JPS6411149B2 - - Google Patents

Info

Publication number
JPS6411149B2
JPS6411149B2 JP56131825A JP13182581A JPS6411149B2 JP S6411149 B2 JPS6411149 B2 JP S6411149B2 JP 56131825 A JP56131825 A JP 56131825A JP 13182581 A JP13182581 A JP 13182581A JP S6411149 B2 JPS6411149 B2 JP S6411149B2
Authority
JP
Japan
Prior art keywords
current
circuit
magnetic field
magnetic
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56131825A
Other languages
Japanese (ja)
Other versions
JPS5833167A (en
Inventor
Yasufumi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP56131825A priority Critical patent/JPS5833167A/en
Publication of JPS5833167A publication Critical patent/JPS5833167A/en
Publication of JPS6411149B2 publication Critical patent/JPS6411149B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

【発明の詳細な説明】 この発明は磁気コアと空隙とによつて形成され
る閉磁路中にホール素子を有するクランプ計器に
よる電流測定法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a current measurement method using a clamp instrument having a Hall element in a closed magnetic path formed by a magnetic core and an air gap.

上記したようなクランプ計器において、微小電
流を測定する際には、空隙部のレラクタンスとコ
アのヒステリシスによつて決定される覆歴特性を
有するため、過大入力信号や外部磁界により零点
の移動や磁気回路の非直線性の影響から誤差を生
じる。このために第1図に略示するように、閉磁
路中にホール素子Hを有する前記計器の磁気コア
Cの一部に消磁巻線Wを設け、この巻線に交流減
衰電流を流して測定前に交流消磁を行なう方法が
従来一般的に実施されている。然し乍らこのよう
に処置された計器においても、実際の測定時には
入力信号や外部磁界の大きさ及び極性により、前
記磁気回路の覆歴特性に基づく測定誤差を生じ
る。又第2図に略示するように、増巾器Aを用い
てその負帰還により磁気回路の磁束が常に零とな
るように形成されている処のゼロフラツクス法に
よるクランプ計器においても同様に手動に交流消
磁が行なわれているが、一旦消磁後大きな外部磁
界や急激な過大入力信号が印加されると増巾器の
応答が追従不可となり、ゼロフラツクス法の動作
から逸脱し、磁気回路の帯磁により動作点が大き
く変化して了うので測定誤差を生じる。又上記し
た場合、人的操作によつて消磁を行なつているか
ら、処理を忘れたまゝ測定を行なつて了う等の事
態を未然に防止することが困難で、特に長時間に
亘る記録測定の際には磁化を受けた後の測定値は
信頼がおけないものになつて了う。
When measuring minute currents with the above-mentioned clamp instruments, they have a history characteristic determined by the reluctance of the air gap and the hysteresis of the core, so excessive input signals or external magnetic fields may cause zero point movement or magnetic Errors occur due to the effects of circuit nonlinearity. For this purpose, as schematically shown in FIG. 1, a degaussing winding W is provided in a part of the magnetic core C of the instrument having a Hall element H in a closed magnetic path, and an AC damping current is passed through this winding to perform measurements. Conventionally, a method of performing AC demagnetization beforehand is generally practiced. However, even in instruments treated in this manner, measurement errors occur during actual measurement due to the magnitude and polarity of the input signal and the external magnetic field, which are based on the historical characteristics of the magnetic circuit. Also, as schematically shown in Figure 2, in a clamp instrument using the zero flux method, in which the magnetic flux of the magnetic circuit is always zero due to the negative feedback of the amplifier A, it can be manually operated in the same way. AC demagnetization is performed, but once a large external magnetic field or a sudden excessive input signal is applied after demagnetization, the response of the amplifier becomes unable to follow, deviates from the zero-flux method, and operates due to the magnetization of the magnetic circuit. Since the points change greatly, measurement errors occur. Furthermore, in the above case, since demagnetization is performed manually, it is difficult to prevent situations such as a measurement being completed without remembering to do so, especially when recording over a long period of time. During measurements, the measured values after magnetization become unreliable.

