JPS6411207B2 - - Google Patents

Info

Publication number
JPS6411207B2
JPS6411207B2 JP10932984A JP10932984A JPS6411207B2 JP S6411207 B2 JPS6411207 B2 JP S6411207B2 JP 10932984 A JP10932984 A JP 10932984A JP 10932984 A JP10932984 A JP 10932984A JP S6411207 B2 JPS6411207 B2 JP S6411207B2
Authority
JP
Japan
Prior art keywords
isothianaphthene
polymer
polymerization
poly
dihydroisothianaphthene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10932984A
Other languages
Japanese (ja)
Other versions
JPS6117581A (en
Inventor
Masao Kobayashi
Udoru Furetsudo
Jee Hiigaa Aran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUNIBAASHITEI OBU KARIFUORUNIA
Original Assignee
YUNIBAASHITEI OBU KARIFUORUNIA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUNIBAASHITEI OBU KARIFUORUNIA filed Critical YUNIBAASHITEI OBU KARIFUORUNIA
Priority to JP10932984A priority Critical patent/JPS6117581A/en
Priority to US06/736,984 priority patent/US4640748A/en
Priority to CA000482753A priority patent/CA1248690A/en
Priority to EP85303864A priority patent/EP0164974B1/en
Priority to AT85303864T priority patent/ATE53046T1/en
Priority to DE8585303864T priority patent/DE3577860D1/en
Publication of JPS6117581A publication Critical patent/JPS6117581A/en
Publication of JPS6411207B2 publication Critical patent/JPS6411207B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は極めお安定でドヌピングにより極めお
高い電導性を瀺す新芏な電導性重合䜓に関し、曎
に詳しくは䞀般匏
INDUSTRIAL APPLICATION FIELD The present invention relates to a novel conductive polymer that is extremely stable and exhibits extremely high conductivity through doping.

【匏】及び又は[Formula] and/or

【匏】 匏䞭、R1及びR2はそれぞれ独立に氎玠又は炭
玠数〜の炭化氎玠基を衚わし、X-は電解質
むオンを衚わし、はモノマヌモル圓りの陰む
オンの割合を衚わす0.01〜の数であり、は重
合床を衚わす〜500の数であるで衚わされる
む゜チアナフテン構造を有する重合䜓に関する。 この重合䜓は、電気・電子工業の分野においお
電極、゚レクトロクロミツク衚瀺玠子、倪陜電池
の補造、電気的接続、電磁線の固定・倉換装眮お
よび可逆的な酞化還元系ずしお甚いるこずができ
る。 埓来の技術 近幎、電気・電子機噚の軜量化、薄圢化或いは
小型化の進歩は著しく、それらに甚いられる各皮
電導性材料玠子等に぀いおも軜量化、薄圢化或い
は小型化ぞの芁望は匷いものがあるのみならず、
より優れた新芏材料の出珟に匷い期埅が持たれお
いる。 これらの芁望或いは期埅を満たすべく、新しい
電導性高分子の開発が盛んに行われおいる。䟋え
ばポリアセチレンはペり玠或いは五北化ヒ玠など
をドヌピングするこずにより102〜103scmもの
高い電導床を瀺す䟋えばシンセテむツクメタル
ズSynthetic Metals第巻号101頁
19791980幎参照こず、充攟電特性が優れお
いるこずから二次電池の電極材料ずしお怜蚎され
おいるばかりでなく、光の吞収特性が倪陜光のそ
れに近いこずから倪陜電池材料ずしおも怜蚎され
おいる。しかしながら、ポリアセチレンはそれ自
䜓酞化され易く、たたドヌピングしたポリアセチ
レンは湿気に察しおも極めお敏感であるずいう欠
点を持぀おいる。 䞀方、ポリチオプンはその共圹構造がシス型
ポリアセチレンに類䌌し、硫黄原子を含むずいう
その特異的な電子構造の故に、電導性材料ずしお
或いは電池電極材料ずしお怜蚎されおいるのみな
らず、ドヌピング状態での倉色を利甚した゚レク
トロクロミツク材料ずしおも怜蚎されおいる。䟋
えば、゚ヌ・゚ム・ドルむA.M.Druy等は
2′―ビチニルを電気化孊的に重合するず、重
合䜓が酞化状態〜還元状態においお、青色〜赀色
ず倉色し、これが可逆的であるこずを甚いお、゚
レクトロクロミツク材料ずしお有甚であるず報告
しおいるゞダヌナル・ド・フむゞヌクJ.de
Physique第44巻号、C3―595頁1983幎。 発明の目的 本発明者らは䞊蚘諞点に鑑み鋭意怜蚎した結
果、む゜チアナフテン構造を有する重合䜓が空気
䞭においおも極めお安定な化合物であるこず、繰
返し䜿甚が十分可胜な皋安定に酞化又は還元状態
で可逆的に倉色し埗るものであり、通垞のドヌピ
ング剀により容易に10-2scmより高い電導床を
有する新芏な重合䜓であるこずを芋出しお本発明
を達成した。 発明の構成及び䜜甚 即ち本発明に係る重合䜓は䞀般匏
[Formula] (In the formula, R 1 and R 2 each independently represent hydrogen or a hydrocarbon group having 1 to 5 carbon atoms, X - represents an electrolyte ion, and y represents the proportion of anions per mole of monomer. n is a number from 0.01 to 1 representing the degree of polymerization, and n is a number from 5 to 500 representing the degree of polymerization). The polymers can be used in the electrical and electronic industry as electrodes, electrochromic display elements, solar cell production, electrical connections, electromagnetic radiation fixing and converting devices and reversible redox systems. Conventional Technology In recent years, there has been remarkable progress in reducing the weight, thickness, and size of electrical and electronic equipment, and there is a strong desire to make the various conductive material elements used in these devices lighter, thinner, and smaller. Not only are there things;
There are strong expectations for the emergence of new and better materials. In order to meet these demands or expectations, new conductive polymers are being actively developed. For example, polyacetylene exhibits a high electrical conductivity of 10 2 to 10 3 s/cm by doping with iodine or arsenic pentafluoride (for example, Synthetic Metals, Vol. 1, No. 2, p. 101 (1979/1980 It is not only being considered as an electrode material for secondary batteries due to its excellent charging and discharging characteristics (see 2010), but also as a material for solar cells because its light absorption characteristics are similar to those of sunlight. However, polyacetylene itself has the disadvantage of being easily oxidized, and doped polyacetylene is extremely sensitive to moisture.On the other hand, polythiophene has a conjugated structure similar to cis-type polyacetylene, and has a sulfur atom. Because of its unique electronic structure, it is being considered not only as a conductive material or a battery electrode material, but also as an electrochromic material that utilizes discoloration in a doped state. - AMDruy et al. used the fact that when 2,2'-bitinyl is electrochemically polymerized, the polymer changes color from blue to red in the oxidized state to the reduced state, and that this is reversible. It has been reported that it is useful as an electrochromic material (J. de Physics).
Physique) Vol. 44, No. 6, p. C3-595 (1983)). Purpose of the Invention As a result of intensive studies in view of the above points, the present inventors found that a polymer having an isothianaphthene structure is an extremely stable compound even in the air, and that it can be oxidized or reduced sufficiently stably to enable repeated use. The present invention has been achieved by discovering that the polymer is a novel polymer that can reversibly change color under certain conditions and has an electrical conductivity higher than 10 -2 s/cm that can easily be used with conventional doping agents. Structure and operation of the invention That is, the polymer according to the present invention has the general formula

