JPS6410447B2 - - Google Patents

Info

Publication number
JPS6410447B2
JPS6410447B2 JP60053416A JP5341685A JPS6410447B2 JP S6410447 B2 JPS6410447 B2 JP S6410447B2 JP 60053416 A JP60053416 A JP 60053416A JP 5341685 A JP5341685 A JP 5341685A JP S6410447 B2 JPS6410447 B2 JP S6410447B2
Authority
JP
Japan
Prior art keywords
mold
glass
boron nitride
reaction
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60053416A
Other languages
Japanese (ja)
Other versions
JPS61215223A (en
Inventor
Shigeyoshi Kobayashi
Tsuneo Manabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP60053416A priority Critical patent/JPS61215223A/en
Priority to DE8686103189T priority patent/DE3668881D1/en
Priority to EP86103189A priority patent/EP0197337B1/en
Priority to US06/839,076 priority patent/US4662924A/en
Publication of JPS61215223A publication Critical patent/JPS61215223A/en
Publication of JPS6410447B2 publication Critical patent/JPS6410447B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリン酸カルシウム質ガラスの成形法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming calcium phosphate glass.

〔従来の技術〕[Conventional technology]

生体活性をもつセラミツクスは、人工骨材料、
人工歯材料として注目され、水酸アパタイト焼結
体、3リン酸カルシウム焼結体など多く報告され
ている。しかし、人工骨、人工歯などは形状が複
雑でありかつ、形状が一様でなく、また高い寸法
精度が要求される。これら焼結体ではこのような
成形体を得ることは非常に困難である。
Bioactive ceramics can be used as artificial bone materials,
It has attracted attention as an artificial tooth material, and many reports have been made, such as sintered hydroxyapatite and sintered calcium triphosphate. However, artificial bones, artificial teeth, and the like have complex and uneven shapes, and require high dimensional accuracy. It is very difficult to obtain such a molded body using these sintered bodies.

そこで、このような成形体が得られるセラミツ
クス材料として、結晶化ガラス材料の開発が進め
られ、リン酸カルシウム質の結晶化ガラスは特公
昭55−11625に報告されている。これはリン酸カ
ルシウム質ガラスの融液が固化ガラス化する際に
形状を付与し、該ガラスを結晶化することによ
り、結晶化ガラスを得るものである。このリン酸
カルシウム質ガラスを成形するための型材として
は石膏系埋没材、リン酸塩系埋没材が使用できる
ことが報告されている(特開昭59−141509)。し
かし、石膏系埋没材は、リン酸カルシウム質ガラ
スと約700℃で激しく反応し、SO2ガスを放出す
るため成形したガラスが気泡を含有し易く、得ら
れた結晶化ガラスの強度が低してしまうという欠
点があるとともに、型材とガラスとの間に反応層
が形成されるため、ガラス成形体と型の分離が困
難であり、得られたガラス成形体の寸法精度が低
いという欠点があつた。一方リン酸塩系埋没材を
用いて得られるガラス成形体は石膏系埋没材を用
いた場合のように気泡は含有しないものの、やは
り型材との間に反応層を形成するため得られたガ
ラス成形体の寸法精度が低いという欠点があつ
た。
Therefore, as a ceramic material from which such molded bodies can be obtained, development of crystallized glass materials has proceeded, and calcium phosphate crystallized glass has been reported in Japanese Patent Publication No. 55-11625. In this method, a shape is imparted to a melt of calcium phosphate glass when it is solidified and vitrified, and the glass is crystallized to obtain crystallized glass. It has been reported that gypsum-based investment materials and phosphate-based investment materials can be used as mold materials for molding this calcium phosphate glass (Japanese Patent Application Laid-Open No. 141509-1983). However, gypsum-based investment materials react violently with calcium phosphate glass at approximately 700°C and release SO 2 gas, making the formed glass more likely to contain air bubbles and lowering the strength of the resulting crystallized glass. In addition, since a reaction layer is formed between the mold material and the glass, it is difficult to separate the glass molded body from the mold, and the resulting glass molded body has a low dimensional accuracy. On the other hand, although the glass molded object obtained using a phosphate-based investment material does not contain air bubbles unlike the case where a gypsum-based investment material is used, it still forms a reaction layer between the mold material and the resulting glass molding. The drawback was that the dimensional accuracy of the body was low.

