JPS6410595B2 - - Google Patents

Info

Publication number
JPS6410595B2
JPS6410595B2 JP2518381A JP2518381A JPS6410595B2 JP S6410595 B2 JPS6410595 B2 JP S6410595B2 JP 2518381 A JP2518381 A JP 2518381A JP 2518381 A JP2518381 A JP 2518381A JP S6410595 B2 JPS6410595 B2 JP S6410595B2
Authority
JP
Japan
Prior art keywords
film
support
deposition chamber
glow discharge
uniform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2518381A
Other languages
Japanese (ja)
Other versions
JPS57140873A (en
Inventor
Yasuyuki Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2518381A priority Critical patent/JPS57140873A/en
Publication of JPS57140873A publication Critical patent/JPS57140873A/en
Publication of JPS6410595B2 publication Critical patent/JPS6410595B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges

Description

【発明の詳細な説明】 本発明はグロー放電を利用して、例えば光導電
膜、半導体膜、無機絶縁膜、或いは有機樹脂膜を
形成するに有効な膜形成法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a film forming method using glow discharge that is effective for forming, for example, a photoconductive film, a semiconductor film, an inorganic insulating film, or an organic resin film.

プラズマ現象を利用して、膜形成用の原料ガス
を分解し所定の支持体上の所望の特性を有する膜
を形成しようとする場合、殊に、大面積の膜の場
合には、全面積に亘つてその膜厚並びに、電気
的、光学的或いは光電的等の物理特性の均一化を
計ることには、通常の真空蒸着法に較べて非常に
困難がつきまとう。
When trying to use plasma phenomena to decompose a raw material gas for film formation and form a film with desired properties on a predetermined support, especially in the case of a large-area film, However, it is much more difficult to uniformize the film thickness and physical properties such as electrical, optical, or photoelectric properties compared to the usual vacuum evaporation method.

例えば、SiH4或いはSi2H6、SiF4等のガスを放
電エネルギーを使つて分解し支持体上にアモルフ
アス水素化シリコン(以後a−Si:Hと記す)膜
又はハロゲン原子含有アモルフアスシリコン(以
後a−Si:Xと記す)膜を形成して、この膜の電
気物性を利用しようとする場合、この膜の電気物
性が膜形成時の放電強度に大きく依存するため、
膜の全領域に於ける電気物性の均一性を得るに
は、膜形成の全領域に於いて放電強度の均一化を
計る必要がある。
For example, a gas such as SiH 4 , Si 2 H 6 , SiF 4, etc. is decomposed using discharge energy and a film of amorphous silicon hydride (hereinafter referred to as a-Si:H) or amorphous silicon containing halogen atoms (hereinafter referred to as a-Si:H) is formed on the support. When attempting to form a film (hereinafter referred to as a-Si:X) and utilize the electrical properties of this film, the electrical properties of this film largely depend on the discharge intensity during film formation.
In order to obtain uniform electrical properties over the entire area of the film, it is necessary to make the discharge intensity uniform over the entire area where the film is formed.

而乍ら、従来法に於いては、放電強度の均一
化、殊に大面積の膜を形成する場合の放電強度の
均一化を計ることは極めて困難であつた。
However, in the conventional method, it has been extremely difficult to make the discharge intensity uniform, especially when forming a film with a large area.

又、別には、プラズマ現象を利用するグロー放
電堆積法に於いては、通常の真空蒸着法に較べて
膜形成速度が遅いのが一般的である。
Furthermore, in glow discharge deposition methods that utilize plasma phenomena, the film formation rate is generally slower than that in normal vacuum evaporation methods.

このためにグロ放電のパワーを増す事が堤案さ
れているが、a−Si:H又はa−Si:Xにおいて
は、あまり放電のパワーを増すと膜の電気的特性
が低下する事が知られている。
For this reason, it has been proposed to increase the power of the glow discharge, but it is known that for a-Si:H or a-Si:X, if the discharge power is increased too much, the electrical properties of the film will deteriorate. It is being

又、電極と膜を形成する支持体との配置関係及
び電極の構造・配置が膜厚及び特性の均一化に大
きく影響するが、従来法に於いては、この点でも
必ずしも満足のいくものではなく、従つて、殊に
大面積の膜形成の再現性、一定特性の膜の量産化
に於いて不向きな点を有していた。
In addition, the positional relationship between the electrode and the support that forms the film, as well as the structure and arrangement of the electrode, greatly affect the uniformity of film thickness and properties, but conventional methods are not always satisfactory in this respect as well. Therefore, it is unsuitable especially in the reproducibility of film formation over a large area and in the mass production of films with constant characteristics.