【匏】及び又は[Formula] and/or

【匏】 匏䞭、R1及びR2はそれぞれ独立に氎玠又は炭
玠数〜の炭化氎玠基を衚わし、X-は電解質
の陰むオンを衚わし、はモノマヌモル圓りの
陰むオンの割合を衚わす0.01〜の数であり、
は重合床を衚わす〜500の数であるで衚わさ
れるむ゜チアナフテン構造単䜍を、奜たしくは
0.1〜100モル含有する重合䜓である。 本発明に係る重合䜓は皮々の重合方法によ぀お
容易に合成するこずができる。 䟋えば、䞋蚘䞀般匏 で衚わされる―ゞヒドロむ゜チアナフテン
――オキシドもしくはその誘導䜓を濃硫酞のご
ずき、脱氎及び酞化䜜甚をも぀溶媒䞭で反応させ
るこずによ぀お所望の重合䜓を埗るこずができ
る。 さらには䟋えば䞀般匏で衚わされる化合物
をアルミナ䞊で脱氎昇華させお埗られる䞀般匏 で衚わされるむ゜チアナフテンもしくはその誘導
䜓を(1)電解質の存圚䞋、非プロトン性溶媒䞭で電
気化孊的に重合させる、(2)䞀般匏で衚わされ
る化合物を溶媒の存圚䞋もしくは䞍圚䞋にカチオ
ン重合させ、埗られるゞヒドロ型ポリマヌを酞化
剀に䜜甚させるこずにより、脱氎玠する、(3)䞀般
匏で衚わされる化合物を酞化重合する等の方
法によ぀お所望の重合䜓を埗るこずができる。こ
れらの䞡者を共重合させる際には任意の割合䟋
えば0.1〜99.9モルで含む重合䜓を埗るこず
ができる。 前蚘単量䜓の重合に際し甚いられる溶媒はそれ
ぞれの重合方法によ぀お適圓に遞定するこずがで
き、特に限定はない。䞀般的に蚀えば、䞀般匏
で瀺されるむ゜チアナフテンもしくはその誘導
䜓を電解質の存圚䞋に電気化孊的に重合する堎合
には非プロトン性溶媒、䟋えばアセトニトリル、
ベンゟニトリル、プロピオニトリル、ゞオキサ
ン、テトラヒドロフラン、スルホラン、プロピレ
ンカヌボネヌトなどをあげるこずができる。た
た、䞀般匏で瀺されるむ゜チアナフテンもし
くはその誘導䜓をカチオン重合する堎合にはゞク
ロルメタン、クロロホルム、四塩化炭玠、ゞクロ
ル゚タン、テトラフロル゚タン、ニトロメタン、
ニトロ゚タン、ニトロベンれン、二硫化炭玠など
のごずき溶媒をあげるこずができる。曎に䞀般匏
で瀺されるゞヒドロむ゜チアナフテン――
オキシドもしくはその誘導䜓を脱氎重合する堎合
には濃硫酞、ポリリン酞などの溶媒を䜿甚するこ
ずができる。たた䞀般匏で瀺されるむ゜チア
ナフテンもしくはその誘導䜓を酞化付加重合する
堎合にはカチオン重合で甚いる溶媒ずフリヌデル
クラフツ型觊媒ずを組合せお甚いればよい。 たた前蚘単量䜓の重合に際し甚いられる重合枩
床は、それぞれの重合方法によ぀お定められるも
のであり特に定めないが䞀般には−80℃〜200
℃の枩床範囲で重合するのが望たしい。重合時間
は重合方法及び重合枩床、単量䜓の構造等によ぀
お定められるものであるが通垞0.25時間〜200時
間で重合するのが望たしい。 前蚘䞀般匏及びで衚わされる単量䜓化
合物は公知方法で合成するこずができ、䟋えば゚
ム・ピヌ・キダバM.P.Cava等のゞダヌナ
ル・オブ・アメリカン・ケミカル・゜サ゚テむヌ
J.Am.Chem.Soc.第81å·»4266頁1959幎及
び同じく゚ム・ピヌ・キダバ等のゞダヌナル・オ
ブ・オヌガニツク・ケミストリヌJ.Org.
Chem.第36å·»25号3932頁1971幎に報告され
おいる方法で合成するこずができる。曎に、䞭間
䜓の―ゞヒドロむ゜チアナフテンの収率を
䞊げるため、リチりムトリ゚チルボロンハむドラ
むドず硫黄を反応させお埗られる可溶化硫化リチ
りムを甚いる方法がゞ゚ヌ・゚ヌ・グラデむス
J.A.Gradysz等のテトラヒドロンレタヌズ
Tetrahadron.Lett.第35å·»2329頁1979幎に
提案されおいる。 発明の効果 このようにしお埗られた本発明に係る重合䜓は
党く新芏な構造を有するものであり、ドヌピング
により極めお高い電導床を瀺すばかりでなく、電
気化孊的にも繰返し酞化還元を行うこずが可胜で
䞔぀それぞれの状態においお固有の色を有する。
本発明のポリむ゜チアナフテンは曎に十分な
酞化状態においおすら透明性を倱わないずいう極
めお興味のある重合䜓である。埓぀お、本発明に
係るむ゜チアナフテン構造を有する重合䜓は、電
気・電子工業の分野においお電極、゚レクトロク
ロミツク衚瀺玠子、倪陜電池、電気的接続、電磁
線の固定・倉換装眮、ならびに可逆的な酞化還元
系ずしお極めお有甚なものである。 実斜䟋 以䞋に実斜䟋により本発明を曎に詳しく説明す
るが、本発明の技術的範囲をこれらの実斜䟋によ
぀お限定するものでないこずはいうたでもない。
なお、以䞋の䟋においお、NMRスペクトルは
TMSを内郚暙準ずしおノアリアン瀟EM―360A
スペクトロメヌタヌを甚いお 1H―NMRを枬定
し、赀倖吞収スペクトルはパヌキン゚ルマヌ瀟補
モデル281型装眮を甚いお枬定した。 実斜䟋  ―ゞヒドロむ゜チアナフテン――オキ
シドを濃硫酞䞭で凊理するこずによるポリむ゜
チアナフテンの補造 (a) ―ゞヒドロむ゜チアナフテン――オ
キシドの合成 リチりムトリ゚チルボロンハむドラむドの
モル溶液200mlに宀枩でシナレンクフラス
コに入れた粉末硫黄3.21g0.1モルを窒玠気
流䞋で加えた。反応が盎ちに起り、硫黄粉末が
溶解し、黄色の懞濁液が埗られた。この溶液は
埮量の空気に觊れるず淡黄色の透明な溶液ずな
぀た。 䞀方、別に滎䞋ロヌト、撹拌機、枩床蚈及び
窒玠導入口を付した四ツ口フラスコに窒玠
雰囲気䞋で―キシリレンゞブロミド26.4g
0.1モルを無氎のテトラヒドロフランに
溶解しおおき、これに撹拌しながら䞊蚘硫化リ
チりムのテトラヒドロフラン溶液を宀枩で1.5
時間かけお滎䞋した。その埌、テトラヒドロフ
ランを枛圧で留去した埌、曎に残留物を蒞留し
お74〜76℃mmHgの無色の―ゞヒド
ロむ゜チアナフテン10.9g収率80を埗た。
このものの赀倖吞収スペクトルは3060、3026、
1582、1485cm-1にプニル基に基づく吞収、
2910、2840、1450cm-1にメチレン基に基づく吞
収、1195cm-1に―眮換プニルの面内倉
角吞収、760cm-1に―眮換プニルの吞収、
740cm-1にサルフアむドの吞収を瀺した。たた
TMSを内郚暙準ずした重氎玠化クロロホルム
䞭の栞磁気共鳎スペクトル 1H―NMR分
析結果は以䞋の通りであ぀た。 4.22、4H、7.20、4H この化合物は非垞に䞍安定であり、遮光・密
栓保存しおも黄色から黒色に倉化した。 次いで埗られた―ゞヒドロむ゜チアナ
フテンを予め甚意したメタペり玠酞ナトリりム
18.6g0.086モルを溶解した450mlの50メタ
ノヌル氎溶液に加え、宀枩で12時間撹拌した。
生成した沈殿をろ別し、50mlのメタノヌルで残
査を掗浄し母液に合した。ろ液を枛圧䞋濃瞮
し、生成した黄癜色固䜓を酢酞゚チルシクロ
ヘキサンから再結晶しお僅かに黄色がか぀た結
晶を埗た。この結晶の融点は87〜89℃であ぀
た。 埗られた結晶を曎に酢酞゚チルシクロヘキ
サンから再結晶したずころ、90〜91℃の融点を
瀺した。この結晶の赀倖吞収スペクトルはむ゜
チアナフテンの吞収の他に1035cm-1にスルホキ
サむドの匷い吞収が認められ、740cm-1のサル
フアむドの吞収は消滅した。たたTMSを郚暙
準ずした重氎玠化クロロホルム䞭での 1H―
NMRスペクトルは以䞋の通りであ぀た。 4.11、2H、4.30、2H、7.20、
4H 䞊蚘結晶の元玠分析結果は次の通りであ぀
た。 実枬倀 63.08 5.15 20.87 蚈算倀C8H8SOずしお 63.16 5.26 21.05 (b) ―ゞヒドロむ゜チアナフテン――オ
キシド前蚘匏でR1R2からのポ
リむ゜チアナフテンの合成 ―ゞヒドロむ゜チアナフテン――オ
キシド500mg3.29ミリモルをmlの濃硫酞
に加えたずころ反応系は盎ちに暗赀色ずな぀
た。宀枩で70時間攟眮し、殆んど固化した系を
400mlのメタノヌル䞭に泚ぎ、生成した耐色の
沈殿を遠心分離し、次いでよく氎で掗浄し、60
℃で倜真空也燥した。重合䜓を゜ツクスレヌ
抜出噚に入れ塩化メチレン、次いでクロルベン
れンで、それぞれ、12時間゜ツクスレヌ抜出
し、203mgのクロルベンれン䞍溶郚を埗た。こ
の重合䜓の赀倖吞収スペクトルは第図に瀺す
通りであ぀た。 元玠分析結果は67.26、3.12、
23.95であり、繰返し単䜍を䞋蚘構造匏 ず掚定した時の蚈算倀67.19、
3.32、23.54ずよく䞀臎した。 この重合䜓の宀枩における電導床σRTを
端子匏の電導床枬定噚を甚いお枬定したずこ
ろσRT×10-2scmであ぀た。 実斜䟋  む゜チアナフテンをカチオン重合しお埗られる
ポリゞヒドロむ゜チアナフテンを酞化剀を甚い
お酞化するこずによるポリむ゜チアナフテンの
補造 (a) む゜チアナフテン䞀般匏でR1R2
の合成 実斜䟋(a)に基づき合成した―ゞヒド
ロむ゜チアナフテン――オキシド300mg
1.97ミリモル、䞭性アルミナ450mg4.41ミ
リモルを乳鉢䞭でよく粉砕混合した埌、昇華
噚に入れ、油济䞊で枛圧で加熱した。110℃
20mmHgで昇華噚冷华郚底郚にむ゜チアナフテ
ンの癜色針状結晶250mg1.87ミリモルが埗
られた。 (b) ポリゞヒドロむ゜チアナフテンの補造 このモノマヌを盎ちに粟補脱気したmlの塩
化メチレンに溶解し、宀枩におトリフルオロ酢
酾10mgを加え、倜攟眮した。反応液を50mlの
メタノヌル䞭に泚ぐず、癜色沈殿が埗られた。
この重合䜓はクロロホルム、クロルベンれン、
テトラヒドロフラン、―ゞメチルホルム
アミドに可溶であ぀た。重合䜓の赀倖吞収スペ
クトルは第図に、そしお 1H―NMRスペク
トルは第図に瀺した通りであ぀た。 曎にこの重合䜓のテトラヒドロフラン溶液の
ゲルパヌミ゚ヌシペンクロマトグラフ
Varian5000から分子量はポリスチレン換算
で2000であるこずが確かめられた。 実斜䟋ず同様にしお、宀枩における電導床
を枬定したずころσRT10-8scm以䞋であ぀
た。たた元玠分析結果は次の通りであ぀た。 実枬倀 71.27 4.54 23.96 蚈算倀C8H6Sずしお 71.64 4.48 23.88 䞊蚘方法においお、トリフルオロ酢酞の代わり
にメタンスルホン酞を重合開始剀ずしお甚いた堎
合も同様に重合䜓が埗られ、その赀倖吞収スペク
トルは第図のものず完党に䞀臎した。 これらの重合䜓をmlのクロルベンれンに溶解
し、倍モルのクロラニルで凊理したずころ黒色
沈殿が生成した。この重合䜓の宀枩における電導
床σRTは×10-2scmであり、ペり玠をドヌプし
たものの電導床はσRT×10-1scmであ぀た。こ
のものの赀倖吞収スペクトルは第図に瀺した通
りであ぀た。ドヌプ埌の重合䜓は宀枩䞋空気䞭に
週間攟眮しおも、その電導床に倉化はなか぀
た。 クロラニルの代わりに1.1倍量の―クロルコ
ハク酞むミドを甚い、mlのクロロホルムを甚い
た堎合に埗られた重合䜓も第図ず党く同じ赀倖
吞収スペクトルを瀺す黒色沈殿が埗られた。この
重合䜓の電導床σRTは2.6×10-1scmであ぀た。 実斜䟋  む゜チアナフテンを酞化重合するこずによるポ
リむ゜チアナフテンの䞀段重合 䞊蚘実斜䟋(a)で蚘茉した方法でむ゜チアナフ
テンを合成した。む゜チアナフテン250mg、無氎
塩化メチレンml、無氎塩化アルミニりム134mg
及び無氎塩化第二銅134mgを枩床35〜37℃で時
間反応させたずころ、黒色沈殿が生成した。これ
を12時間この枩床に保持した埌、沈殿物を塩酞酞
性メタノヌル溶液で凊理した埌、十分氎掗し、也
燥した。也燥重合䜓を熱メタノヌル、熱塩化メチ
レン、次いで熱クロルベンれンで油出し、205mg
の黒色重合䜓を埗た。その赀倖吞収スペクトルは
第図に完党に䞀臎した。たた電導床σRTは2.8×
10-2scmであ぀た。 実斜䟋  む゜チアナフテンの電気化孊的重合によるポリ
む゜チアナフテンの重合 䞋蚘衚に瀺した電解質及びむ゜チアナフテン
を所定濃床で極性溶媒に溶解したものを電解液ず
し、癜金板を詊料極、Al板を察極、LiLi+を参
照極ずし、0.75mAcm2の定電流密床で所定時間
宀枩で電気化孊的に重合させたずころ、正極の癜
金板䞊にポリむ゜チアナフテンのフむルムが生成
した。尚、前蚘溶液は少くずも30分間也燥アルゎ
ンでバブリングするこずにより脱酞玠凊理をした
ものを甚いた。重合䞭の最倧電圧は4.5VvsLi
Li+であ぀た。 生成したフむルムをアセトニトリル次いで塩化
メチレンで十分掗浄した埌、真空也燥しお電気的
性胜を枬定した。埗られた結果は以䞋の衚に瀺
す通りであ぀た。
[Formula] (In the formula, R 1 and R 2 each independently represent hydrogen or a hydrocarbon group having 1 to 5 carbon atoms, X - represents an anion of the electrolyte, and y represents the amount of anion per mole of monomer. It is a number from 0.01 to 1 that represents the ratio, and n
is a number from 5 to 500 representing the degree of polymerization), preferably an isothianaphthene structural unit represented by