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

本発明の目的は、このような成形用型材と溶融
ガラスとの反応を防止し気泡や異物を含まないリ
ン酸カルシウム質ガラス成形体を高い寸法精度で
得ようとするものである。
An object of the present invention is to prevent such a reaction between a molding material and molten glass, and to obtain a calcium phosphate glass molded body containing no air bubbles or foreign matter with high dimensional accuracy.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前述の問題点を解決すべくなされたも
のでありリン酸カルシウムを90重量%以上含有す
る融液を型に流し込み、冷却固化させ成形する
際、型面上に窒化硼素を1重量%以上含有する層
を設けることを特徴とするリン酸カルシウムガラ
ス質の成形法を提供するものである。
The present invention was made to solve the above-mentioned problems, and when a melt containing 90% by weight or more of calcium phosphate is poured into a mold, cooled and solidified, and molded, boron nitride is contained on the mold surface by 1% by weight or more. The present invention provides a method for molding calcium phosphate glass, which is characterized by providing a layer of vitreous material.

本発明のリン酸カルシウム質ガラスとしてはリ
ン酸カルシウムを90重量%以上含有するものであ
れば特に制限はないが、そのリン酸カルシウム
は、そのCa/Pの原子比が0.35〜0.7であるのが
好ましい。Ca/Pが0.7より大きい場合は、融液
をガラス状として固化するのが困難であり、0.35
より小さい場合は、得られたガラスの耐水性が悪
いため大気中での使用が実際上困難である。
The calcium phosphate glass of the present invention is not particularly limited as long as it contains 90% by weight or more of calcium phosphate, but the calcium phosphate preferably has an atomic ratio of Ca/P of 0.35 to 0.7. When Ca/P is larger than 0.7, it is difficult to solidify the melt as glass, and 0.35
If the size is smaller, the resulting glass has poor water resistance, making it practically difficult to use it in the atmosphere.

このようなガラス融液は、粘度が非常に低く、
流動性に富むため、成形は容易であるが、逆に型
材との濡れ性も良いため型材の微小孔中に浸透し
さらに型材と反応をすることにより反応層を形成
し易いことがわかつた。そこでこのような反応を
起しにくい型材を種々検討した結果、型材のガラ
スによる濡れ性を低下させることにより、この反
応層の形成を大巾に抑制できることを見出した。
さらにこのようなガラスによる濡れ性の低い型材
を作成する方法を種々検討した結果、型の表面に
窒化硼素、または炭素、またはフツ化カルシウム
を含有する層を設けることにより型のガラスによ
る濡れ性を大幅に低下させることをも見出した。
上記、型の表面に設けた窒化硼素、または炭素、
またはフツ化カルシウムを含有する層を反応抑制
層と呼ぶことにする。表面に反応抑制層をもつ型
を用いた成形法を検討したところ、炭素を含有す
る反応抑制層をもつ型を用いて成形を行うと、リ
ン酸カルシウム質ガラスが還元されてガラスが赤
色に着色するとともに発生するCOガスによる気
泡が生じ易いこと、またフツ化カルシウムを含有
する反応抑制層をもつ型を用いて成形を行うと、
発生するF2ガスにより気泡が生じ易いことが判
明し、窒化硼素を含有する反応抑制層をもつ型材
を用いて成形を行うと気泡や異物の混入がなく、
また型との間に前記反応層を形成しない良好なガ
ラス成形体が得られることがわかつた。
This type of glass melt has a very low viscosity;
It has been found that it is easy to mold due to its high fluidity, but it also has good wettability with the mold material, so it penetrates into the micropores of the mold material and reacts with the mold material, thereby easily forming a reaction layer. As a result of investigating various mold materials that are less likely to cause such reactions, it was discovered that the formation of this reaction layer could be largely suppressed by reducing the wettability of the mold material with glass.
Furthermore, as a result of various studies on how to create a mold material with low wettability with glass, we found that the wettability of the mold with glass could be improved by providing a layer containing boron nitride, carbon, or calcium fluoride on the surface of the mold. It was also found that it significantly reduced
Above, boron nitride or carbon provided on the surface of the mold,
Alternatively, the layer containing calcium fluoride will be referred to as a reaction suppression layer. When we investigated a molding method using a mold with a reaction-suppressing layer on the surface, we found that when molding was performed using a mold with a reaction-suppressing layer containing carbon, the calcium phosphate glass was reduced and the glass was colored red. Bubbles are likely to form due to the generated CO gas, and when molding is performed using a mold with a reaction suppression layer containing calcium fluoride,
It has been found that the generated F2 gas tends to cause bubbles, and when molding is performed using a mold material with a reaction suppression layer containing boron nitride, there are no bubbles or foreign substances.
Furthermore, it was found that a good glass molded product without forming the reaction layer between the mold and the mold could be obtained.