他本、大面積の円筒形の支持体上にプラズマ現
象を利用するグロー放電法により膜を形成する場
合、該円筒形支持体の外側に電極を設け円筒形支
持体との間に高周波電界を印加して、グロー放電
を発生して行う、所謂、キヤパシタンスタイプ
と、円筒形支持体の周りにコイルをを設け該コイ
ルに高周波電流を流して、グロー放電を発生する
インダクタンスタイプが一般的である。
In other books, when a film is formed on a large-area cylindrical support by a glow discharge method that utilizes a plasma phenomenon, an electrode is placed outside the cylindrical support and a high-frequency electric field is generated between the cylindrical support and the cylindrical support. The most common types are the so-called capacitance type, in which a glow discharge is generated by applying an electric current, and the inductance type, in which a coil is placed around a cylindrical support and a high-frequency current is passed through the coil to generate a glow discharge. It is.

この中、インダクタンスタイプは支持体及び支
持体上に形成された膜に直接電界を印加する事が
ないので、支持体及び形成された膜がグロー放電
による損傷をうける事が少い事、支持体と高周波
電力発生装置の間の電気的接続に注意を払う必要
が無い事等の利点を有するが、従来大面積にわた
つて均一なグロー放電を発生する事がキヤパシタ
ンスタイプ以上に困難であつた。
Among these, the inductance type does not apply an electric field directly to the support and the film formed on the support, so the support and the film formed are less likely to be damaged by glow discharge. It has the advantage that there is no need to pay attention to the electrical connection between the high-frequency power generator and the high-frequency power generator, but it is more difficult than conventional capacitance types to generate a uniform glow discharge over a large area. Ta.

この点の改善の為に大面積の支持体に均一な膜
を形成するにあたつては、従来円筒形の支持体を
長手方向に往復運動しつつ膜を形成する事が試み
られていた。
In order to improve this point and form a uniform film on a large-area support, conventional attempts have been made to form a film while reciprocating a cylindrical support in the longitudinal direction.

しかしこの方法では支持体を駆動する装置が必
要であり、又、殊に往復運動を行なうためにはグ
ロー放電を行う堆積室を大きくする必要があり、
設備が大型化するばかりでなく、堆積室内を減圧
するのに多大な時間を要し、生産性が低下する。
又、十分な強度のグロー放電を発生しているの
は、堆積室内のごく一部分であるから膜形成速度
を高める事も困難である、等の欠点があつた。
However, this method requires a device to drive the support, and in particular, in order to perform reciprocating motion, it is necessary to enlarge the deposition chamber in which the glow discharge is performed.
Not only does this increase the size of the equipment, but it also takes a great deal of time to reduce the pressure inside the deposition chamber, reducing productivity.
Another disadvantage is that it is difficult to increase the film formation rate because glow discharge of sufficient intensity is generated only in a small portion of the deposition chamber.

この様に従来法は上記に挙げた様な欠点を有
し、殊に、特性及び膜厚の均一な大面積膜の形成
に於いては、末だ再現性、量産性等の点からの改
良が指摘される。
As described above, the conventional method has the above-mentioned drawbacks, and there is still a need for improvement in terms of reproducibility, mass production, etc., especially when it comes to forming a large-area film with uniform properties and film thickness. is pointed out.

本発明は上記の点に鑑み成されたものであつ
て、大きな面積の膜であつても全面積に亘つて、
その物理的特性及び膜厚が実質的に均一である膜
が再現性良く形成され得るグロー放電による膜形
成法を提供することを目的とする。
The present invention has been made in view of the above points, and even if the film has a large area, the entire area can be
An object of the present invention is to provide a method for forming a film using glow discharge, which can form a film with substantially uniform physical properties and thickness with good reproducibility.

又、本発明は、量産化に極めて有効な膜形成法
を堤供することをも目的とする。
Another object of the present invention is to provide a film forming method that is extremely effective for mass production.