この発明は閉磁路中にホール素子を有するクラ
ンプ計器を用いた電流測定において、被測定電流
によつて発生する磁界に一様に減衰する交流磁界
を重量することにより、磁気回路が有する履歴特
性に影響されることなく直線性の優れた電流検出
を可能とする所謂理想非履歴磁化機構に基づいた
電流測定法に関するものである。次にこの発明の
実施例をまず第3図、第4図を参照し乍ら説明す
る。
In current measurement using a clamp meter having a Hall element in a closed magnetic circuit, this invention applies an alternating current magnetic field that is uniformly attenuated to the magnetic field generated by the current to be measured, thereby improving the hysteresis characteristics of the magnetic circuit. This invention relates to a current measurement method based on a so-called ideal ahistorical magnetization mechanism that enables current detection with excellent linearity without being affected. Next, an embodiment of the present invention will be described with reference to FIGS. 3 and 4.

第3図に示すように閉磁路中のホール素子1と
帰還増巾器5および磁気コア2の一部に設けた巻
線3によつて構成されるゼロフラツクス法による
電流検出は従来と同様であるが、この発明では被
測定電路4の電流によつて発生する磁界に、一様
に減衰する交流磁界を短周期をもつて間けつ的且
つ連続的に重畳させるものである。即ち制御回路
7により交流減衰発振器6およびサンプル・ホー
ルド回路8を前記重畳期間TH、非重畳期間TS
に応じてそれぞれ交互に駆動制御する。例えば制
御回路7の信号によつて数mSから数S程度の如
き周期をもつて非重畳期間TSではクランプ計器
の出力電圧をサンプル・ホールド回路8にてサン
プリングし、次いで重畳期間THではサンプル・
ホールド回路8をホールド状態として直前の非重
畳期間TS時の値を保持し且つ同時に交流減衰発
振器6を動作させて帰還増幅器5、巻線3を介し
て交流減衰磁界を磁気コア2に供給する。即ち前
記したような短周期をもつて前記重畳、非重畳を
交互に繰返し、サンプル・ホールド回路8によつ
て得られる出力電圧を表示器9によつて表示し測
定可能とするものである。
As shown in Fig. 3, current detection by the zero flux method, which is composed of a Hall element 1 in a closed magnetic circuit, a feedback amplifier 5, and a winding 3 provided on a part of the magnetic core 2, is the same as the conventional one. However, in the present invention, a uniformly attenuated alternating current magnetic field is intermittently and continuously superimposed on the magnetic field generated by the current in the electrical circuit 4 to be measured. That is, the control circuit 7 controls the AC damped oscillator 6 and the sample-and-hold circuit 8 during the superimposition period TH and the non-superimposition period TS.
Drive control is performed alternately according to the respective conditions. For example, depending on the signal from the control circuit 7, the output voltage of the clamp instrument is sampled in the sample-and-hold circuit 8 during the non-superimposed period TS at a period of about several milliseconds to several seconds, and then during the superimposed period TH, the sample-and-hold circuit 8 samples the output voltage of the clamp instrument.
The hold circuit 8 is put into a hold state to hold the value during the immediately preceding non-overlapping period TS, and at the same time, the AC damped oscillator 6 is operated to supply an AC damped magnetic field to the magnetic core 2 via the feedback amplifier 5 and the winding 3. That is, the above-described superimposition and non-superimposition are alternately repeated at short intervals as described above, and the output voltage obtained by the sample-and-hold circuit 8 is displayed on the display 9 so that it can be measured.

第4図は各部の動作波形を示すもので、iacは
交流減衰電流波形、isは被測定電路4の電流波
形、Φはそれらによつて磁気回路に発生する磁束
波形、e0はサンプル・ホールド回路の出力電圧波
形でローパスフイルタによつてフイルタリングす
ることにより被測定電流に正確に比例する出力電
圧波形e′0を得ることができる。なお予め被測定
電流波形の時間的変化に比して充分に短かい周期
で前記重畳、非重畳を繰返すことにより被測定電
流波形を忠実に表示することができることは明ら
かに理解されるべきである。
Figure 4 shows the operating waveforms of each part, where iac is the AC attenuated current waveform, is is the current waveform of the electrical circuit under test 4, Φ is the magnetic flux waveform generated in the magnetic circuit by them, and e 0 is the sample hold. By filtering the output voltage waveform of the circuit with a low-pass filter, it is possible to obtain an output voltage waveform e'0 that is exactly proportional to the current to be measured. It should be clearly understood that the current waveform to be measured can be displayed faithfully by repeating the superimposition and non-superimposition in advance at a sufficiently short period compared to the temporal change in the current waveform to be measured. .

