JPS6410841B2 - - Google Patents

Info

Publication number
JPS6410841B2
JPS6410841B2 JP55133912A JP13391280A JPS6410841B2 JP S6410841 B2 JPS6410841 B2 JP S6410841B2 JP 55133912 A JP55133912 A JP 55133912A JP 13391280 A JP13391280 A JP 13391280A JP S6410841 B2 JPS6410841 B2 JP S6410841B2
Authority
JP
Japan
Prior art keywords
pressure
control valve
fluid
output side
directional control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55133912A
Other languages
Japanese (ja)
Other versions
JPS5757315A (en
Inventor
Shigeki Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Machine Works Ltd
Original Assignee
Sanyo Machine Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Machine Works Ltd filed Critical Sanyo Machine Works Ltd
Priority to JP55133912A priority Critical patent/JPS5757315A/en
Publication of JPS5757315A publication Critical patent/JPS5757315A/en
Publication of JPS6410841B2 publication Critical patent/JPS6410841B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2093Control of fluid pressure characterised by the use of electric means with combination of electric and non-electric auxiliary power

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Fluid Pressure (AREA)

Description

【発明の詳細な説明】 この発明は複数の圧力調整器を組合せることに
より、それらの設定圧力の全ての組合せについ
て、加算した圧力の1つを任意に取出せるように
した流体圧力の調整装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a fluid pressure adjustment device that combines a plurality of pressure regulators so that one of the added pressures can be taken out arbitrarily for all combinations of their set pressures. It is related to.

高圧の油や圧縮空気の如き、加圧された流体を
所望の圧力に減圧して供給するための圧力調整方
法として、次の方法が現在一般に行なわれてい
る。
BACKGROUND ART Currently, the following method is generally used as a pressure adjustment method for supplying a pressurized fluid such as high-pressure oil or compressed air to a desired pressure.

例えば、その1つは1台の圧力調整器を用い、
その圧力設定部のバネ圧を必要な圧力に手動調整
する方法である。なお、圧力調整器とは、入力側
から供給された加圧流体を、その設定圧に減圧し
て出力側から流出させるもので、気体用のものと
液体用のものがある。また、他の方法として、必
要とする圧力の種類数だけ圧力調整器を準備し、
夫々に必要な圧力を設定しておき、各々の出力側
に電磁弁を1つずつ取り付け、電磁弁の1つを選
択的にON動作させることにより、圧力調整器の
いずれか1つの出力を取り出して、必要な圧力を
得る方法等がある。
For example, one uses one pressure regulator,
This is a method of manually adjusting the spring pressure of the pressure setting part to the required pressure. Note that the pressure regulator is a device that reduces the pressure of pressurized fluid supplied from the input side to its set pressure and causes it to flow out from the output side, and there are types for gas and types for liquid. Another method is to prepare as many pressure regulators as the number of pressure types you need.
Set the required pressure for each, install one solenoid valve on each output side, and selectively turn on one of the solenoid valves to take out the output of one of the pressure regulators. There are ways to obtain the necessary pressure.

而して任意の時間に任意の圧力設定が必要な機
械装置に上記の2つの方法を適用すると、前者の
場合は圧力設定が変わる毎に人為操作が必要とな
つて操作性が悪くなり、後者の場合は必要な設定
圧力の種類数だけ圧力調整器が必要となつて装置
が大型高価になる。
Therefore, if the above two methods are applied to a mechanical device that requires arbitrary pressure settings at arbitrary times, the former requires manual operation every time the pressure setting changes, resulting in poor operability; In this case, pressure regulators are required for each type of set pressure required, making the device large and expensive.

また圧力設定用の絞りと開閉用の電磁弁とを直
列接続し、これのn個の対を圧力流体の供給源と
出力側との間に並列接続し、上記複数の電磁弁
を、任意に組合せて導通させ、各絞りの設定圧の
組合せにより2n−1種類の出力圧を得るようにし
たデジタル圧力制御装置も知られている(特開昭
53−98523号)。
In addition, a pressure setting throttle and an opening/closing solenoid valve are connected in series, and n pairs of these are connected in parallel between the pressure fluid supply source and the output side, and the plurality of solenoid valves are arbitrarily connected. A digital pressure control device is also known in which 2 n −1 types of output pressures are obtained by combining the set pressures of each throttle (Japanese Patent Laid-Open No.
53-98523).