It is a polymer containing 0.1 to 100 mol%. The polymer according to the present invention can be easily synthesized by various polymerization methods. For example, the following general formula The desired polymer can be obtained by reacting 1,3-dihydroisothianaphthene-2-oxide represented by the formula or its derivative in a solvent having dehydrating and oxidizing effects, such as concentrated sulfuric acid. Furthermore, for example, the general formula obtained by dehydrating and sublimating a compound represented by general formula a on alumina (1) Electrochemically polymerizing isothianaphthene or its derivative represented by (1) in the presence of an electrolyte in an aprotic solvent; (2) polymerizing a compound represented by general formula b in the presence or absence of a solvent; The desired polymer can be obtained by cationic polymerization and dehydrogenation by exposing the resulting dihydro polymer to an oxidizing agent, or (3) oxidative polymerization of a compound represented by general formula b. can. When copolymerizing both of these, a polymer containing any proportion (for example, 0.1 to 99.9 mol%) can be obtained. The solvent used in the polymerization of the monomers can be appropriately selected depending on the respective polymerization method, and is not particularly limited. Generally speaking, when the isothianaphthene represented by the general formula b or its derivative is electrochemically polymerized in the presence of an electrolyte, an aprotic solvent such as acetonitrile,
Examples include benzonitrile, propionitrile, dioxane, tetrahydrofuran, sulfolane, and propylene carbonate. In addition, in the case of cationic polymerization of isothianaphthene or its derivative represented by general formula b, dichloromethane, chloroform, carbon tetrachloride, dichloroethane, tetrafluorethane, nitromethane,
Solvents such as nitroethane, nitrobenzene, carbon disulfide, etc. may be mentioned. Furthermore, dihydroisothianaphthene-2- represented by general formula a
When dehydrating and polymerizing oxides or derivatives thereof, solvents such as concentrated sulfuric acid and polyphosphoric acid can be used. Further, when carrying out oxidative addition polymerization of the isothianaphthene represented by the general formula b or its derivative, a combination of a solvent used in cationic polymerization and a Friedel-Crafts type catalyst may be used. Furthermore, the polymerization temperature used in polymerizing the monomers is determined by each polymerization method and is not particularly determined, but is generally between -80℃ and +200℃.
Preferably, the polymerization is carried out in the temperature range of .degree. The polymerization time is determined by the polymerization method, polymerization temperature, monomer structure, etc., but it is usually desirable to polymerize for 0.25 to 200 hours. The monomer compounds represented by the above general formulas a and b can be synthesized by known methods, for example, by the Journal of American Chemical Society (J.Am.Chem. Soc.) Vol. 81, p. 4266 (1959) and Journal of Organic Chemistry (J.Org.), also published by M.P. Kyaba et al.
Chem.) Vol. 36, No. 25, p. 3932 (1971). Furthermore, in order to increase the yield of the intermediate 1,3-dihydroisothianaphthene, a method using solubilized lithium sulfide obtained by reacting lithium triethyl boron hydride with sulfur has been proposed by JA Gradysz and others. It is proposed in Tetrahadron Letters, Vol. 35, p. 2329 (1979). Effects of the Invention The thus obtained polymer according to the present invention has a completely new structure, and not only exhibits extremely high conductivity through doping, but also undergoes repeated oxidation-reduction electrochemically. and has a unique color in each state.
The poly(isothianaphthenes) of the present invention are also very interesting polymers in that they do not lose their transparency even under fully oxidized conditions. Therefore, the polymer having an isothianaphthene structure according to the present invention can be used in the electrical and electronic industries as electrodes, electrochromic display elements, solar cells, electrical connections, electromagnetic radiation fixing and converting devices, and reversible It is extremely useful as a redox system. EXAMPLES The present invention will be explained in more detail with reference to Examples below, but it goes without saying that the technical scope of the present invention is not limited by these Examples.
In addition, in the following example, the NMR spectrum is
Varian EM-360A with TMS as internal standard
1 H-NMR was measured using a spectrometer, and infrared absorption spectra were measured using a model 281 device manufactured by PerkinElmer. Example 1 Production of polyisothianaphthene by treating 1,3-dihydroisothianaphthene-2-oxide in concentrated sulfuric acid (a) Synthesis of 1,3-dihydroisothianaphthene-2-oxide Lithium triethylboron Hydride 1
3.21 g (0.1 mol) of powdered sulfur in a Schulenk flask at room temperature was added to 200 ml of the mol/solution under a nitrogen stream. A reaction occurred immediately, the sulfur powder dissolved and a yellow suspension was obtained. When this solution was exposed to a small amount of air, it turned into a pale yellow transparent solution. Separately, 26.4 g of o-xylylene dibromide was placed in a 2-four-necked flask equipped with a dropping funnel, stirrer, thermometer, and nitrogen inlet under a nitrogen atmosphere.
(0.1 mol) was dissolved in 1 mol of anhydrous tetrahydrofuran, and while stirring, 1.5 mol of the above tetrahydrofuran solution of lithium sulfide was added at room temperature.
It dripped over time. Thereafter, tetrahydrofuran was distilled off under reduced pressure, and the residue was further distilled to obtain 10.9 g (yield: 80%) of colorless 1,3-dihydroisothianaphthene having a temperature of 74 to 76°C/3 mmHg.
The infrared absorption spectrum of this product is 3060, 3026,
Absorption based on phenyl group at 1582, 1485 cm -1 ,
Absorption based on methylene group at 2910, 2840, and 1450 cm -1 , in-plane bending absorption of 1,2-substituted phenyl at 1195 cm -1 , absorption of o-substituted phenyl at 760 cm -1 ,
Absorption of sulfide was observed at 740 cm -1 . Also
The results of nuclear magnetic resonance spectrum ( 1 H-NMR) analysis in deuterated chloroform using TMS as an internal standard were as follows. 4.22 (S, 4H), 7.20 (m, 4H) This compound was extremely unstable and changed from yellow to black even when stored in a tightly closed container protected from light. Next, the obtained 1,3-dihydroisothianaphthene was mixed with sodium metaiodate prepared in advance.
It was added to 450 ml of 50% methanol aqueous solution in which 18.6 g (0.086 mol) was dissolved, and stirred at room temperature for 12 hours.
