0.5 to 10% by weight. In addition, although the reaction vessel 2 and the first distillation column 3 are directly connected in the figure, they may be connected in the form of a reactor and a distillation column through a conduit. The trioxane produced in the reactor 2 is heated and distilled, while the first solvent that is azeotropic with the trioxane is supplied to the top of the first distillation column 3 via a conduit 7 and brought into gas-liquid contact. Trioxane distilled from the top of the tower,
The azeotropic mixture of water, formaldehyde and the first solvent is cooled and condensed in a condenser 5 via a conduit 4. Here, in order to prevent crystallization of trioxane in the azeotrope, the mixture is cooled to a temperature higher than the crystallization temperature of trioxane. After phase separation into a first solvent phase and a crude trioxane phase in separator 6,
The first solvent phase is refluxed back to the top of the column via line 7. The crude trioxane phase is fed in its entirety to the second stage via conduit 9. If necessary, a portion of the crude trioxane phase is refluxed via line 8 to the first distillation column 3.
The remainder may be returned to the top of the column and supplied to the second step via conduit 9. In the second step, the crude trioxane phase is supplied from the first step to the second distillation column 11 via conduit 9, and a second solvent that is insoluble or sparingly soluble in water and is azeotropic with water is supplied to the column via conduit 15. Water, formaldehyde, etc. are supplied to the top of the column and brought into contact with the crude trioxane phase as an azeotrope mixture with a second solvent, which is then passed through pipe 1 from the top of the column.
After being cooled and condensed in a cooler 13, the water layer is separated into phases in a separator 14, and the aqueous layer is discharged to the outside of the system through a conduit 16, and the solvent phase is passed through a conduit 15 to the second distillation column 11. Returned to the top of the column as reflux. On the other hand, essentially pure trioxane is obtained from the bottom of the column via line 17. Although the figure shows the case where a solvent lighter than water is used, when a solvent heavier than water is used, the separators 6 and 14 separate the first solvent phase, the crude trioxane phase, and the second phase, respectively. Similar equipment can be used except that the solvent and aqueous phases are reversed. Examples of the present invention are shown below. Example 1 An apparatus was used in which the reaction vessel No. 1 was directly connected to a stainless steel packed column filled with McMahon and having a diameter of 35 mm and a height of 1.8 m. The experiment was conducted using sulfuric acid as a catalyst, the sulfuric acid concentration in reactor 2 was set to 5% by weight, and n-heptane was used as the first solvent. The tower top pressure is atmospheric pressure and the tower top temperature is approximately 76℃.
When the temperature was near, a 60% by weight aqueous formaldehyde solution was continuously supplied from conduit 1 so that the liquid level in reaction vessel 2 remained constant, while the solvent was circulated through conduit 7 at a rate of 207 g/hour. The azeotropic mixture vapor of n-heptane, trioxane, formaldehyde, and water distilled from the top of the first stage azeotropic distillation column 3 is cooled and condensed at 65±5°C in a condenser 5 to prevent trioxane from crystallizing. The phases were separated in a separator 6, and the trioxane phase was fed through a conduit 9 to a second azeotropic distillation column 11 at a rate of 70 g/hour. The composition of the main liquid in the conduit related to distillation column 3 is shown in Table 1.
It is shown in This shows that the concentration of trioxane in the crude trioxane phase exceeds 50% by weight, and that no formaldehyde polymers were found in the condenser, piping, etc. even after operation for more than a month, indicating that continuous operation is possible. Ivy. Next, in the second stage azeotropic distillation step, using ethylene chloride as the second solvent, the crude trioxane phase is supplied to the middle part of the distillation column 11, and the temperature of the reboiler 10 is adjusted.
The temperature was maintained at 115-117°C and the tower top temperature was operated at around 72°C. The azeotropic mixture vapor distilled from the top of the column is cooled and condensed in a condenser 13, then phase-separated in a separator 14, and the solvent phase is passed through a conduit 15 to the distillation column 11 at a rate of 336 g/hour.
The aqueous phase was discharged from the system through conduit 16 at a rate of 32 g/hour. Trioxane was obtained from the bottom of the column via conduit 17 and had high purity as shown in Table 1. Similar to the first stage process, no formaldehyde polymers were found in the condenser, piping, etc., and it became clear that long-term operation was possible. Example 2 Trioxane was synthesized and purified from an aqueous formaldehyde solution in the same manner as in Example 1, except that methylcyclohexane was used as the first solvent in the first azeotropic distillation step and benzene was used as the second solvent in the second azeotropic distillation step. The results are shown in Table 1. Comparative Example Using the same equipment as in Example 1, instead of the first-stage azeotropic distillation method, a method was used in which the vapor distilled from the reactive distillation column was condensed without using a solvent. A reactor was charged with 500 g of an aqueous solution of 60% formaldehyde and 5% sulfuric acid, and 60% by weight of formaldehyde was continuously fed so that the liquid level in the reactor remained constant. When the trioxane concentration was set to 54% by weight, a reflux ratio of 6 or more was required. After 12 hours of operation, an open inspection revealed paraformaldehyde adhesion to the condenser wall. A comparison of the energy consumed by cooling water, etc. from the tower top condenser when the concentration and outflow amount of trioxane in the tower overhead distillate are constant, shows that the method of the present invention is approximately 70% more energy consumed than the conventional technology. It turns out that it saves money. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例の工程図である。 2……反応缶、3……第一蒸留塔、5,13…
…凝縮器、6,14……分離器、10……再沸
器、11……第二蒸留塔、1,4,7,8,9,
12,15,16,17……導管。
The figure is a process diagram of one embodiment of the present invention. 2... Reaction vessel, 3... First distillation column, 5, 13...
... Condenser, 6, 14 ... Separator, 10 ... Reboiler, 11 ... Second distillation column, 1, 4, 7, 8, 9,
12, 15, 16, 17... Conduit.