しかし、このデジタル圧力制御装置は、絞りに
よつて圧力を設定しているので、出力圧を一定に
するためには、各絞りにおける流体の流量を一定
にしておかなければならないという制約がある。
このため、各絞りを通して流体を外部に放出する
構造を採用しているが、出力管路から負荷側に取
り出される流量が変動すると、各絞りにおける流
量が変化し、これが、そのまま出力圧の変動とな
る。例えばエアシリンダ等を駆動する場合は、シ
リンダ内に流体が流入している時間中の出力圧の
低下が大きい。
However, since this digital pressure control device sets the pressure using throttles, there is a restriction that the flow rate of fluid at each throttle must be kept constant in order to keep the output pressure constant.
For this reason, a structure is adopted in which the fluid is discharged to the outside through each restriction, but if the flow rate taken out from the output pipe to the load side changes, the flow rate at each restriction changes, which directly causes changes in the output pressure. Become. For example, when driving an air cylinder or the like, the output pressure decreases significantly during the time when fluid is flowing into the cylinder.

すなわち、このデジタル圧力制御装置は、負荷
変動に対する応答特性が悪く、高速応答性を要求
される負荷への使用に不適当であるという問題が
ある。また、流体を常に外部に放出させておかな
ければならないので、これによるエネルギー損失
が発生し、運転効率が悪いという問題もある。
That is, this digital pressure control device has a problem in that it has poor response characteristics to load fluctuations and is unsuitable for use with loads that require high-speed response. Further, since the fluid must be constantly discharged to the outside, this causes energy loss, resulting in a problem of poor operating efficiency.

そこで本発明は上記欠点に鑑み、これを改良し
たものでn個の圧力調整器があれば、1個からn
個までのそれらの全ての組合せによる加算圧力を
得ることができ、特に高速応答性並びに運転効率
に優れた流体の圧力調整装置を提供する。
Therefore, in view of the above-mentioned drawbacks, the present invention is an improvement on this, and if there are n pressure regulators, one to n pressure regulators can be used.
The present invention provides a fluid pressure regulating device that can obtain additional pressures from all combinations of up to 1,000,000, and is particularly excellent in high-speed response and operational efficiency.

すなわち、この発明の流体圧力調整装置は、各
位毎に設けられ、予め任意の圧力が設定された圧
力設定部に、他から圧力を印加することにより、
それらを加算し、この加算圧力で流体を出力側に
流出する圧力調整器と、各位毎に設けられ、下位
の出力側配管から供給される流体を、ON時に自
己の位の圧力調整器の圧力設定部に連通させ
OFF時に自己の位の出力側配管に通過させる電
磁方向制御弁と、各位毎に設けられ、自己の位の
電磁方向制御弁のON時にONし、自己の位の圧
力調整器の流出する流体を自己の位の出力側配管
に通過させる電磁制御弁とを具備し、各位毎に連
動する電磁方向制御弁及び電磁制御弁のON・
OFFの組合せにより、各圧力調整器に予め設定
された圧力の任意の組合せによる加算圧力を最上
位の出力側配管に得るようにしたことを特徴とす
る。
That is, the fluid pressure regulating device of the present invention is provided for each person and applies pressure from another to a pressure setting section in which an arbitrary pressure is set in advance.
A pressure regulator that adds these and flows out the fluid to the output side with this added pressure, and a pressure regulator that is installed for each unit and controls the fluid supplied from the lower output side piping when turned on. communicate with the setting section
There is an electromagnetic directional control valve that allows the fluid to pass through the output side piping of the own position when it is OFF, and a solenoid directional control valve that is installed for each person and turns ON when the solenoid directional control valve of the own position is ON, and that allows fluid to flow out of the pressure regulator of the own position. Equipped with an electromagnetic control valve that passes through the output side piping of the own position, the ON/OFF of the electromagnetic directional control valve and electromagnetic control valve that are linked to each
The feature is that by combining OFF, an additional pressure based on an arbitrary combination of pressures preset in each pressure regulator is obtained in the output side piping at the highest level.

以下、この発明を実施例に従つて説明する。 Hereinafter, this invention will be explained according to examples.