The generated precipitate was filtered off, and the residue was washed with 50 ml of methanol and combined with the mother liquor. The filtrate was concentrated under reduced pressure, and the resulting yellow-white solid was recrystallized from ethyl acetate/cyclohexane to obtain slightly yellowish crystals. The melting point of this crystal was 87-89°C. When the obtained crystals were further recrystallized from ethyl acetate/cyclohexane, they showed a melting point of 90-91°C. In the infrared absorption spectrum of this crystal, in addition to the absorption of isothianaphthene, strong absorption of sulfoxide was observed at 1035 cm -1 , and the absorption of sulfoxide at 740 cm -1 disappeared. In addition, 1 H− in deuterated chloroform with TMS as standard.
The NMR spectrum was as follows. 4.11 (d, 2H), 4.30 (d, 2H), 7.20 (m,
4H) The results of elemental analysis of the above crystal were as follows. Actual value C: 63.08% H: 5.15% S: 20.87% Calculated value (as C 8 H 8 SO) C: 63.16% H: 5.26% S: 21.05% (b) 1,3-dihydroisothianaphthene-2- Synthesis of polyisothianaphthene from oxide (R 1 = R 2 = H in formula a above) When 500 mg (3.29 mmol) of 1,3-dihydroisothianaphthene-2-oxide was added to 1 ml of concentrated sulfuric acid, a reaction system was formed. immediately turned dark red. Leave the almost solidified system at room temperature for 70 hours.
Pour into 400 ml of methanol, centrifuge the resulting brown precipitate, then wash well with water and incubate for 60 ml.
It was vacuum dried at ℃ overnight. The polymer was placed in a Soxhlet extractor and Soxhlet extracted with methylene chloride and then with chlorobenzene for 12 hours to obtain 203 mg of chlorobenzene insoluble portion. The infrared absorption spectrum of this polymer was as shown in FIG. Elemental analysis results are C: 67.26%, H: 3.12%,
S: 23.95%, and the repeating unit has the following structural formula The calculated value when estimated (C: 67.19%, H:
3.32%, S: 23.54%). The electrical conductivity (σ RT ) of this polymer at room temperature was measured using a 4-terminal conductivity meter and found to be σ RT =2×10 −2 s/cm. Example 2 Production of polyisothianaphthene by oxidizing polydihydroisothianaphthene obtained by cationic polymerization of isothianaphthene using an oxidizing agent (a) Isothianaphthene (R 1 = R 2 in general formula b) =
Synthesis of H) 300 mg of 1,3-dihydroisothianaphthene-2-oxide synthesized based on Example 1(a)
(1.97 mmol) and 450 mg (4.41 mmol) of neutral alumina were thoroughly ground and mixed in a mortar, placed in a sublimator, and heated under reduced pressure on an oil bath. 110℃/
At 20 mmHg, 250 mg (1.87 mmol) of white needle-like crystals of isothianaphthene were obtained at the bottom of the sublimator cooling section. (b) Production of polydihydroisothianaphthene This monomer was immediately dissolved in 5 ml of purified and degassed methylene chloride, 10 mg of trifluoroacetic acid was added at room temperature, and the mixture was left overnight. When the reaction solution was poured into 50 ml of methanol, a white precipitate was obtained.
This polymer contains chloroform, chlorobenzene,
It was soluble in tetrahydrofuran and N,N-dimethylformamide. The infrared absorption spectrum of the polymer is shown in Figure 2, and the 1 H-NMR spectrum is shown in Figure 3. Furthermore, gel permeation chromatography (Varian 5000) of a solution of this polymer in tetrahydrofuran confirmed that the molecular weight was 2000 in terms of polystyrene. When the conductivity at room temperature was measured in the same manner as in Example 1, it was found to be σ RT =10 −8 s/cm or less. The results of elemental analysis were as follows. Actual value C: 71.27% H: 4.54% S: 23.96% Calculated value ((C 8 H 6 S) n) C: 71.64% H: 4.48% S: 23.88% In the above method, methane was used instead of trifluoroacetic acid. A polymer was similarly obtained when sulfonic acid was used as a polymerization initiator, and its infrared absorption spectrum completely matched that shown in FIG. When these polymers were dissolved in 5 ml of chlorobenzene and treated with twice the molar amount of chloranil, a black precipitate was formed. The conductivity σ RT of this polymer at room temperature was 9×10 −2 s/cm, and the conductivity of the polymer doped with iodine was σ RT 9×10 −1 s/cm. The infrared absorption spectrum of this product was as shown in FIG. Even when the doped polymer was left in the air at room temperature for one week, there was no change in its electrical conductivity. When 1.1 times the amount of N-chlorosuccinimide was used instead of chloranil and 5 ml of chloroform was used, a black precipitate was obtained that showed exactly the same infrared absorption spectrum as shown in FIG. 4. The electrical conductivity σ RT of this polymer was 2.6×10 −1 s/cm. Example 3 One-step polymerization of polyisothianaphthene by oxidative polymerization of isothianaphthene Isothianaphthene was synthesized by the method described in Example 2(a) above. Isothianaphthene 250mg, anhydrous methylene chloride 5ml, anhydrous aluminum chloride 134mg
When 134 mg of anhydrous cupric chloride were reacted at a temperature of 35 to 37° C. for 1 hour, a black precipitate was generated. After maintaining this temperature for 12 hours, the precipitate was treated with an acidic methanol solution of hydrochloric acid, thoroughly washed with water, and dried. The dried polymer was extracted with hot methanol, hot methylene chloride, and then hot chlorobenzene to give 205 mg.
A black polymer was obtained. Its infrared absorption spectrum completely matched that shown in FIG. Also, the conductivity σ RT is 2.8×
It was 10 -2 s/cm. Example 4 Polymerization of polyisothianaphthene by electrochemical polymerization of isothianaphthene The electrolyte shown in Table 1 below and isothianaphthene dissolved in a polar solvent at predetermined concentrations were used as the electrolyte, and the platinum plate was used as the sample electrode. Using an Al plate as a counter electrode and Li/Li + as a reference electrode, electrochemical polymerization was performed at room temperature for a predetermined time at a constant current density of 0.75 mA/cm 2 , and a polyisothianaphthene film was formed on the platinum plate as the positive electrode. generated. The solution used had been deoxidized by bubbling with dry argon for at least 30 minutes. The maximum voltage during polymerization was 4.5V (vsLi/
Li + ). The produced film was thoroughly washed with acetonitrile and then methylene chloride, dried in vacuum, and its electrical performance was measured. The results obtained were as shown in Table 1 below.