このような窒化硼素を含有する反応抑制層中の
窒化硼素の含有量としては1重量%以上が適切で
あり、好ましくは10重量%以上、特に30重量%以
上であることが好ましい。1重量%未満では型材
のガラスによる濡れ性低下の効果が不充分であ
る。一方、反応抑制層中の窒化硼素の含有量が高
い場合は、この反応抑制層の形成法によつては、
該抑制層の強度を維持するため、該含有量の上限
が存在する。型の表面の窒化硼素を含有する反応
抑制層がCVD法、スパツタリング法等により形
成された場合の如く窒化硼素自体で結合力をもつ
ような構造の表面層の場合は、窒化硼素の含有量
が高い程好ましい。また石膏等の結合剤を用いて
窒化硼素粉末を結合させる場合、結合剤を約10重
量%以上含有させなければ、即ち窒化硼素の含有
量を約90重量%以下としなければ、型の表面層で
ある該反応抑制層の結合力が低いため、ガラス融
液の流入により該反応抑制層が崩壊してしまう場
合がある。
The content of boron nitride in such a reaction suppressing layer containing boron nitride is suitably 1% by weight or more, preferably 10% by weight or more, particularly preferably 30% by weight or more. If the amount is less than 1% by weight, the effect of reducing the wettability of the mold material due to glass is insufficient. On the other hand, if the content of boron nitride in the reaction suppression layer is high, depending on the method of forming this reaction suppression layer,
In order to maintain the strength of the suppression layer, there is an upper limit to the content. If the reaction suppression layer containing boron nitride on the surface of the mold is formed by a CVD method, sputtering method, etc., and the surface layer has a structure in which boron nitride itself has a bonding force, the boron nitride content is The higher the value, the better. Furthermore, when bonding boron nitride powder using a binder such as gypsum, the surface layer of the mold must not contain more than about 10% by weight of the binder, that is, the content of boron nitride must be less than about 90% by weight. Since the bonding strength of the reaction suppression layer is low, the reaction suppression layer may collapse due to the inflow of the glass melt.

反応抑制層中の窒化硼素以外の成分として、リ
ン酸塩系の埋没材を用いることもできる。該リン
酸塩系の埋没材としては通常用いられるものでよ
く、例えばマグネシア(MgO)、燐酸二水素アン
モニウム(NH4H2PO4)、二酸化ケイ素(SiO2
からなるものがあげられる。
A phosphate-based investment material can also be used as a component other than boron nitride in the reaction suppression layer. The phosphate-based investment material may be one commonly used, such as magnesia (MgO), ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), or silicon dioxide (SiO 2 ).
The following can be mentioned.