第1図は本発明一実施例の構成を示し、この接
続図において、R1,R2…Ro-1,Roは圧力調整器
で、R1からRoまで順番に20,21…2n-1の割合の大
きさの圧力が、予めその圧力設定部R1′,R2′…
Ro-1′,Ro′に設定されている。この圧力設定部
R1′,R2′…Ro-1′,Ro′は、手動調整等により、バ
ネ圧として設定された設定圧力を後で自動的に変
化できるもので、他から流体圧を加えると、予め
設定されたバネ圧に流体圧を加算して新たな設定
圧力とする機能を有する。またV1,V2…Vo-1
Voは夫々の圧力調整器R1,R2…Ro-1,Roの出力
側配管の途中に設置された2ポート2位置のスプ
リングオフセツト式電磁制御弁で、各圧力調整器
R1,R2…Ro-1,Roから流出する流体の通過・遮
断をON・OFF制御する。またSV1,SV2
SVo-1,SVoは夫々3ポート2位置のスプリング
オフセツト式電磁方向制御弁で、OFF時に下位
側の電磁制御弁V1,V2…Vo-1の出力側配管と、
その位の電磁制御弁V1…Vo-1,Voの出力側配管
とを連絡し、ON時に下位側の電磁制御弁V1
V2…Vo-1の出力側配管と、その位の圧力調整器
R1,R2…Ro-1,Roの圧力設定部R1′,R2′……
Ro-1′,Ro′とを連絡する。またR0は油圧ポンプ
又はエアーコンプレツサ等の圧力源から供給され
る加圧流体を、その圧力設定部R0′の設定圧に制
限して、前記各圧力調整器R1,R2…Ro-1,Ro
入力側に供給する基準圧力調整器であり、この設
定圧が、この装置の最終出力圧の上限となる。
FIG. 1 shows the configuration of an embodiment of the present invention. In this connection diagram, R 1 , R 2 ...R o-1 , Ro are pressure regulators, and from R 1 to Ro are 2 0 , 2 A pressure of a proportion of 1 ...2 n-1 is applied in advance to the pressure setting portions R 1 ′, R 2 ′...
R o-1 ′, R o ′ are set. This pressure setting part
R 1 ′, R 2 ′…R o-1 ′, R o ′ can be used to automatically change the set pressure set as spring pressure by manual adjustment, etc., and if fluid pressure is applied from another source. , has a function of adding fluid pressure to a preset spring pressure to obtain a new set pressure. Also, V 1 , V 2 …V o-1 ,
V o is a 2-port, 2-position spring offset electromagnetic control valve installed in the middle of the output side piping of each pressure regulator R 1 , R 2 ...R o-1 , R o .
R 1 , R 2 ...Control ON/OFF of passage/blocking of fluid flowing out from R o-1 and R o . Also, SV 1 , SV 2
SV o-1 and SV o are spring offset type electromagnetic directional control valves with 3 ports and 2 positions, respectively. When OFF, the output side piping of the lower electromagnetic control valves V 1 , V 2 ...V o-1 ,
Connect the output side piping of the solenoid control valve V 1 ...V o-1 , V o at that position, and when the lower side solenoid control valve V 1 ,
V 2 ...V o-1 output side piping and the corresponding pressure regulator
R 1 , R 2 ... R o-1 , pressure setting part of R o R 1 ′, R 2 ′ ...
Contact R o-1 ′ and R o ′. Further, R 0 limits the pressurized fluid supplied from a pressure source such as a hydraulic pump or an air compressor to the set pressure of its pressure setting section R 0 ', and connects each of the pressure regulators R 1 , R 2 . . . R This is a reference pressure regulator that supplies the input side of o-1 and R o , and this set pressure is the upper limit of the final output pressure of this device.