この発明の方法による動作原理は前記した通り
交流磁界と信号磁界とを重畳して印加したときに
得られる磁化機構であり、減衰する交流磁界の振
巾最大値が磁気回路を飽和するだけの充分な大き
な値であれば、磁気回路が有している非直線性や
残留磁気に関係なく信号磁界の大きさによつて決
定されるという所謂理想非履歴磁化機構によるも
のである。したがつてこの発明の方法によるクラ
ンプ計器は単に交流消磁を行なつた後信号磁界を
印加する従来方式のものと異なつて直線性が優
れ、正確な電流測定が可能である。いま上記重畳
期間の動作について磁気回路のヒステリシスルー
プを示す第5図を参照し乍ら詳述すると、従来方
式のように一旦交流消磁した後信号磁界Hsを印
加すれば、磁気回路の初期磁化曲線によつて決定
されるa点に磁化される。したがつて初期磁化曲
線の非直線性の影響を受けるし、信号磁界または
外部磁界の大きさおよび極性方向によつては履歴
特性を有し、最悪の場合にはa′点またはa″点に磁
化されることがあつて正確な電流測定が不可能と
なる。一方この発明の方法によれば第4図におけ
るΦのような波形の磁界が印加されるため重畳期
間TH磁化過程では第5図のヒステリシスループ
において、メジヤーループからマイナーループを
経て最終的にb点に収れんされる。この時最終化
点bは磁気回路の有するヒステリシスの抗磁力
Hcと飽和磁化点Hmの間、即ち Hc<Hs+Hac<Hm Hs:信号磁界、Hac:交流減衰磁界 になる時点で決定され、前記従来方式と異なり磁
気回路の履歴特性に左右されない直線性の優れた
磁化が行なわれて正確な電流測定ができる。また
前述した制御回路7、サンプル・ホールド回路8
は例えば積分型AD変換器を利用して目的に添わ
すことができる。即ち該変換器は入力を一定時間
積分し、ついで基準電圧を逆積分し、積分電圧が
一定電圧に達する迄の時間を表示することにより
アナログ入力をデジタル表示に変換するものであ
るから、入力積分時を本発明によるクランプ計器
のサンプル時、即ち非重畳期間に、逆積分時をホ
ールド時、即ち重畳期間時に対応させて動作させ
ることにより電流の測定表示を行なわせることが
できる。同様にして比較型AD変換器を用いた場
合にも応用できることは明らかである。又はこの
発明は上記の如くゼロフラツク法に限ることな
く、例えば第6図に示すように磁気回路を含また
帰還ループを有しない従来方式のクランプ計器に
も適用することができる。
As mentioned above, the operating principle of the method of this invention is the magnetization mechanism obtained when an alternating current magnetic field and a signal magnetic field are applied in a superimposed manner, and the maximum amplitude of the attenuating alternating magnetic field is sufficient to saturate the magnetic circuit. If it is a large value, it is due to the so-called ideal ahistorical magnetization mechanism, which is determined by the magnitude of the signal magnetic field, regardless of the nonlinearity or residual magnetism of the magnetic circuit. Therefore, the clamp instrument according to the method of the present invention has excellent linearity and is capable of accurate current measurement, unlike the conventional method in which a signal magnetic field is applied after simply performing AC demagnetization. Now, to explain the operation during the above-mentioned superimposition period in detail with reference to FIG. 5 showing the hysteresis loop of the magnetic circuit, if the signal magnetic field Hs is applied after AC demagnetization as in the conventional method, the initial magnetization curve of the magnetic circuit It is magnetized at point a determined by . Therefore, it is affected by the nonlinearity of the initial magnetization curve, and has hysteresis characteristics depending on the magnitude and polarity direction of the signal magnetic field or external magnetic field, and in the worst case, it will be affected by the nonlinearity of the initial magnetization curve. On the other hand, according to the method of the present invention, a magnetic field with a waveform like Φ in Fig. 4 is applied, so during the superimposed period TH magnetization process, accurate current measurement becomes impossible. In the hysteresis loop, it passes from the major loop to the minor loop and finally converges to point b.At this time, the final point b is the coercive force of the hysteresis of the magnetic circuit.
It is determined between Hc and the saturation magnetization point Hm, that is, Hc<Hs+Hac<Hm Hs: signal magnetic field, Hac: AC attenuation magnetic field. Magnetization is performed to allow accurate current measurements. In addition, the control circuit 7 and sample/hold circuit 8 described above
can be achieved by using, for example, an integral AD converter. In other words, the converter converts the analog input into a digital display by integrating the input for a certain period of time, then inversely integrating the reference voltage, and displaying the time until the integrated voltage reaches a certain voltage. By operating the clamp instrument according to the present invention in a manner that corresponds to the sample time, ie, the non-overlap period, and the inverse integration time, to the hold time, ie, the overlap period, it is possible to measure and display the current. It is clear that the present invention can also be applied in the same way when using a comparison type AD converter. Alternatively, the present invention is not limited to the zero flux method as described above, but can also be applied to a conventional type clamp instrument that does not have a feedback loop including a magnetic circuit, as shown in FIG. 6, for example.