〔゚レクトロクロミツク材料実隓〕[Electrochromic material experiment]

実斜䟋―で癜金板の代わりに正極ずしお酞
化むンゞりムを蒞着させた導電ガラスを甚いお、
電気化孊的に導電ガラス䞊に重合䜓を析出させ
た。この重合䜓で被芆された導電ガラスを負極
に、癜金線を正極に、参照電極ずしお暙準カロメ
ル電極を甚い、宀枩でテトラブチルアンモニりム
パヌクロレヌトの292ミリモルのアセトニト
リル溶液䞭でポヌラログラフむツクアナラむザヌ
EG瀟Model 174A型によりサむクリツク
ボルタムを枬定した。加電圧掃匕速床は20mV
sec、掃匕範囲は1.0V〜−0.7V察暙準カロメ
ル電極ずした。埗られた結果は第図に瀺した
通りであ぀た。 第図に瀺すように酞化ピヌクは0.58V、還
元ピヌクは−0.5Vで、たた−0.7V〜0.6Vの範
囲は濃青色であり0.6〜1.0Vの範囲は、極め
お透明な薄い緑色に倉色した。このこずは濃青色
の状態は重合䜓が䞭性の状態であり、酞化ドヌピ
ングの状態で透明性の高い緑色であるこずを瀺し
おいる。 〔電池実隓〕 実斜䟋―で埗たフむルムを巟cm長さcm
に切り、䞀端を導電性接着剀を甚い癜金線に接着
したものを同寞法のリチりム箔の䞡面にmm厚の
倚孔質ポリプロピレン補隔膜を介しお電解液を十
分含浞出来るようにしお配眮し、0.5モルの
リチりムパヌクロレヌトのプロピレンカヌボネヌ
ト溶液に深さcmに浞挬した。このようにしお䜜
補したポリむ゜チアナフテンを正極、リチり
ム箔を負極ずする電池を甚い、アルゎン雰囲気
䞋、2.0mAcm2で30分間充電を行぀た。充電終了
埌盎ちに2.0mAcm2で攟電を行ない、電池電圧が
1Vにな぀たずころで再床前蚘ず同じ条件で充電
を行う。充電―攟電の繰返し詊隓を行぀たずこ
ろ、充・攟電効率が50に䜎䞋するたでの充攟電
の繰り返し回数は590回を蚘録した。たた繰返し
回数回目の充・攟電効率は99であ぀た。さら
に充電したたたでの48時間埌の自己攟電率は3.2
であ぀た。 実斜䟋  電気化孊的重合によるポリゞヒドロむ゜チア
ナフテン「テトラヘドロンTetrahedron」
1979幎35å·»2239頁、ゞ゚ヌ・゚ヌ・グラデむスツ
J.A.Gladysz等「ゞダヌナル オブ アメリ
カン ケミカル ゜サむアテむJ.Amer.Chem.
Soe.」1959幎81å·»4266頁、゚ム・ピヌ・カヌバ
M.P.Cava等「ゞダヌナル オブ オヌガニ
ツク ケミストリヌJ.Org.Chem.」1971幎36
å·»3932頁、゚ム・ピヌ・カヌバ等の文献に蚘茉さ
れおいる手順によ぀おむ゜チアナフテン単量䜓を
䜜り、すぐに䜿甚した。この単量䜓を二電極、隔
宀電解槜においお電気化孊的に酞化しおポリゞ
ヒドロむ゜チアナフテン重合䜓を埗た。癜金板
を陜極ずしお甚い、酞化黒鉛を陰極ずしお甚い
た。重合に甚いた溶液は無色透明で、アセトニト
リル䞭にむ゜チアナフテン0.23Mを電解質である
Bu4NPF6 0.30Mず共に含有するものであ぀た。
アセトニトリルマリンクロツト
Mallinckrodtより賌入は曎に粟補せずに盎
接䜿甚した。盎列の1.5V電池を電源ずしお甚い
た。 党おの実隓を也燥N2䞋で行぀た。この電解槜
に4.5Vを接続するずすぐに、陜極の付近に倚量
の癜色粉末が珟れた。10分埌に電池を切぀おずめ
た。ポリゞヒドロむ゜チアナフテンであるこ
の癜色粉末を吞匕ろ過により分離し、アセトニト
リル及びゞ゚チル゚ヌテルで掗浄し、真空䞋で也
燥させた。生成した固䜓をテトラヒドロフラン―
H2Oから再沈させお粟補し、元玠分析を行぀た。 新に調補したむ゜チアナフテンの詊料を、
Bu4NClO4又はBu4NBF4を支持電解質ずしおか
぀酞化スズ被芆ガラスTOGを陜極ずしお甚
いた型電解槜の陜極宀で電気分解したずころ、
陜極宀は倚量の癜色沈殿WPで䞀杯にな぀
た。泚意深く芳察したずころ、陜極は初めに瞬
間的に非垞に薄い青色フむルムでおおわれ、す
ぐ埌にWPの生成が始たるこずがわか぀た。WP
の倖芳は電極材料、溶媒又は枩床に関係しなか぀
た。単離、特性決定赀倖、元玠分析及び化孊
操䜜䞋蚘参照によりWPがポリゞヒドロむ
゜チアナフテンであるこずが蚌明された。チオ
プンは䞊蚘の条件䞋で郚分酞化したドヌピン
グした重合䜓フむルムずなり、䞀方、む゜チア
ナフテンは、極めお薄い青色フむルムドヌプし
たポリむ゜チアナフテンず思われるを付着
した埌に、ポリゞヒドロむ゜チアナフテンに
倉換されるこずに泚目すべきである。この驚くべ
き芳察に察する唯䞀の合理的な説明はポリむ゜
チアナフテンがむ゜チアナフテンのカチオン重
合の開始剀ずしお働くずいうものであ぀た。この
仮定を調べるために、新に調補したむ゜チアナフ
テンの溶液を通垞のカチオン開始甚觊媒ブレン
ステツド及びルむス酞に露呈し、か぀党おがむ
゜チアナフテンを皮々の皋床に重合させるこずを
芋出した。しかし、かけ離れお最も興味のある結
果は塩化メチレン䞭の硫酞の堎合であ぀た。これ
らの条件䞋でむ゜チアナフテンは氎和硫酞をドヌ
プした暗青色粉末状のポリむ゜チアナフテン
に転化された。酞が觊媒ずしおのみならず酞化剀
ずしおも働いたこずは明らかである。䞊蚘の仮定
に぀いお匷固にする「収斂性の」詊隓は、クロラ
ニル脱氎玠の生成物がポリゞヒドロむ゜チアナ
フテンであり、か぀H2SO4重合の生成物が同
じ赀倖スペクトルを瀺したこずであ぀た。この芳
察に察する唯䞀の合理的な説明は、ドヌプしたポ
リむ゜チアナフテンの赀倖スペクトルが䌝導
電子による吞収によ぀お支配され、か぀分子内振
動による吞収がスペクトルの匱い特城になるずい
うこずである。远加の察照実隓の無い堎合に、こ
の電解質効果を説明するための詳现な機構の掚枬
をするこずは困難である。 H2SO4がゞヒドロむ゜チアナフテン――オ
キシドを盎接ポリむ゜チアナフテン・
H2SO4・H2Oに転化し埗るこずを考
え出した。固䜓のゞヒドロむ゜チアナフテン䞀
―オキシドを98H2SO4に加えお、事実、所望
の郚分ドヌピングしたポリむ゜チアナフテン
を生成した䞋蚘の図解を参照のこず。 加えお、―テトラシアノキノゞ
メタンはカチオン重合甚觊媒ずしお䜿甚するこず
ができる。しかし、生成物はドヌピングしたその
他のポリむ゜チアナフテン化合物のいずれよ
りも高い電導床を瀺さなか぀た。このこずは、お
そらく、受容䜓が固䜓の導電率に含たれおいない
こずを瀺す。その芳察に察しお぀の理由を挙げ
るこずができ、受容䜓分子は、おそらく、小さな
結晶領域内に組み蟌たれおおらず及び又は完党
な電荷移動があるものず思われる。 䞊蚘の結果はポリゞヒドロむ゜チアナフテ
ンの生成方法の性質を説明し、か぀ポリむ゜
チアナフテンを化孊合成する正しい手順を芋぀
けるこずを可胜にするが、ただ、む゜チアナフテ
ンの電気化孊的重合に入り蟌むものではない。こ
れは、「発生期の」ドヌピングしたポリむ゜チ
アナフテンによるポリゞヒドロむ゜チアナフ
テン生成の觊媒䜜甚を劚げる方法を芋出すこず
を必芁ずした。反応媒質がむ゜チアナフテンより
も求栞性の皮を含有する堎合には、生長段階が劚
げられるこずがわか぀た。電気分解する前に陜極
宀にペり化物を加えた詊隓実隓は、ペり化物が電
気分解条件䞋で簡単に酞化されるこずから効果を
䞊げなか぀た。しかし、LiBr、Bu4NBr又は奜た
しくはPh4AsClによる電気分解では癜金又は
TOG䞊に優れたフむルムを生成した。この芳察
に察する唯䞀の合理的な説明は、ドヌピングした
ポリむ゜チアナフテンの赀倖スペクトルが䌝
導電子による吞収によ぀お支配され、か぀分子内
振動による吞収がスペクトルの匱い特城になるず
いうこずである。远加の察照実隓の無い堎合に、
この電解質効果を説明するための詳现な機構の掚
枬をするこずは困難である。 分析、C8H6Sずしお 蚈算、71.60、4.51、23.89 実枬、71.27、4.54、23.96 この反応の堎合、LiBF4及びBu4NClO4を電解
質ずしお甚いるこずができる。 本発明によれば、少くずも぀の異る手順によ
぀お準安定なむ゜チアナフテンを重合させおよい
特性を衚わす導電性の高い重合䜓にするこずがで
きるこれらの内の぀は求栞性アニオンの存圚
においおむ゜チアナフテンを重合させるポリゞ
ヒドロむ゜チアナフテンの電気化孊的補法を包
含する。曎にポリむ゜チアナフテンがポリチ
オプンよりも良奜な導䜓であるこずもわか぀
た。 実斜䟋  化孊カチオン重合によるポリゞヒドロむ゜チ
アナフテン 予めP2O5で也燥させた塩化メチレン10ml䞭に
む゜チアナフテン単量䜓396mg、2.96ミリモル
を溶解した。この溶液にメタンスルホン酞の滎
を加えるず、反応混合物は盎ちに無色から赀色に
倉化した。この色は90分埌にバむオレツト色にな
぀た。蒞発によ぀お塩化メチレンを陀いた埌に、
残留物をテトラヒドロフランに溶解した。そし
お、この溶液をメタノヌル䞭に泚入するず、ポリ
ゞヒドロむ゜チアナフテン重合䜓が溶液から
沈殿した。これを遠心分離によ぀お分離し、真空
䞋で也燥させた。赀倖スペクトルは䞊蚘のポリ
ゞヒドロむ゜チアナフテン重合䜓のものず同
じであ぀た。 以䞋の実斜䟋は本発明の奜結果の実斜に぀いお
瀺すもので発明を制限する぀もりではない。 実斜䟋  電気化孊的重合によるドヌピングしたポリむ
゜チアナフテン 重合手順は先にポリゞヒドロむ゜チアナフテ
ン重合䜓に぀いお実斜䟋で説明した手順ず本
質的に同じであ぀た。最も重芁な点は電解質であ
぀た。臭化リチりムを電解質ずしお甚いた堎合
に、1.5V電池に接続するずすぐにドヌピングし
たポリむ゜チアナフテン重合䜓の青色フむル
ムを陜極導電性ガラス䞊に生成した。たた、
Bu4NBr及びPh4AsClをこの反応甚の電解質ずし
お䜿甚するこずもできる。 実斜䟋  硫酞を甚いた化孊的カチオン酞化重合によるド
ヌピングしたポリむ゜チアナフテン 硫酞mlをむ゜チアナフテン単量䜓396
mg、2.96ミリモルに加えた。単量䜓の色は、盎
ちに、癜色から赀色がか぀た黒色に倉化した。反
応混合物をメタノヌル400ml䞭に泚入し倜通し撹
拌した埌に、ドヌピングしたポリむ゜チアナフ
テン重合䜓である耐色粉末がこの溶液から沈殿
した。これを遠心分離によ぀お分離し、か぀゜ツ
クスレヌ抜出噚を甚いお塩化メチレン及びクロル
ベンれンで抜出した埌に真空䞋で也燥させた。こ
の反応は、たた、塩化メチレン䞭の硫酞の懞濁液
によ぀おも実斜するこずができる。 実斜䟋 10 TCNQ―テトラシアノキノゞ
メタンを甚いた化孊的カチオン酞化重合によ
るドヌピングしたポリむ゜チアナフテン む゜チアナフテン単量䜓238mg、1.77ミリモ
ルを塩化メチレンmlに溶解した。この溶液に
TCNQ数mgを加えた埌に、溶液の色は極めおゆ
぀くり赀色に倉化した。倜通し撹拌した埌に、こ
の色は青色がか぀た黒色にな぀た。次に、この溶
液に、曎にむ゜チアナフテン単量䜓のモル量の
倍量のTCNQを加えた。これを110℃にたで加熱
し、か぀時間この枩床を保぀た。この反応混合
物をメタノヌル䞭に泚入するず、この溶液から緑
色がか぀た黒色の粉末が沈殿した。これを゜ツク
スレヌ抜出噚を甚いおメタノヌル及びクロルベン
れンで掗浄した埌に真空䞋で也燥させた。 実斜䟋 11 ポリゞヒドロむ゜チアナフテンからのポリ
む゜チアナフテン ポリゞヒドロむ゜チアナフテン重合䜓を電
気化孊的重合によ぀お䜜り、熱クロルベンれンに
溶解した。これは淡耐色の溶液であ぀た。この溶
液にテトラ―クロロ――ベンゟキノンクロラ
ニルを加えた。溶液の色は、すぐに、暗緑色に
倉化した。この溶液を冷华するず粉末が沈殿し
た。これを吞匕ろ過によ぀お分離し、メタノヌル
で掗浄し、か぀真空䞋で也燥させた。実斜䟋〜
11に蚘述した党おの物質は同じ赀倖スペクトルを
瀺した。 以䞊より、本発明はポリむ゜チアナフテン
ぞの぀の別経路を提䟛する  求栞性アニオンの存圚におけるむ゜チアナフ
テンの電気化孊的重合  カチオン重合觊媒の存圚におけるむ゜チアナ
フテン又はゞヒドロむ゜チアナフテン――オ
キシドの化孊的重合  ポリゞヒドロむ゜チアナフテンの脱氎
玠。 電導床枬定の予枬結果を衚にたずめる。ポリ
む゜チアナフテンのバンド端は、䜎いドヌピ
ングレベルにおいお薄いフむルムを通る透過率か
ら〜1eV1.1Όであるず掚定された。これは、
ポリチオプンのバンド端〜2eV620nmよ
りも1eV皋䜎い。
In Example 4-2, a conductive glass on which indium oxide was vapor-deposited was used as the positive electrode instead of the platinum plate.
The polymer was electrochemically deposited on conductive glass. Using a conductive glass coated with this polymer as a negative electrode, a platinum wire as a positive electrode, and a standard calomel electrode as a reference electrode, a polarographic analyzer (EG&G Co., Ltd.) was used in an acetonitrile solution containing 292 mmol of tetrabutylammonium perchlorate at room temperature. Cyclic voltam was measured using Model 174A). Applied voltage sweep speed is 20mV/