上記構成において、この装置の出力は最上位の
電磁制御弁Voの出力側配管から取り出せる。そ
して、その出力となる流体の圧力はn個の圧力調
整器R1,R2…Ro-1,Roの各設定圧の任意の組合
せの加算値として、それらの全ての組合せの種類
数の段階で得られる。出力される流体の圧力は電
磁制御弁V1,V2…Vo-1,Voおよび電磁方向制御
弁SV1,SV2,…SVo-1,SVoのON−OFFによつ
て決定される。上記構成では必要とされる圧力を
得るには、その圧力数になる組合せの位を選択
し、例えば25であれば、これは20+23+24=25で
あるので0,3,4の各位を選択し、これに対応
する電磁制御弁V1,V4,V5を励磁してスプール
を駆動してON状態とし上流側に流体が通過でき
るようにすると共に、これらの位に対応する電磁
方向制御弁SV1,SV4,SV5も励磁してスプール
を駆動してON状態として、下位側の出力圧を、
その位の圧力調整器R1,R4,R5の圧力設定部
R1′,R4′,R5′に印加させる。なお、この時他の
電磁制御弁V2…はOFF状態で流体の通過を禁止
し、また他の電磁方向制御弁SV2…もOFF状態に
あり、下位側から出力される流体をその位の出力
側配管に通過させている。
In the above configuration, the output of this device can be taken out from the output side piping of the uppermost electromagnetic control valve V o . Then, the pressure of the fluid that becomes the output is calculated as the sum of any combination of the set pressures of the n pressure regulators R 1 , R 2 . . . R o-1 , Ro obtained at the stage of The pressure of the output fluid is determined by the ON/OFF status of the electromagnetic control valves V 1 , V 2 ...V o- 1 , Vo and the electromagnetic directional control valves SV 1 , SV 2 , ...SV o-1 , SV o be done. In the above configuration, to obtain the required pressure, select the digit of the combination that corresponds to the pressure number. For example, if it is 25, this is 2 0 + 2 3 + 2 4 = 25, so 0, 3, 4. Select each location, and excite the corresponding solenoid control valves V 1 , V 4 , and V 5 to drive the spools to the ON state, allowing fluid to pass upstream, and at the same time The electromagnetic directional control valves SV 1 , SV 4 , and SV 5 are also energized to drive the spools to turn them on, and the output pressure on the lower side is changed to
Pressure setting section of the corresponding pressure regulators R 1 , R 4 , R 5
Apply to R 1 ′, R 4 ′, and R 5 ′. At this time, the other electromagnetic control valves V 2 ... are in the OFF state, prohibiting the passage of fluid, and the other electromagnetic directional control valves SV 2 ... are also in the OFF state, so that the fluid output from the lower side is not allowed to pass through. It is passed through the output side piping.

この状態において、最下位20の電磁制御弁V1
が開くことにより、20位の圧力調整器R1から、
この圧力の流体が1つ上位の電磁方向制御弁SV2
に到達する。この時、21位と22位の電磁制御弁
V2,V3及び電磁方向制御弁SV2,SV3は夫々
OFF状態となつているので、OFF状態の電磁方
向制御弁SV2,SV3を、この20の圧力の流体が、
そのまま通過する。そして、ON状態にある23
の電磁方向制御弁SV4に到達し、この23位の電磁
方向制御弁SV4を通つて23位の圧力調整器R4の圧
力設定部R4′に印加される。すると、この圧力設
定部R4′の設定圧は、既にバネ圧として設定され
ていた23の圧力に20の圧力が加算され20+23の圧
力に再設定される。そして、この時ONしている
電磁制御弁V4を通つて20+23の圧力の流体が上位
の電磁方向制御弁SV5に到達する。24位ではON
状態の電磁方向制御弁SV5を通つて20+23の圧力
の流体が24位の圧力調整器R5の圧力設定部R5
印加される。すると、この圧力設定部R5の設定
圧は、既にバネ圧として設定されていた24の圧力
と、20+23の圧力との加算値である20+23+24
再設定される。そして、この圧力調整器R5から、
ON状態の電磁制御弁V5を通つてその出力側の配
管に20+23+24=25の圧力の流体が出力される。
In this state, the lowest 2 0 solenoid control valve V 1
By opening, from the pressure regulator R1 at position 20 ,
The fluid at this pressure is the next higher electromagnetic directional control valve SV 2
reach. At this time, 2 1st position and 2 2nd position solenoid control valves
V 2 , V 3 and electromagnetic directional control valves SV 2 , SV 3 are respectively
Since they are in the OFF state, this fluid at a pressure of 200% will
Pass through as is. Then, it reaches the 2nd and 3rd position electromagnetic directional control valve SV 4 which is in the ON state, and passes through this 2nd and 3rd position electromagnetic directional control valve SV 4 to the pressure setting part R 4 ′ of the pressure regulator R 4 of the 2nd and 3rd position. is applied to Then, the set pressure of this pressure setting part R4 ' is reset to the pressure of 20 + 23 by adding the pressure of 20 to the pressure of 23 that has already been set as the spring pressure. Then, the fluid at a pressure of 2 0 +2 3 reaches the upper electromagnetic directional control valve SV 5 through the electromagnetic control valve V 4 which is ON at this time. 2 ON in 4th place
Fluid at a pressure of 2 0 + 2 3 is applied to the pressure setting part R 5 of the pressure regulator R 5 in the 2 4 position through the state electromagnetic directional control valve SV 5 . Then, the setting pressure of this pressure setting part R5 is reset to 2 0 + 2 3 + 2 4 , which is the sum of the pressure 2 4 that was already set as the spring pressure and the pressure 2 0 + 2 3 . . And from this pressure regulator R 5 ,
Fluid at a pressure of 2 0 + 2 3 + 2 4 = 25 is output through the solenoid control valve V 5 in the ON state to the piping on its output side.