本発明の膜形成法は減圧にし得る堆積室内に膜
形成用支持体を設置し、前記堆積室内に導入され
た原料ガス中でグロー放電を生起させて膜形成す
るに際して、前記膜形成用支持体の端部に絶縁性
で且つ高い透磁率を有する材料で構成された部材
を配置して膜形成する事を特徴とする。
In the film forming method of the present invention, a support for film formation is installed in a deposition chamber that can be made under reduced pressure, and when forming a film by causing glow discharge in a source gas introduced into the deposition chamber, the support for film formation is It is characterized by forming a film by arranging a member made of an insulating material and having high magnetic permeability at the end of the material.

以下、本発明を図面に従つて説明する。 The present invention will be explained below with reference to the drawings.

第1図は、本発明のグロー放電による膜形成法
を具現化し得る装置の好適な例の1つを示す模式
的説明図である。減圧にし得る堆積室1は、通常
のグロー放電堆積装置に使用されている様な構造
のベースプレート2上に、これも通常使用されて
いる例えば石英ガラス製のベルジヤー3を0リン
グを介して設置して形成され、その内部には膜形
成用の支持体4を所定位置に設置する為の固定部
材5が図に示す様に、堆積室1の下部の所定位置
に固設されている。第1図の装置においては固定
部材5は、下部より膜形成用の原料ガスが堆積室
1内部に導入される為のパイプ6と下部において
接続されており、パイプ6を通じて固定部材5内
部に導入される前記原料ガスは、固定部材5の上
端部に設けられた複数のガス流出口7より堆積室
1内に導入される構造となつている。
FIG. 1 is a schematic explanatory diagram showing one preferred example of an apparatus capable of embodying the film forming method using glow discharge of the present invention. The deposition chamber 1, which can be made to have a reduced pressure, has a bell jar 3 made of, for example, quartz glass, which is also commonly used, installed on a base plate 2 having a structure similar to that used in a normal glow discharge deposition apparatus, via an O-ring. Inside the deposition chamber 1, a fixing member 5 for setting a support 4 for film formation at a predetermined position is fixed at a predetermined position in the lower part of the deposition chamber 1, as shown in the figure. In the apparatus shown in FIG. 1, the fixing member 5 is connected at the bottom to a pipe 6 through which raw material gas for film formation is introduced into the deposition chamber 1 from below, and is introduced into the fixing member 5 through the pipe 6. The raw material gas is introduced into the deposition chamber 1 through a plurality of gas outlets 7 provided at the upper end of the fixing member 5.

8はコイルであつて、ベルジヤー3の外側に巻
回され、同軸ケーブル9を通してグロー放電を引
起すための高周波電源(図示せず)に接続されて
いる。
A coil 8 is wound around the outside of the bell gear 3 and is connected through a coaxial cable 9 to a high frequency power source (not shown) for causing glow discharge.

コイル8の一方の端は同軸ケーブル9に接続さ
れ、他端はシールド13を介して接地されてい
る。
One end of the coil 8 is connected to a coaxial cable 9, and the other end is grounded via a shield 13.

コイル8は、堆積室1の外に設けてあり、この
様に配置する事が一般的であるが堆積室1の内部
に設ける事も可能である。
The coil 8 is provided outside the deposition chamber 1 and is generally arranged in this manner, but it can also be provided inside the deposition chamber 1.

10は、支持体4上に膜形成する際に、必要に
応じて支持体4を所望温度に加熱する為のヒータ
ーであつて、支持体4の内側に挿入され固定され
る。支持体4の加熱温度は、支持体4の内側に接
触して設けられる熱電対11によつて検知され、
ヒーター10に投入される電力を自動的に制御し
て、膜形成時に支持体4が所望の温度に維持され
る様になつている。
Numeral 10 is a heater for heating the support 4 to a desired temperature as necessary when forming a film on the support 4, and is inserted and fixed inside the support 4. The heating temperature of the support 4 is detected by a thermocouple 11 provided in contact with the inside of the support 4,
The power supplied to the heater 10 is automatically controlled so that the support 4 is maintained at a desired temperature during film formation.

堆積室1内の真空度は、真空計12によつて測
定される。
The degree of vacuum within the deposition chamber 1 is measured by a vacuum gauge 12.