sec, the sweep range was +1.0V to -0.7V (vs. standard calomel electrode). The results obtained were as shown in FIG. As shown in Figure 5, the oxidation peak is +0.58V, the reduction peak is -0.5V, and the range from -0.7V to +0.6V is dark blue, and the range from +0.6 to +1.0V is extremely transparent. It turned a light green color. This shows that the deep blue state is the neutral state of the polymer, and the highly transparent green state in the oxidized doped state. [Battery experiment] The film obtained in Example 4-1 was 1 cm wide and 3 cm long.
One end was glued to a platinum wire using a conductive adhesive, and placed on both sides of a lithium foil of the same size through a 1 mm thick porous polypropylene diaphragm so that the electrolyte could be sufficiently impregnated. It was immersed to a depth of 2 cm in a propylene carbonate solution of mol/l lithium perchlorate. Using the thus prepared battery with poly(isothianaphthene) as the positive electrode and lithium foil as the negative electrode, charging was performed at 2.0 mA/cm 2 for 30 minutes in an argon atmosphere. Immediately after charging, discharge at 2.0mA/cm 2 until the battery voltage reaches
When the voltage reaches 1V, charge again under the same conditions as above. When we conducted a repeated charge-discharge test, we found that the number of charge-discharge cycles required for the charge-discharge efficiency to drop to 50% was 590. Furthermore, the charging/discharging efficiency after the fifth repetition was 99%. Furthermore, the self-discharge rate after 48 hours while remaining charged is 3.2
It was %. Example 6 Poly(dihydroisothianaphthene) “Tetrahedron” by electrochemical polymerization
1979, Vol. 35, p. 2239, J.A. Gladysz et al.; Journal of American Chemical Society (J.Amer.Chem.
MPCava et al.; Journal of Organic Chemistry (J.Org.Chem.) 1971, 36
The isothianaphthene monomer was prepared by the procedure described in M.P. Carba et al., Vol. 3932, and used immediately. This monomer was electrochemically oxidized in a two-electrode, compartment electrolytic cell to yield a poly(dihydroisothianaphthene) polymer. A platinum plate was used as an anode and graphite oxide was used as a cathode. The solution used for polymerization is colorless and transparent, and contains 0.23M isothianaphthene in acetonitrile as an electrolyte.
It was contained together with Bu 4 NPF 6 0.30M.
Acetonitrile (purchased from Mallinckrodt) was used directly without further purification. A series 1.5V battery was used as the power source. All experiments were performed under dry N2 . As soon as 4.5V was connected to this electrolytic cell, a large amount of white powder appeared near the anode. I turned off the battery after 10 minutes. The white powder, poly(dihydroisothianaphthene), was isolated by suction filtration, washed with acetonitrile and diethyl ether, and dried under vacuum. The generated solid is diluted with tetrahydrofuran.
It was purified by reprecipitation from H 2 O and subjected to elemental analysis. A freshly prepared sample of isothianaphthene was
When electrolyzed in the anode chamber of an H-type electrolytic cell using Bu 4 NClO 4 or Bu 4 NBF 4 as the supporting electrolyte and tin oxide coated glass (TOG) as the anode,
The anode chamber was filled with a large amount of white precipitate (WP). Careful observation revealed that the anode was first coated (momentarily) with a very thin blue film, and shortly after that WP formation began. W.P.
The appearance was not related to electrode material, solvent or temperature. Isolation, characterization (infrared, elemental analysis) and chemical manipulation (see below) demonstrated that WP is a poly(dihydroisothianaphthene). Thiophene becomes a partially oxidized (doped) polymer film under the above conditions, while isothianaphthene forms a poly( It should be noted that it is converted to dihydroisothianaphthene). The only rational explanation for this surprising observation was that poly(isothianaphthene) acts as an initiator for the cationic polymerization of isothianaphthene. To test this hypothesis, we exposed freshly prepared solutions of isothianaphthenes to common cationic initiation catalysts (Brensted and Lewis acids) and found that all polymerized the isothianaphthenes to varying degrees. . However, by far the most interesting result was for sulfuric acid in methylene chloride. Under these conditions, isothianaphthene forms a dark blue powder of poly(isothianaphthene) doped with hydrated sulfuric acid.
was converted into. It is clear that the acid acted not only as a catalyst but also as an oxidizing agent. A "convergent" test solidifying about the above assumption showed that the product of chloranil dehydrogenation was poly(dihydroisothianaphthene) and that the product of H 2 SO 4 polymerization showed the same infrared spectrum. It was hot. The only reasonable explanation for this observation is that the infrared spectrum of doped poly(isothianaphthene) is dominated by absorption by conduction electrons, and absorption by intramolecular vibrations becomes a weak feature in the spectrum. be. Without additional control experiments, it is difficult to make detailed mechanistic inferences to explain this electrolyte effect. H 2 SO 4 directly converts dihydroisothianaphthene-S-oxide into poly(isothianaphthene).
It was discovered that (H 2 SO 4 ) can be converted to (H 2 O)y. Solid dihydroisothianaphthene-S
- Oxide added to 98% H 2 SO 4 , in fact the desired partially doped poly(isothianaphthene)