またこのような窒化硼素を含有する型表面の反
応抑制層の厚みは種々の検討を行つた結果、1μm
以上好ましくは10μm以上であれば前記反応層の
形成を十分に抑制できることがわかつた。またこ
の反応抑制層の厚みは厚い場合には特に制限はな
いが、上記説明により容易に推測できるように、
上記窒化硼素を含有する型表面の反応抑制層の効
果は溶融ガラスと接触する型表面部分にのみ発現
するわけであるから、100μm以上の厚さにしても
それ以上効果の向上はみられない。
In addition, as a result of various studies, the thickness of the reaction suppression layer on the mold surface containing boron nitride was determined to be 1 μm.
It has been found that the formation of the reaction layer can be sufficiently suppressed if the thickness is preferably 10 μm or more. There is no particular limit to the thickness of this reaction suppression layer as long as it is thick, but as can be easily inferred from the above explanation,
Since the effect of the reaction suppressing layer on the mold surface containing boron nitride is expressed only in the part of the mold surface that comes into contact with the molten glass, no further improvement in the effect is observed even if the thickness is 100 μm or more.

このような反応抑制層の形成法についても特に
制限はないが、型の表面へのCVDやスパツタリ
ング等の物理的な方法による表面層の形成法、型
の面上への塗布、スプレー、あるいは型を反応抑
制層形成液に浸漬する方法等が用いられる。また
型面の原型(ロストワツクス法の場合はワツクス
パターン)面上に塗布あるいはスプレーする、あ
るいは該原形を反応抑制層形成液に浸漬する等の
方法により該原型上に反応抑制層を形成した後、
型を作成する方法も採用しうる。
There is no particular restriction on the method of forming such a reaction suppression layer, but there are methods for forming the surface layer on the surface of the mold by physical methods such as CVD or sputtering, coating on the surface of the mold, spraying, or forming the surface layer on the surface of the mold. A method of immersing the substrate in a reaction-suppressing layer forming solution is used. In addition, after forming a reaction suppression layer on the pattern surface by coating or spraying on the surface of the pattern surface (wax pattern in the case of the lost wax method), or by immersing the pattern in a reaction suppression layer forming solution, ,
A method of creating a mold may also be adopted.

〔実施例〕〔Example〕

実施例 実施例として本発明の成形法により歯冠を製造
する方法を第1図に従つて説明する。
EXAMPLE As an example, a method for manufacturing a dental crown by the molding method of the present invention will be described with reference to FIG.

まず第1図aの様に歯の石膏型1に加熱されて
溶けているワツクスを肉盛りして歯冠作成用ワツ
クスパターン2を作成した。つぎに、第1図bの
様に、このワツクスパターン2にスプルー線3を
とりつけた後、ゴム製のコーン4の上にセツトし
た。
First, as shown in FIG. 1a, a dental plaster mold 1 was filled with heated and melted wax to create a wax pattern 2 for making a dental crown. Next, as shown in FIG. 1B, a sprue wire 3 was attached to this wax pattern 2, and then set on a rubber cone 4.

リン酸塩系埋没材(徳山曹達製ブルーベスト)
粉末10部に対し窒化硼素粉末5部を加え該埋没材
の専用液20部を加えて混合撹拌して窒化硼素約30
重量%を含有する均一なスラリーとなしコーン上
のワツクスパターン表面に均一に厚みが0.1〜0.5
mm程度となるように塗布した(埋没材層11)。
さらに、第1図cの様にリン酸塩系埋没材(徳山
曹達製ブルーベスト)のスラリー状物5を上記の
如く窒化硼素を含有する埋没材11を塗布したワ
ツクスパターン2のセツトされた金属製リング6
内に常法に従い注入しワツクスパターン2を埋没
した。
Phosphate-based investment material (Tokuyama Soda Blue Best)
Add 5 parts of boron nitride powder to 10 parts of the powder, add 20 parts of the special solution for the investment material, mix and stir to obtain about 30 parts of boron nitride.
Uniform slurry containing wt% and wax pattern on the no cone surface uniformly with thickness 0.1~0.5
It was applied to a thickness of about mm (investment material layer 11).
Furthermore, as shown in FIG. 1c, a wax pattern 2 was set in which a slurry 5 of a phosphate-based investment material (Blue Best manufactured by Tokuyama Soda) was applied with an investment material 11 containing boron nitride as described above. metal ring 6
Wax pattern 2 was injected into the cavity according to a conventional method to embed wax pattern 2.