このように電磁制御弁V1,V2…Vo-1,Vo及び
電磁方向制御弁SV1,SV2…SVo-1,SVoがON状
態にある位の圧力調整器R1,R2…Ro-1,Roが出
力し、それらの初期の設定圧が加算されて、最上
位の電磁制御弁Voの出力側配管から出力される。
すなわち、必要な圧力が得られるように各位を選
択し、その位の電磁制御弁及び電磁方向制御弁を
ON動作させるように制御すればよい。従つて各
設定圧の全ての組合せによつて得られる加算値の
各段階について、それが得られる各位の組合せを
選択しておき、その段階値の指定に従つて、自動
的にその組合せの電磁弁及び電磁方向制御弁が作
動するように、制御電気回路を構成しておけば自
動操作が容易に行なえる。
In this way, the pressure regulator R 1 , where the electromagnetic control valves V 1 , V 2 ...V o-1 , Vo and the electromagnetic directional control valves SV 1 , SV 2 ...SV o-1 , SV o are in the ON state , R 2 ...R o-1 and R o are output, their initial set pressures are added, and the result is output from the output side piping of the uppermost electromagnetic control valve V o .
In other words, select each location so that the required pressure can be obtained, and select the corresponding solenoid control valve and solenoid directional control valve.
All you have to do is control it so that it operates ON. Therefore, for each step of the added value obtained by all the combinations of each set pressure, select the combination where the added value is obtained, and automatically calculate the electromagnetic value of that combination according to the specification of the step value. If the control electric circuit is configured to operate the valve and the electromagnetic directional control valve, automatic operation can be easily performed.

なお、最下位の電磁方向制御弁SV1には、その
入力側の配管に何も接続されていないが、ここに
別の圧力系統を接続することにより、この印加圧
力を加算して動作させることができる。例えば第
1図に示した構造のものを複数組直列に多段接続
することもできる。
Note that nothing is connected to the input side piping of the lowest electromagnetic directional control valve SV 1 , but by connecting another pressure system here, it can be operated by adding this applied pressure. I can do it. For example, a plurality of sets having the structure shown in FIG. 1 can be connected in series in multiple stages.

以上説明したように、この発明によれば、設定
圧の異なるn個の圧力調整器を組合せることによ
り、その全ての組合せ数の段階の圧力の流体が得
られるから、流体の自動圧力調整装置を安価且つ
高性能に製造することができる。特にこの発明は
絞りを用いていないので、流体を外部に放出させ
るためのエネルギー損失がなく、負荷変動に対す
る応答も高速である。そして、抵抗溶接機のガン
加圧力のコントロール等に最適の用途が得られ
る。また、その圧力段階が多くコントロールの変
化が微少幅にでき、従来の手動調整及び絞りと電
磁弁の複数対を組合せたデジタル圧力制御装置に
比べて応答速度が早い特徴を生かして、工業ロボ
ツトのハンドクランプ力の制御、エアーフイード
装置の速度制御、圧入機の圧力制御等の流体圧を
用いる装置に幅広い応用が可能である。
As explained above, according to the present invention, by combining n pressure regulators with different set pressures, fluid with pressure levels corresponding to all the combinations can be obtained. can be manufactured at low cost and with high performance. In particular, since this invention does not use a throttle, there is no energy loss for discharging the fluid to the outside, and the response to load fluctuations is fast. This makes it ideal for controlling gun pressure in resistance welding machines. In addition, it has a large number of pressure levels, allows for minute control changes, and has a faster response time than conventional manual adjustment and digital pressure control devices that combine multiple pairs of throttles and solenoid valves. It can be widely applied to devices that use fluid pressure, such as hand clamp force control, speed control of air feed devices, and pressure control of press-in machines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明一実施例の接続図である。 R1,R2…Ro-1,Ro……圧力調整器、R1′,
R2′…Ro-1′,Ro′……圧力設定部、V1,V2
Vo-1,Vo……電磁制御弁、SV1,SV2…SVo-1
SVo……電磁方向制御弁。
FIG. 1 is a connection diagram of one embodiment of this invention. R 1 , R 2 … R o-1 , R o … Pressure regulator, R 1 ′,
R 2 ′...R o-1 ′, R o ′...Pressure setting section, V 1 , V 2 ...
V o-1 , V o ... Solenoid control valve, SV 1 , SV 2 ... SV o-1 ,
SV o ...Solenoid directional control valve.