支持体4は、放電強度の位置依存性を可能な限
り避ける為に、膜形成の際には所定の回転速度
で、固定部材5を中心にして回転される。
The support 4 is rotated about the fixed member 5 at a predetermined rotational speed during film formation in order to avoid position dependence of discharge intensity as much as possible.

この様に、膜形成の際に、支持体4を固定部材
5を中心にして回転させることによつて、放電強
度の位置依存性の平均化を計ることが出来、一層
均一特性、均一膜厚の膜を支持体4上に形成する
事が出来る。
In this way, by rotating the support 4 around the fixing member 5 during film formation, it is possible to average out the positional dependence of the discharge intensity, resulting in more uniform characteristics and a more uniform film thickness. can be formed on the support 4.

第1図に示される装置を使用して、支持体上に
所定の膜を形成するには、例えば、図に示されて
ある様に必要に応じて所定の清浄化処理した円筒
状の支持体4を、固定部材5に固定設置し、ベル
ジヤー3をベースプレート2上にセツトして、堆
積室1内が所定の真空度になる様に、堆積室1下
部より排気する。
In order to form a predetermined film on a support using the apparatus shown in FIG. 4 is fixedly installed on a fixing member 5, the bell gear 3 is set on the base plate 2, and the deposition chamber 1 is evacuated from the lower part thereof so that the inside of the deposition chamber 1 has a predetermined degree of vacuum.

堆積室1内が所定の真空度になつた時点で、膜
形成用の原料ガス、例えばa−Si:H膜を形成す
るのであれば、SiH4等のシランガスをパイプ6
を通じて外部より堆積室1内に所定内圧になる様
にして導入する。堆積室1内が膜形成用の原料ガ
スで所定内圧で満たされた時点において、コイル
8に高周波電力を供給し、堆積室1内にグロー放
電を生起させて、堆積室1内のガスをプラズマ化
して支持体4上に膜形成を行なう。高周波電力の
周波数は通常13.56MHzを用いるが、他の周波数
であつても可能である。
When the inside of the deposition chamber 1 reaches a predetermined degree of vacuum, a raw material gas for film formation, for example, if an a-Si:H film is to be formed, a silane gas such as SiH 4 is introduced into the pipe 6.
It is introduced into the deposition chamber 1 from the outside through the tank so that a predetermined internal pressure is reached. When the inside of the deposition chamber 1 is filled with the raw material gas for film formation at a predetermined internal pressure, high-frequency power is supplied to the coil 8 to generate a glow discharge inside the deposition chamber 1, turning the gas inside the deposition chamber 1 into plasma. to form a film on the support 4. The frequency of high-frequency power is usually 13.56MHz, but other frequencies are also possible.

膜形成にあたつて支持体4を回転させることに
よつて、ガス流量の不均一分布による放電強度斑
を平均化することが出来、大面積に亘つて均一な
物理特性と均一な膜厚を有する膜を得ることが出
来る。又、ガス流体速度に関しては、ガス分解速
度が加味され、分解速度が大きい場合は、ガス流
体速度を大きくするのが良い。
By rotating the support 4 during film formation, it is possible to average out the discharge intensity unevenness caused by non-uniform distribution of gas flow rate, and to achieve uniform physical properties and uniform film thickness over a large area. It is possible to obtain a film having the following properties. Further, regarding the gas fluid velocity, the gas decomposition rate is taken into consideration, and if the decomposition rate is high, it is preferable to increase the gas fluid velocity.

又、原料ガスの堆積室1内の導入口は、第1図
に示される様に固定部材5の上部に設ける必要性
は必ずしも要さず、堆積室1内が出来るだけ均一
ガス流量となる様に工夫するのであれば、堆積室
1内のどの位置に設けても良い。而乍ら、堆積室
1の排気口より遠方の位置に、原料ガス導入用の
口を設ける方が導入された原料ガスのプラズマ化
を効率良く行なえ、又、前記排気口とシンメトリ
カルな位置に前記導入口を設ける方がガス流量の
一層の均一化を計る事が出来るので都合が良いも
のである。13は、高周波電界をシールドする為
のシールドであつて例えば、金属性メツシユで形
成される。
Furthermore, the inlet for the raw material gas into the deposition chamber 1 does not necessarily need to be provided at the top of the fixing member 5 as shown in FIG. It may be provided at any position within the deposition chamber 1 as long as it is devised. However, it is better to provide an opening for introducing the raw material gas at a position far from the exhaust port of the deposition chamber 1, since the introduced raw material gas can be turned into plasma more efficiently. It is more convenient to provide an inlet because the gas flow rate can be made more uniform. Reference numeral 13 denotes a shield for shielding a high frequency electric field, and is formed of, for example, a metal mesh.