これを硬化乾燥後700℃に加熱してワツクスパ
ターン2及びスプルー線3を焼却した。この様に
して、第1図dの様な歯冠用ロストワツクス型7
及びスプルー8を形成した。
After curing and drying, this was heated to 700°C to incinerate the wax pattern 2 and sprue wire 3. In this way, the lost wax mold 7 for the crown as shown in FIG.
and sprue 8 was formed.

一方、CaO24重量%、Al2O31重量%、P2O575
重量%の組成のガラスを1250℃で溶融し、ガラス
融液を用意した。
On the other hand, CaO24% by weight, Al 2 O 3 1% by weight, P 2 O 5 75
Glass having a composition of % by weight was melted at 1250°C to prepare a glass melt.

このガラス融液9を第1図eの様に、スプルー
8を通して、歯冠作成用ロストワツクス型7内に
遠心鋳造機を用いて鋳込み、次いで埋没型を電気
炉中で680℃で3hr保持して結晶化処理した後、埋
没材をこわし成形体を取り出した。そして第1図
fの様に線A―A′からスプルー8の部分を切断
し第1図gに示す歯冠10を得た。
As shown in Fig. 1e, this glass melt 9 was cast through the sprue 8 into the lost wax mold 7 for making dental crowns using a centrifugal casting machine, and then the immersion mold was kept at 680°C for 3 hours in an electric furnace. After the crystallization treatment, the investment material was broken and the molded body was taken out. Then, as shown in FIG. 1f, the sprue 8 was cut along line A-A' to obtain the tooth crown 10 shown in FIG. 1g.

この様にして得たリン酸カルシウム系結晶化ガ
ラス歯冠は研磨しなくても光沢をもつなめらかな
表面をもちワツクスパターン作成時に用いた歯の
石膏型1装着してみたところ非常に良好な適合を
示した。また得られた結晶化ガラス歯冠は圧縮強
度は4000Kg/cm2、曲げ強度は1700Kg/cm2であつた。
The calcium phosphate-based crystallized glass dental crown obtained in this way has a smooth surface with a luster even without polishing, and when I attached it to the tooth plaster mold 1 used to create the wax pattern, it fit very well. Indicated. The obtained crystallized glass dental crown had a compressive strength of 4000 Kg/cm 2 and a bending strength of 1700 Kg/cm 2 .

比較例 ワツクスパターンの上に窒化硼素を含有する埋
没材を塗布しないで他は実施例と同様にして結晶
化ガラス歯冠を得た。歯冠は、白色のザラザラし
た表面をもち、歯の石膏型1との適合も悪いもの
であつた。
Comparative Example A crystallized glass tooth crown was obtained in the same manner as in the example except that an investment material containing boron nitride was not applied on the wax pattern. The dental crown had a white, rough surface and was poorly compatible with the dental plaster mold 1.

〔発明の効果〕〔Effect of the invention〕

以上の様に本発明によれば溶融ガラスと型材と
の反応を抑制することができるので、表面性状が
良好で寸法精度の高いリン酸カルシウム質ガラス
成形体を得ることができる。
As described above, according to the present invention, since the reaction between the molten glass and the mold material can be suppressed, a calcium phosphate glass molded body with good surface properties and high dimensional accuracy can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例を示す図であり、aは歯冠作成
用ワツクスパターン作成の説明図、bはワツクス
パターン、スプルー線およびゴム製コーンの構成
を示す説明図、cはワツクスパターンの埋没状況
の説明図、dはロストワツクス型とスプルーの構
成を示す説明図、eはガラス融液の鋳込み状況の
説明図、fはスプルーつき歯冠の図、同gは歯冠
の図である。 1…石膏型、2…ワツクスパターン、3…スプ
ルー線、4…ゴム製コーン、5…スラリー状の埋
没材、6…金属製リング、7…歯冠作成用ロスト
ワツクス型、8…スプルー、9…ガラス融液、1
0…歯冠、11…窒化硼素1重量%以上含有の埋
没材層。
FIG. 1 is a diagram showing an example, in which a is an explanatory diagram of the creation of a wax pattern for making a dental crown, b is an explanatory diagram showing the structure of the wax pattern, sprue line, and rubber cone, and c is a wax pattern d is an explanatory diagram showing the configuration of the lost wax mold and sprue; e is an explanatory diagram of the glass melt casting situation; f is a diagram of a tooth crown with a sprue; g is a diagram of a tooth crown. . 1... Plaster mold, 2... Wax pattern, 3... Sprue wire, 4... Rubber cone, 5... Slurry-like investment material, 6... Metal ring, 7... Lost wax mold for crown creation, 8... Sprue, 9 ...Glass melt, 1
0... Dental crown, 11... Investment material layer containing 1% by weight or more of boron nitride.