以上詳述したようにこの発明においてはクラン
プ計器は本質的に磁気回路の履歴特性の影響を受
けないため、従来困難であつた直流の微少電流測
定において正確な電流検出を可能とする著効を奏
し、且つ重畳、非重畳の周期を充分に短かく設定
すれば交流電流波形をも忠実に検出表示すること
ができる。更にこの発明の方法は人的操作に頼る
ことがないため、測定器取扱いに起因する誤差
や、長時間に亘る記録測定の場合の誤差も防止で
きるものである。
As detailed above, in this invention, the clamp instrument is essentially unaffected by the hysteresis characteristics of the magnetic circuit, so it is highly effective in enabling accurate current detection in direct current measurement, which was previously difficult. If the period of superimposition and non-superimposition is set sufficiently short, even the alternating current waveform can be faithfully detected and displayed. Furthermore, since the method of the present invention does not rely on human operations, it is possible to prevent errors caused by handling of measuring instruments and errors in recording and measuring over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はクランプ計器における従来の
消磁方法を示す説明図、第3図はこの発明の方法
による測定回路実施例図、第4図はこの発明にお
ける出力波形図、第5図は磁気回路のヒステリシ
スループ図、第6図はこの発明の方法による測定
回路他実施例図である。 1……ホール素子、2……磁気コア、3,3′
……巻線、4……被測定電路、5……帰還増巾
器、6,6′……交流減衰発振器、7,7′……制
御回路、8,8′……サンプル・ホールド回路、
9,9′……表示器、iac……交流減衰電流波形、
is……被測定電流波形、Φ……発生磁束波形、
e0,e′0……サンプル・ホールド回路出力波形。
1 and 2 are explanatory diagrams showing a conventional degaussing method in a clamp instrument, FIG. 3 is an embodiment of a measuring circuit according to the method of the present invention, FIG. 4 is an output waveform diagram of the present invention, and FIG. A hysteresis loop diagram of a magnetic circuit, FIG. 6 is a diagram of a measuring circuit and other embodiments according to the method of the present invention. 1... Hall element, 2... Magnetic core, 3, 3'
... Winding wire, 4 ... Electrical circuit under test, 5 ... Feedback amplifier, 6, 6' ... AC damped oscillator, 7, 7' ... Control circuit, 8, 8' ... Sample and hold circuit,
9,9'...Display, iac...AC attenuated current waveform,
is... Current waveform to be measured, Φ... Generated magnetic flux waveform,
e 0 , e′ 0 ... Sample/hold circuit output waveform.