14及び14′は、本発明にもとづいて配置さ
れた部材であり、絶縁性で且つ高い透磁率を有す
るフエライトで構成されてある。
14 and 14' are members arranged according to the present invention, and are made of ferrite which is insulating and has high magnetic permeability.

この様に高い透磁率を有する部材を配置する事
により、支持体の全面に於いてグロー放電強度が
均一化され、支持体上に均一品質の膜が十分に形
成される。
By arranging a member having high magnetic permeability in this way, the glow discharge intensity is made uniform over the entire surface of the support, and a film of uniform quality is sufficiently formed on the support.

第2図には、第1図の装置に於いて部材14,
14′を支持体4の上下に夫々配置することによ
つて、コイル8に高周波電流を流すことで発生す
る高周波磁界の状態が示される。高周波磁界は点
線で示す様に部材14,14′を支持体4の上下
に2個配置することで、部材14,14′間に於
いて磁束密度が略々均一化され、従つて、支持体
のある全体領域に於いて均一強度のプラズマが形
成される。
FIG. 2 shows members 14 and 14 in the apparatus of FIG.
By arranging 14' above and below the support 4, the state of the high frequency magnetic field generated by passing a high frequency current through the coil 8 is shown. By arranging the two members 14 and 14' above and below the support 4 as shown by the dotted line, the high-frequency magnetic field can make the magnetic flux density approximately uniform between the members 14 and 14', and therefore the support A plasma of uniform intensity is formed in the entire area.

本発明に用いる高い透磁率を有する部材を構成
する材料としては高周波で用いるため絶縁体であ
る必要がある。それは、鉄等の導体ではうず電流
が発生し、高周波に対して高い透磁率を示さない
ばかりか、それ自体が高周波エネルギーを吸収し
発熱してしまうからである。
The material constituting the member having high magnetic permeability used in the present invention needs to be an insulator since it is used at high frequencies. This is because eddy currents occur in conductors such as iron, which not only do not exhibit high magnetic permeability to high frequencies, but also absorb high frequency energy and generate heat.

本発明の方法に用いる絶縁性で高い透磁率を有
する材料としては、フエライトがのぞましく、中
でも殊に高周波用に設計されたものを用いる必要
が有る。
As the insulating material having high magnetic permeability used in the method of the present invention, ferrite is preferable, and among them, it is necessary to use a material especially designed for high frequencies.

第1図及び第2図では高透磁率材料で構成され
た部材14、14′を支持体4からはなして配置
しているが、支持体4に接する様に配置しても良
い。
In FIGS. 1 and 2, the members 14 and 14' made of a high magnetic permeability material are placed apart from the support 4, but they may be placed in contact with the support 4.

又、逆にさらに距離をはなして、堆積室1の外
に設けても良い。この場合、十分な大きさの透磁
率を有する材料を用いなければ効果が無いが、堆
積室1の容積を小さく設計する事ができるという
利点が有る。
Alternatively, it may be provided outside the deposition chamber 1 at a further distance. In this case, although there is no effect unless a material with a sufficiently large magnetic permeability is used, there is an advantage that the volume of the deposition chamber 1 can be designed to be small.

さらに効果を増すためには、コイル8の外側に
も高い透磁率を有する材料で構成された部材を設
けることで装置を高い透磁率を有する材料で構成
される部材で覆う様にする事も有効である。
In order to further increase the effect, it is also effective to provide a member made of a material with high magnetic permeability on the outside of the coil 8 so that the device is covered with a member made of a material with high magnetic permeability. It is.