(see illustration below). Additionally, 7,7,8,8-tetracyanoquinodimethane can be used as a catalyst for cationic polymerization. However, the product did not exhibit higher conductivity than any of the other doped poly(isothianaphthene) compounds. This probably indicates that the receptor is not included in the conductivity of the solid. Two reasons can be given for that observation: the acceptor molecules are probably not integrated into small crystalline regions and/or there is complete charge transfer. Although the above results explain the nature of the production method of poly(dihydroisothianaphthenes) and make it possible to find the correct procedure to chemically synthesize poly(isothianaphthenes), the electrochemistry of isothianaphthenes is still unclear. It does not interfere with the polymerization. This required finding a way to prevent the catalysis of poly(dihydroisothianaphthene) formation by "nascent" doped poly(isothianaphthenes). It has been found that if the reaction medium contains species that are more nucleophilic than the isothianaphthenes, the growth step is hindered. Test experiments in which iodide was added to the anode chamber prior to electrolysis were ineffective as iodide was easily oxidized under electrolysis conditions. However, in electrolysis with LiBr, Bu 4 NBr or preferably Ph 4 AsCl, platinum or
Produced excellent film on TOG. The only reasonable explanation for this observation is that the infrared spectrum of doped poly(isothianaphthene) is dominated by absorption by conduction electrons, and absorption by intramolecular vibrations is a weak feature in the spectrum. be. In the absence of additional control experiments,
It is difficult to speculate on a detailed mechanism to explain this electrolyte effect. Analysis, as (C 8 H 6 S) Calculated: C, 71.60; H, 4.51; S, 23.89 Actual: C, 71.27; H, 4.54; S, 23.96 For this reaction, LiBF 4 and Bu 4 NClO 4 are used as electrolytes. It can be used as According to the present invention, metastable isothianaphthenes can be polymerized into highly conductive polymers exhibiting favorable properties by at least three different procedures; one of these Includes an electrochemical process for the polymerization of isothianaphthenes in the presence of nuclear anions. It has also been found that poly(isothianaphthene) is a better conductor than polythiophene. Example 7 Poly(dihydroisothianaphthene) by chemical cationic polymerization Isothianaphthene monomer (396 mg , 2.96 mmol) in 10 ml of methylene chloride previously dried with P2O5
was dissolved. One drop of methanesulfonic acid was added to this solution and the reaction mixture immediately changed from colorless to red. The color turned violet after 90 minutes. After removing the methylene chloride by evaporation,
The residue was dissolved in tetrahydrofuran. This solution was then poured into methanol, and the poly(dihydroisothianaphthene) polymer precipitated from the solution. This was separated by centrifugation and dried under vacuum. The infrared spectrum was the same as that of the poly(dihydroisothianaphthene) polymer described above. The following examples illustrate successful implementation of the invention and are not intended to limit the invention. Example 8 Doped Poly(isothianaphthene) by Electrochemical Polymerization The polymerization procedure was essentially the same as that previously described in Example 6 for poly(dihydroisothianaphthene) polymer. The most important point was electrolytes. When lithium bromide was used as the electrolyte, a blue film of doped poly(isothianaphthene) polymer was formed on the anode (conductive glass) upon connection to a 1.5V battery. Also,
Bu 4 NBr and Ph 4 AsCl can also be used as electrolytes for this reaction. Example 9 Doped poly(isothianaphthene) by chemical cationic oxidative polymerization using sulfuric acid.
mg, 2.96 mmol). The color of the monomer immediately changed from white to black with a hint of red. After pouring the reaction mixture into 400 ml of methanol and stirring overnight, a brown powder, the doped poly(isothianaphthene) polymer, precipitated from the solution. This was separated by centrifugation and extracted with methylene chloride and chlorobenzene using a Soxhlet extractor and then dried under vacuum. This reaction can also be carried out with a suspension of sulfuric acid in methylene chloride. Example 10 Doped poly(isothianaphthene) by chemical cationic oxidative polymerization using TCNQ (7,7,8,8-tetracyanoquinodimethane) Isothianaphthene monomer (238 mg, 1.77 mmol) was chlorinated Dissolved in 5 ml of methylene. In this solution
After adding a few mg of TCNQ, the color of the solution changed very slowly to red. After stirring overnight, the color turned blue-black. Next, 2 molar amounts of isothianaphthene monomer are added to this solution.
Double amount of TCNQ was added. This was heated to 110°C and held at this temperature for 1 hour. The reaction mixture was poured into methanol, and a greenish-black powder precipitated from the solution. This was washed with methanol and chlorobenzene using a Soxhlet extractor and then dried under vacuum. Example 11 Poly(isothianaphthene) from poly(dihydroisothianaphthene) Poly(dihydroisothianaphthene) polymer was made by electrochemical polymerization and dissolved in hot chlorobenzene. This was a light brown solution. Tetra-chloro-p-benzoquinone (chloranil) was added to this solution. The color of the solution quickly changed to dark green. When the solution was cooled, a powder precipitated. This was separated off by suction filtration, washed with methanol and dried under vacuum. Example 7~
All the substances described in 11 showed the same infrared spectra. From the above, the present invention provides poly(isothianaphthene)
provides three alternative routes to: 1. Electrochemical polymerization of isothianaphthenes in the presence of nucleophilic anions; 2. Chemical polymerization of isothianaphthenes or dihydroisothianaphthene-S-oxides in the presence of cationic polymerization catalysts. ;3 Dehydrogenation of poly(dihydroisothianaphthene). The predicted results of conductivity measurements are summarized in the table. The band edge of poly(isothianaphthene) was estimated to be ~1 eV (1.1 Ό) (from the transmission through thin films at low doping levels). this is,
It is about 1 eV lower than the band edge of polythiophene (~2 eV, 620 nm).