Claims (1)

【特許請求の範囲】 1 各位毎に設けられ、予め任意の圧力が設定さ
れた圧力設定部に、他から圧力を印加することに
より、それらを加算し、この加算圧力で流体を出
力側に流出する圧力調整器と、 各位毎に設けられ、下位の出力側配管から供給
される流体を、ON時に自己の位の圧力調整器の
圧力設定部に連通させOFF時に自己の位の出力
側配管に通過させる電磁方向制御弁と、 各位毎に設けられ、自己の位の電磁方向制御弁
のON時にONし、自己の位の圧力調整器の流出
する流体を自己の位の出力側配管に通過させる電
磁制御弁とを具備し、 各位毎に連動する電磁方向制御弁及び電磁制御
弁のON・OFFの組合せにより、各圧力調整器に
予め設定された圧力の任意の組合せによる加算圧
力を最上位の出力側配管に得るようにしたことを
特徴とする流体圧力調整装置。
[Claims] 1. By applying pressure from another to a pressure setting section provided for each person and preset with an arbitrary pressure, the pressures are added, and the fluid flows out to the output side with this added pressure. A pressure regulator is provided for each unit, and the fluid supplied from the lower output side piping is connected to the pressure setting part of the pressure regulator of the own position when ON, and to the output side piping of the own position when OFF. An electromagnetic directional control valve is provided for each unit, and turns ON when the corresponding electromagnetic directional control valve is turned on, allowing the fluid flowing out of the corresponding pressure regulator to pass through to the output side piping of the corresponding unit. Equipped with a solenoid control valve, the combination of ON/OFF of the solenoid directional control valve and the solenoid control valve that are linked to each other allows the added pressure of any combination of pressures preset in each pressure regulator to be adjusted to the highest level. A fluid pressure regulating device characterized in that the pressure is adjusted to the output side piping.
JP55133912A 1980-09-25 1980-09-25 Controller of fluid pressure Granted JPS5757315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55133912A JPS5757315A (en) 1980-09-25 1980-09-25 Controller of fluid pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55133912A JPS5757315A (en) 1980-09-25 1980-09-25 Controller of fluid pressure

Publications (2)

Publication Number Publication Date
JPS5757315A JPS5757315A (en) 1982-04-06
JPS6410841B2 true JPS6410841B2 (en) 1989-02-22

Family

ID=15115992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55133912A Granted JPS5757315A (en) 1980-09-25 1980-09-25 Controller of fluid pressure

Country Status (1)

Country Link
JP (1) JPS5757315A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5398523A (en) * 1977-02-09 1978-08-29 Furuido Tekunorojii Kk Digital pressure controlling device

Also Published As

Publication number Publication date
JPS5757315A (en) 1982-04-06

Similar Documents

Publication Publication Date Title
US3987622A (en) Load controlled fluid system having parallel work elements
KR100234605B1 (en) Hydraulic control system having poppet and spool type valves
US4850191A (en) Control arrangement for at least two hydraulic consumers fed by at least one pump
DE19722600A1 (en) Two-stage servo controller
US3959969A (en) Apparatus for regulating the pressure and rate of flow of fluid supplied by a variable-delivery pump
JPH0674204A (en) Hydraulic type controller for plurality of consuming equipment
DE19615593A1 (en) Control for hydraulic drive
EP0111208A1 (en) Power transmission
JPH025923B2 (en)
US4362089A (en) Valve system
JP2929021B2 (en) Variable displacement pump
JPS6410841B2 (en)
US5626015A (en) Delivery control device for hydraulic pumps and hydraulic systems with such devices
JPS6188002A (en) Controller for hydraulically driven load
US4811650A (en) Power transmission
US10550862B2 (en) Pressure-controlled 2-way flow control valve for hydraulic applications and valve assembly comprising such a 2-way flow control valve
JP3447094B2 (en) Load sensing circuit
JPH0798001A (en) Direction and speed controller for hydraulic actuator
JP2830525B2 (en) Pump displacement control device for fluid working system
JPS5912646Y2 (en) flow control valve
US5140815A (en) Valve apparatus
JPH0241978A (en) Hydraulic steering mechanism
JP2652791B2 (en) Flow control device
JPS589285Y2 (en) pressure flow control valve
JP2652792B2 (en) Flow control device