実施例 次に第1図の装置及び図中の部材14,14′
として直径φ300mm厚さ70mmの円板状に加工され
たFe3O499.9%のフエライト材を用い、以下の手
順にて光導電部材の作製を行つた例を示す。
Example Next, the apparatus shown in FIG. 1 and the members 14, 14' shown in the figure
An example will be shown in which a photoconductive member was manufactured using the following procedure using a 99.9% Fe 3 O 4 ferrite material processed into a disk shape with a diameter of 300 mm and a thickness of 70 mm.

円筒状の支持体としてφ200mm、長さ300mm、厚
さ5mmのJIS5000系の鏡面加工を施したアルミシ
リンダーを用いトリクロルエタン洗浄を行つた
後、これを第1図にようにベルジヤー3内に設置
した。
As a cylindrical support, a JIS5000 mirror-finished aluminum cylinder with a diameter of 200 mm, a length of 300 mm, and a thickness of 5 mm was used, and after cleaning with trichloroethane, this was installed in the bell gear 3 as shown in Figure 1. .

次に不図示の真空排気ポンプによりベルジヤー
3内を10-3torrの圧力まで排気した。この状態で
不図示の駆動系にて支持体を5分間で1回転の割
合で回転させ、又、支持体を熱電体11の示す温
度が300℃となるようにヒーター10により加熱
した。該支持体の温度が300℃で安定した後、ガ
ス導入パイプ6を通じ、ガス放出孔7よりSiH4
ガスを200sccmの流量でベルジヤー3内に放出さ
れた。次に真空計12を注視しながら不図示の排
気バルブを操作してベルジヤー3内の圧力を
0.5torrに調整した。ベルジヤー3内の圧力が
0.5torrで安定した後、不図示のRF電源を入れ、
同軸ケーブル9、コイル8を通じて周波数
13.56MHz、200WのRFパワーをベルジヤー3内
に投入し、グロー放電を生ぜしめた。この状態を
100分間維持させた後RF電源を切り、ガスの導入
並びにヒーターへの通電を止め、ベルジヤー3内
を再び10-3torrの真空度とした。この状態を約
1時間維持し、熱電対11の示す支持体温度が
100℃を下まわつた時点で不図示のリークバルブ
を開放にしベルジヤー3内を大気圧とし、堆積膜
が形成された支持体を取り出した。
Next, the inside of the bell jar 3 was evacuated to a pressure of 10 -3 torr using a vacuum pump (not shown). In this state, the support was rotated by a drive system (not shown) at a rate of one revolution every 5 minutes, and the support was heated by the heater 10 so that the temperature indicated by the thermoelectric body 11 was 300°C. After the temperature of the support stabilized at 300°C, SiH 4 was introduced through the gas introduction pipe 6 and from the gas release hole 7.
Gas was discharged into Belgear 3 at a flow rate of 200 sccm. Next, while watching the vacuum gauge 12, operate the exhaust valve (not shown) to increase the pressure inside the bell gear 3.
Adjusted to 0.5torr. The pressure inside bell jar 3 is
After stabilizing at 0.5torr, turn on the RF power (not shown),
Frequency through coaxial cable 9 and coil 8
13.56MHz, 200W RF power was input into Bergier 3 to generate a glow discharge. this state
After maintaining the temperature for 100 minutes, the RF power was turned off, the introduction of gas and the power supply to the heater were stopped, and the inside of the bell gear 3 was again brought to a vacuum of 10 -3 torr. This state was maintained for about 1 hour until the support temperature indicated by the thermocouple 11 reached
When the temperature dropped below 100°C, a leak valve (not shown) was opened to bring the inside of the bell jar 3 to atmospheric pressure, and the support on which the deposited film was formed was taken out.

堆積膜の形成された支持体(以後、「光導電部
材」と略記する)は、円筒状の上記光導電部材の
上端から、20mm、150mm、280mmの各部(以後、
「上部」、「中部」、「下部」と各々を略記する)の
円周上に周方向に等間隔に4点ずつ、支持体の長
軸方向に上部、中部、下部、の各々の点が直線上
に並ぶ様に設定した12点の測定点について、ま
ず、うず電流膜厚計を用いた膜厚測定に供した。
The support on which the deposited film has been formed (hereinafter abbreviated as "photoconductive member") is attached to each part of 20 mm, 150 mm, and 280 mm from the upper end of the cylindrical photoconductive member (hereinafter referred to as "photoconductive member").
Four points are placed at equal intervals in the circumferential direction on the circumference (each abbreviated as "upper", "middle", and "lower"), and each point of the upper, middle, and lower part is placed in the longitudinal direction of the support. Twelve measurement points arranged in a straight line were first subjected to film thickness measurement using an eddy current film thickness meter.