Claims (1)

【特許請求の範囲】[Claims] 1 ホルムアルデヒド水溶液を酸触媒の存在下に
加熱蒸留して、発生する蒸気を一段目の塔で沸点
が60〜110℃でトリオキサンと共沸混合物を形成
する第一溶剤の存在下で気液接触させてトリオキ
サンを上記第一溶剤との共沸混合物として留出せ
しめ、留出蒸気をトリオキサンの晶出温度以上で
冷却凝縮させた後、上記第一溶剤相と粗トリオキ
サン相に相分離させ、該粗トリオキサン相の全部
または一部を二段目の塔に供給し、二段目の塔で
水に不溶ないし難溶でかつ沸点が30〜110℃の水
と共沸する第二溶剤の存在下で蒸留を行い、塔頂
から留出した水、ホルムアルデヒド等を上記第二
溶剤と相分離後系外に排出し、塔底から高純度の
トリオキサンを得ることを特徴とするトリオキサ
ンの製造方法。
1. A formaldehyde aqueous solution is heated and distilled in the presence of an acid catalyst, and the generated vapor is brought into gas-liquid contact in the presence of a first solvent with a boiling point of 60 to 110°C and forming an azeotrope with trioxane in the first stage column. Trioxane is distilled out as an azeotropic mixture with the first solvent, and the distilled vapor is cooled and condensed at a temperature higher than the crystallization temperature of trioxane, and then phase-separated into the first solvent phase and the crude trioxane phase. All or part of the trioxane phase is supplied to the second column, where it is treated in the presence of a second solvent that is insoluble or sparingly soluble in water and has a boiling point of 30 to 110°C and is azeotropic with water. A method for producing trioxane, which comprises performing distillation, discharging water, formaldehyde, etc. distilled from the top of the column after phase separation from the second solvent, and obtaining highly pure trioxane from the bottom of the column.
JP17127883A 1983-09-19 1983-09-19 Preparation of trioxane Granted JPS6064978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17127883A JPS6064978A (en) 1983-09-19 1983-09-19 Preparation of trioxane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17127883A JPS6064978A (en) 1983-09-19 1983-09-19 Preparation of trioxane

Publications (2)

Publication Number Publication Date
JPS6064978A JPS6064978A (en) 1985-04-13
JPS6411634B2 true JPS6411634B2 (en) 1989-02-27

Family

ID=15920359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17127883A Granted JPS6064978A (en) 1983-09-19 1983-09-19 Preparation of trioxane

Country Status (1)

Country Link
JP (1) JPS6064978A (en)

Also Published As

Publication number Publication date
JPS6064978A (en) 1985-04-13

Similar Documents

Publication Publication Date Title
US5831124A (en) Purification of acrylic acid and methacrylic acid
EP3257833B1 (en) Process for producing acetic acid
US6768021B2 (en) Process improvement for continuous ethyl acetate production
JP3202150B2 (en) Acetic acid purification method
JPH0239491B2 (en)
US4035242A (en) Distillative purification of alkane sulfonic acids
JP2002507588A (en) Method and apparatus for producing butyl acetate and isobutyl acetate
US4818347A (en) Process for the isolation of vinyl acetate
JP2003524640A (en) Method for producing formic anhydride
US4362601A (en) Method for distilling ethyl alcohol by adding salt or salts
JP2002540181A (en) Method for separating a crude liquid aldehyde mixture by distillation
CN1176956A (en) Process for separation of dimethyl ether and chloromethane in mixtures
US10661196B2 (en) Process for producing acetic acid
JPS6135977B2 (en)
JPS6261006B2 (en)
JPH01203375A (en) Separation of aldehyde impurity from ethylene oxide
JP2017165693A (en) Method for producing acetic acid
JPS6075478A (en) Method and apparatus for manufacturing trioxane from commercial formaldehyde aqueous solution
JPS6411634B2 (en)
JPS6059889B2 (en) Hydroquinone recovery method
JPS6013739A (en) Purification of acrylic acid
JPH0243750B2 (en) TORIOKISANNOSEIZOHOHO
JPH06228127A (en) Production of trioxane
EP3283455B1 (en) Process for producing acetic acid
JP2681667B2 (en) Method for separating acetic acid / water / vinyl acetate mixture