【衚】【table】

【衚】 実斜䟋 11  ―プルヌブ圧瞮枬定 第図はポリむ゜チアナフテンの可逆電
気化孊的ドヌピングを瀺す。これより、アルミ
ニりムを暙準カロメル参照電極の堎合䞀方
の電極ずしお甚い、ポリむ゜チアナフテン
を他方の電極ずしお甚い、か぀フルオロホり酞
リチりムの炭酞プロピレン溶液を電解質ずしお
甚いれば、本発明の重合䜓が電池電極ずしお有
甚であるこずが理解できる。 第図の実隓は、曎に、本発明の新芏重合䜓
の゚レクトロクロミツク特性をも瀺す。
Table Example 11a 2-probe compression measurements Figure 6 shows reversible electrochemical doping of poly(isothianaphthene). From this, aluminum is used as one electrode (in the case of the standard calomel reference electrode) and poly(isothianaphthene)
It can be seen that the polymer of the present invention is useful as a battery electrode by using lithium fluoroborate as the other electrode and a propylene carbonate solution of lithium fluoroborate as the electrolyte. The experiment of FIG. 6 further demonstrates the electrochromic properties of the novel polymers of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第図は実斜䟋で補造した重合䜓の赀倖吞収
スペクトル図である。第図は実斜䟋で補造し
た重合䜓の赀倖吞収スペクトル図であり、第図
は実斜䟋で補造した重合䜓のNMRスペクトル
図である。第図は実斜䟋で補造した第䞀の重
合䜓をクロラニルで凊理した埌の重合䜓の赀倖吞
収スペクトル図である。第図は実斜䟋の゚レ
クトロクロミツク材料詊隓で埗られた重合䜓のポ
ヌラログラフ分析結果を瀺すチダヌト図である。
第図は暙準カロメル電極SCEに察しお蚘録
したポリむ゜チアナフテンフむルムの電気化
孊的可逆性を瀺す図である0.6V黄色、透
明−0.4V暗青色䞍透明電解質炭酞プロ
ピレン䞭のLiBF4 -。本䟋における酞化重合䜓
はドヌピング剀ずしおBF4を含有する。
FIG. 1 is an infrared absorption spectrum diagram of the polymer produced in Example 1. FIG. 2 is an infrared absorption spectrum diagram of the polymer produced in Example 2, and FIG. 3 is an NMR spectrum diagram of the polymer produced in Example 2. FIG. 4 is an infrared absorption spectrum diagram of the first polymer produced in Example 2 after being treated with chloranil. FIG. 5 is a chart showing the results of polarographic analysis of the polymer obtained in the electrochromic material test of Example 5.
Figure 6 shows the electrochemical reversibility of poly(isothianaphthene) films recorded against a standard calomel electrode (SCE): +0.6V = yellow, transparent; -0.4V = dark blue, opaque; Electrolyte: Li + BF 4 - in propylene carbonate. The oxidized polymer in this example contains BF 4 as a doping agent.

Claims (1)

【特蚱請求の範囲】  䞀般匏 【匏】及び又は 【匏】 匏䞭、R1及びR2はそれぞれ独立に氎玠又は炭
玠数〜の炭化氎玠基を衚わし、X-は電解質
の陰むオンを衚わし、はモノマヌモル圓りの
陰むオンの割合を瀺す0.01〜の数であり、は
重合床を瀺す〜500の数であるで衚わされる
む゜チアナフテン構造を有する重合䜓。  前蚘䞀般匏で衚わされるむ゜チアナ
フテン構造の電解質陰むオンX-がCl-、Br-、I-、
ClO4、BF4 -、PF6 -、AsFb6 -、SbF6 -、AlCl4 -、
AlBr3Cl-、FeCl4 -、SnCl3 -及びCF3SO3 -から遞
ばれるものである特蚱請求の範囲第項に蚘茉の
重合䜓。
[Claims] 1 General formula [Formula] and/or [Formula] (In the formula, R 1 and R 2 each independently represent hydrogen or a hydrocarbon group having 1 to 5 carbon atoms, and X - represents the electrolyte. (represents an anion, y is a number from 0.01 to 1 indicating the proportion of anion per mole of monomer, and n is a number from 5 to 500 indicating the degree of polymerization). Combined. 2 The electrolyte anion X - of the isothianaphthene structure represented by the general formula (b) is Cl - , Br - , I - ,
ClO 4 , BF 4 - , PF 6 - , AsFb 6 - , SbF 6 - , AlCl 4 - ,
A polymer according to claim 1, which is selected from AlBr 3 Cl − , FeCl 4 − , SnCl 3 − and CF 3 SO 3 − .
JP10932984A 1984-05-31 1984-05-31 Polymer containing isothianaphthene structure Granted JPS6117581A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP10932984A JPS6117581A (en) 1984-05-31 1984-05-31 Polymer containing isothianaphthene structure
US06/736,984 US4640748A (en) 1984-05-31 1985-05-22 Polyisothianaphtene, a new conducting polymer
CA000482753A CA1248690A (en) 1984-05-31 1985-05-30 Polyisothianaphthene, a new conducting polymer
EP85303864A EP0164974B1 (en) 1984-05-31 1985-05-31 Polymer having isothianaphthene structure and electrochromic display
AT85303864T ATE53046T1 (en) 1984-05-31 1985-05-31 POLYMERS WITH ISOTHIANAPTHENE STRUCTURE AND ELECTROCHROMIC INDICATOR.
DE8585303864T DE3577860D1 (en) 1984-05-31 1985-05-31 POLYMERS WITH ISOTHIANAPHTHE STRUCTURE AND ELECTROCHROMIC DISPLAY DEVICE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10932984A JPS6117581A (en) 1984-05-31 1984-05-31 Polymer containing isothianaphthene structure

Publications (2)

Publication Number Publication Date
JPS6117581A JPS6117581A (en) 1986-01-25
JPS6411207B2 true JPS6411207B2 (en) 1989-02-23

Family

ID=14507462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10932984A Granted JPS6117581A (en) 1984-05-31 1984-05-31 Polymer containing isothianaphthene structure

Country Status (1)

Country Link
JP (1) JPS6117581A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739477B2 (en) * 1986-11-06 1995-05-01 昭和電工株匏䌚瀟 Process for producing polymer having isothianaphthene structure
JPH0273826A (en) * 1988-09-09 1990-03-13 Toyobo Co Ltd Production of electrically conductive polymer
JPH0275625A (en) * 1988-09-13 1990-03-15 Toyobo Co Ltd Electrically conductive polymer
JP7019602B2 (en) 2016-12-28 2022-02-15 昭和電工株匏䌚瀟 Method for Producing Polyisotianaphthenic Conductive Polymer

Also Published As

Publication number Publication date
JPS6117581A (en) 1986-01-25

Similar Documents

Publication Publication Date Title
Wudl et al. Poly (isothianaphthene)
JP2777440B2 (en) Substituted thiophenes, conductive polymers derived from these thiophenes, methods for their preparation and devices containing these polymers
JP4124487B2 (en) Five-membered ring anion salts or tetraazapentalene derivatives and their use as ion-conducting substances
US4640748A (en) Polyisothianaphtene, a new conducting polymer
US5268448A (en) Conducting polymers derived from fluorinated thiophenes
US4740436A (en) Secondary battery
EP0273643B1 (en) Conducting substituted polyisothianophthenes
US9890230B2 (en) Tetracyanoanthraquinodimethane polymers and use thereof
US10263280B2 (en) 9,10-Bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene polymers and use thereof
JPS63500105A (en) conductive polymer
JP3234638B2 (en) Fluorinated thiophenes, polymers derived from these thiophenes and conductive polymers containing these polymers
US4772940A (en) Polymer having isothianaphthene structure and electrochromic display
JP2892784B2 (en) Fluorinated thiophenes, conductive polymers derived from these thiophenes, methods for their preparation and devices containing these polymers
JPH0138808B2 (en)
EP0164974B1 (en) Polymer having isothianaphthene structure and electrochromic display
WO1987003607A1 (en) Polymers having isoindole structure and process for their preparation
JPS6411207B2 (en)
JPH05314979A (en) Reversible electrode
CN1023527C (en) Process for preparation of polymer having isothianaphthene structure and electrochromic display
JPH0794538B2 (en) Novel polymer and method for producing the same
JP2536865B2 (en) Battery active material
JPH0211614B2 (en)
JPH038271A (en) Secondary battery
JP2862244B2 (en) Pyrrole derivatives and polymers thereof
JPS63196622A (en) Production of polymer having isothianaphthene structure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term