各部の膜厚を測定したところ第1表に示す通り
均一であることが確認された。
When the film thickness of each part was measured, it was confirmed that it was uniform as shown in Table 1.

次に同じサンプルを用い、上述の膜厚を測定し
た点に対応する位置に光透過率0.5の半透明クロ
ム電極を蒸着により形成し、これを一方の電極、
又支持体を他方の電極とし各部の電気的特性の測
定を行つた。電気的特性としては暗導電率
(σb)、パワー5mWのHe−Neレーザーを照射し
た際の光導電率(σp)を評価項目とした。結果
は上部、中部、下部の測定点について第1表に示
す電気的特性を有しており光導電部材として良好
な特性であると同時に均一性にも優れていること
が確認された。
Next, using the same sample, a translucent chrome electrode with a light transmittance of 0.5 was formed by vapor deposition at the position corresponding to the point where the film thickness was measured as described above, and this was used as one electrode.
In addition, the electrical characteristics of each part were measured using the support as the other electrode. As for the electrical properties, evaluation items were dark conductivity (σb) and photoconductivity (σp) when irradiated with a He--Ne laser with a power of 5 mW. The results showed that the upper, middle, and lower measurement points had the electrical characteristics shown in Table 1, and it was confirmed that they had good characteristics as a photoconductive member and were also excellent in uniformity.

比較例 1 次に第1の比較例として部材14及び14′を
除去した以外は前記実施例と同じ装置構成及び膜
形成条件で光導電部材の形成を行い同じ評価に供
した。その結果膜厚分布については、周方向につ
いては、第2表に示す通り、ほぼ±10%程度のバ
ラツキの範囲内であつたものの、シリンダーの長
軸方向すなわち、上部、中部、下部については、
大きなバラツキが見られた。
Comparative Example 1 Next, as a first comparative example, a photoconductive member was formed using the same apparatus configuration and film forming conditions as in the previous example, except that members 14 and 14' were removed, and was subjected to the same evaluation. As a result, the film thickness distribution in the circumferential direction was within the range of about ±10% as shown in Table 2, but in the long axis direction of the cylinder, that is, the upper, middle, and lower parts.
A large variation was observed.

又、電気的特性については第2表から判る通
り、中部においては前記実施例の場合と同等の特
性を示したが、上部及び下部では中部と比べσp
において1桁以上劣る傾向が見られ、又、下部に
おいてはσp、σpの値に大きな相違がなく、光導
電部材としては相応してない特性となていること
がわかつた。又均一性という点でも長軸方向のバ
ラツキが大きく、実用的に良好であるとは言えな
いと考えられた。
As for the electrical characteristics, as can be seen from Table 2, the middle part showed the same characteristics as the case of the above example, but the upper and lower parts showed σp compared to the middle part.
It was found that the values of σp and σp tended to be inferior by more than one order of magnitude in the lower part, and there was no large difference in the values of σp and σp, indicating that the characteristics were not suitable for a photoconductive member. In addition, in terms of uniformity, there were large variations in the long axis direction, and it was considered that it could not be said to be practically good.

比較例 2 次にさらに別の比較例として、部材14及び1
4′に、形状は前記の実施例の場合と同じもので
はあるが材質を導電性で透磁率の高いSUS304に
変えたものを用い、これ以外の条件は上記実施例
及び比較例1と同じ条件で光導電部材の形成を行
い同じ評価に供した。
Comparative Example 2 Next, as another comparative example, members 14 and 1
4', the shape was the same as in the above example, but the material was changed to SUS304, which is conductive and has high magnetic permeability, and other conditions were the same as in the above example and comparative example 1. A photoconductive member was formed and subjected to the same evaluation.

その結果、膜厚及び電気的特性として第3表の
ような値が得られた。
As a result, the values shown in Table 3 were obtained for film thickness and electrical properties.

これらから分るように前記比較例1と同様に長
軸方向のバラツキが大きい傾向を示し絶対的な数
値に於いては前記比較例1よりさらに劣る結果と
なることが確認された。
As can be seen from these results, it was confirmed that, like Comparative Example 1, the variation in the long axis direction tended to be large, and the results were even worse than Comparative Example 1 in terms of absolute values.