Claims (1)

【特許請求の範囲】[Claims] 1 閉磁路中にホール素子を有するクランプ計器
による電流測定において、被測定電路から発生す
る信号磁界に交流減衰電流による交流磁界を短周
期をもつて間けつ的に磁路に重畳させ、非重畳期
間に発生する上記被測定電路電流に比例したホー
ル素子出力電圧を測定することを特徴とする電流
測定法。
1. In current measurement using a clamp instrument that has a Hall element in a closed magnetic path, an alternating current magnetic field generated by an alternating current decay current is superimposed on the signal magnetic field generated from the electrical circuit to be measured intermittently on the magnetic path with short periods, and a non-superimposed period A current measurement method characterized by measuring a Hall element output voltage proportional to the current to be measured generated in the circuit.
JP56131825A 1981-08-21 1981-08-21 Current measurement Granted JPS5833167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56131825A JPS5833167A (en) 1981-08-21 1981-08-21 Current measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56131825A JPS5833167A (en) 1981-08-21 1981-08-21 Current measurement

Publications (2)

Publication Number Publication Date
JPS5833167A JPS5833167A (en) 1983-02-26
JPS6411149B2 true JPS6411149B2 (en) 1989-02-23

Family

ID=15066976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56131825A Granted JPS5833167A (en) 1981-08-21 1981-08-21 Current measurement

Country Status (1)

Country Link
JP (1) JPS5833167A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3905060A1 (en) * 1989-02-18 1990-08-23 Diehl Gmbh & Co DEVICE FOR CONTACTLESS MEASURING OF A DC
FR2645650B1 (en) * 1989-04-06 1991-09-27 Merlin Gerin SYSTEM FOR CONTROLLING THE ISOLATION OF A DIRECT CURRENT NETWORK
FR2684092B1 (en) * 1991-11-21 1994-03-04 Pechiney Recherche PROCESS FOR THE PREPARATION OF LARGE SPECIFIC METAL CARBIDES FROM ACTIVATED CARBON FOAMS.
DE10204425B4 (en) * 2002-02-04 2010-12-09 Vacuumschmelze Gmbh & Co. Kg Current sensor according to the compensation principle

Also Published As

Publication number Publication date
JPS5833167A (en) 1983-02-26

Similar Documents

Publication Publication Date Title
US4059798A (en) Method and apparatus for measuring the current flowing in a workpiece
JPS60194379A (en) Magnetic field sensor and method of detecting magnetic field
US5091697A (en) Low power, high accuracy magnetometer and magnetic field strength measurement method
US4290018A (en) Magnetic field strength measuring apparatus with triangular waveform drive means
US6940267B1 (en) Error correction by selective modulation
US4972146A (en) Saturble core device with DC component elimination for measuring an external magnetic field
JPS6411149B2 (en)
US4050013A (en) Magnetic field probe which measures switching current of magnetic element at moment the element switches as measure of external field
Son A new type of fluxgate magnetometer using apparent coercive field strength measurement
JP2000028695A (en) Method and apparatus for measurement of magnetism
ATE15553T1 (en) METHOD AND ARRANGEMENT FOR DETERMINING A MAGNETIC FIELD.
US4933637A (en) Apparatus for detecting a magnetic field having an excitation current source unit, a detection unit and a current control source unit
JPS5823009B2 (en) signal isolation circuit
JP2580747B2 (en) Method for applying gradient magnetic field of MRI apparatus
JPH0429025B2 (en)
JPH0477850B2 (en)
SU832502A1 (en) Method of device measuring magnetic field
JP2812703B2 (en) Apparatus for measuring magnetization characteristics of magnetic thin films
Leehey et al. DC current transformer
Yoshida et al. Precise current sensor by means of small-angle magnetization rotation using amorphous wire and its industrial application
JPH0445110B2 (en)
RU1798746C (en) Device for measurement of characteristics of magnetic materials
Weyand et al. Fluxgate magnetometer for low-frequency magnetic electromagnetic compatibility measurements
JPH1068744A (en) Direct current sensor
SU737897A1 (en) Method of measuring coercive force of thin cylindrical magnetic films