これらのことから特に長物の支持体上に放電に
より膜形成を行う場合、支持体端部に透磁率の高
い材質の部材を設置することが、放電状態の均一
化を計り、ひいては均一性の高い堆積膜を得る上
で有効であることがわかつた。
For these reasons, especially when forming a film by electrical discharge on a long support, it is recommended to install a member made of a material with high magnetic permeability at the end of the support in order to equalize the discharge state and, in turn, to achieve high uniformity. It was found to be effective in obtaining deposited films.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の膜形成法を具現化する装置
の一例を示す模式的説明図、第2図は第1図の装
置において形成される高周波磁界の状態を説明す
る為の模式的説明図である。
FIG. 1 is a schematic explanatory diagram showing an example of an apparatus that embodies the film forming method of the present invention, and FIG. 2 is a schematic explanatory diagram for explaining the state of the high-frequency magnetic field formed in the apparatus of FIG. 1. It is a diagram.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 減圧にし得る堆積室内に膜形成用支持体を設
置し、前記堆積室内に導入された原料ガス中でグ
ロー放電を生起させて膜形成するに際して、前記
膜形成用支持体の端部に絶縁性で且つ高い透磁率
を有する材料で構成された部材を配置して膜形成
する事を特徴とする膜形成法。 2 前記絶縁性で且つ高い透磁率を有する材料が
フエライトである特許請求の範囲第1項記載の膜
形成法。
[Scope of Claims] 1. When a film-forming support is installed in a deposition chamber that can be reduced in pressure, and a film is formed by generating a glow discharge in a source gas introduced into the deposition chamber, the film-forming support is A film forming method characterized by forming a film by arranging a member made of a material that is insulating and has high magnetic permeability at the end of the film. 2. The film forming method according to claim 1, wherein the insulating material having high magnetic permeability is ferrite.
JP2518381A 1981-02-23 1981-02-23 Formation of film Granted JPS57140873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2518381A JPS57140873A (en) 1981-02-23 1981-02-23 Formation of film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2518381A JPS57140873A (en) 1981-02-23 1981-02-23 Formation of film

Publications (2)

Publication Number Publication Date
JPS57140873A JPS57140873A (en) 1982-08-31
JPS6410595B2 true JPS6410595B2 (en) 1989-02-22

Family

ID=12158872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2518381A Granted JPS57140873A (en) 1981-02-23 1981-02-23 Formation of film

Country Status (1)

Country Link
JP (1) JPS57140873A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915982B2 (en) * 1977-08-24 1984-04-12 日電アネルバ株式会社 Electric discharge chemical reaction device

Also Published As

Publication number Publication date
JPS57140873A (en) 1982-08-31

Similar Documents

Publication Publication Date Title
US6065425A (en) Plasma process apparatus and plasma process method
US5540781A (en) Plasma CVD process using a very-high-frequency and plasma CVD apparatus
JPH06287760A (en) Plasma treating device and treatment
JPH1081973A (en) Inductivity coupled plasma enhanced cvd system
JP3501668B2 (en) Plasma CVD method and plasma CVD apparatus
US6145469A (en) Plasma processing apparatus and processing method
JPH0510428B2 (en)
KR100325500B1 (en) Method of producing thin semiconductor film and apparatus therefor
JPH0459390B2 (en)
JPS6137354B2 (en)
JPH08333684A (en) Formation of deposited film
JP3372647B2 (en) Plasma processing equipment
JPS6410595B2 (en)
US5718769A (en) Plasma processing apparatus
JP2977170B2 (en) Glow discharge film forming equipment
JPS6063376A (en) Apparatus for producing deposited film by vapor phase method
US5902405A (en) Plasma processing apparatus
US5242775A (en) Photosensitive device and manufacturing method for the same
US6076481A (en) Plasma processing apparatus and plasma processing method
JPH0124866B2 (en)
US5098812A (en) Photosensitive device and manufacturing method for the same
JP2925310B2 (en) Deposition film formation method
JPS6315348B2 (en)
JP2001335944A (en) System and method for plasma treatment
JPH08250439A (en) Deposited film forming equipment