Claims (1)

【特許請求の範囲】 1 リン酸カルシウムを90重量%以上含有する融
液を型に流し込み、冷却固化させ成形する成形法
において型の表面に窒化硼素を1重量%以上含有
する反応抑制層を設けることを特徴とするリン酸
カルシウム質ガラスの成形法。 2 窒化硼素を含有する層の厚さが10μm以上で
あることを特徴とする特許請求の範囲第1項記載
のリン酸カルシウム質ガラスの成形法。
[Claims] 1. In a molding method in which a melt containing 90% by weight or more of calcium phosphate is poured into a mold, cooled and solidified, and formed, a reaction suppressing layer containing 1% by weight or more of boron nitride is provided on the surface of the mold. Characteristic method for forming calcium phosphate glass. 2. The method for forming calcium phosphate glass according to claim 1, wherein the thickness of the layer containing boron nitride is 10 μm or more.
JP60053416A 1985-03-12 1985-03-19 Method of forming calcium phosphate glass Granted JPS61215223A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60053416A JPS61215223A (en) 1985-03-19 1985-03-19 Method of forming calcium phosphate glass
DE8686103189T DE3668881D1 (en) 1985-03-12 1986-03-10 METHOD FOR MOLDING A CALCIUM PHOSPHATE GLASS.
EP86103189A EP0197337B1 (en) 1985-03-12 1986-03-10 Method for molding calcium phosphate type glass
US06/839,076 US4662924A (en) 1985-03-12 1986-03-12 Method for molding calcium phosphate type glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60053416A JPS61215223A (en) 1985-03-19 1985-03-19 Method of forming calcium phosphate glass

Publications (2)

Publication Number Publication Date
JPS61215223A JPS61215223A (en) 1986-09-25
JPS6410447B2 true JPS6410447B2 (en) 1989-02-21

Family

ID=12942230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60053416A Granted JPS61215223A (en) 1985-03-12 1985-03-19 Method of forming calcium phosphate glass

Country Status (1)

Country Link
JP (1) JPS61215223A (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2529473C3 (en) * 1975-07-02 1980-11-20 Danfoss A/S, Nordborg (Daenemark) Slide shoe arrangement, especially for axial and radial piston machines
JPS55141561A (en) * 1979-04-23 1980-11-05 Chobe Taguchi Surface treatment of metallic material
JPS59141509A (en) * 1983-02-01 1984-08-14 Kyushu Refract Co Ltd Restorative dental material of corona dentis of crystallized glass of calcium phosphate system

Also Published As

Publication number Publication date
JPS61215223A (en) 1986-09-25

Similar Documents

Publication Publication Date Title
JPS6172652A (en) Calcium phosphate-based crystalline glass for dental material
US4799887A (en) Glass ceramic dental crown and method of manufacturing the same
JPH0256291B2 (en)
US4662924A (en) Method for molding calcium phosphate type glass
JPS6410447B2 (en)
JPH0193439A (en) Production of crystallized glass for dental material and embedding material
JPS6410446B2 (en)
JPH0653582B2 (en) Mold for molding calcium phosphate-based crystallized glass
JPH0787848B2 (en) Mold for molding
US3815658A (en) Process for making a metallurgically slow reacting mold
JP3677760B2 (en) Manufacturing method of ceramic crown
JPS63310737A (en) Mold material for molding
JPH03198841A (en) Manufacture of ceramic crown
JPH04356405A (en) Investment for dental precision casting
JPH09206313A (en) Manufacture method for dental porcelain frame
JPH0429617B2 (en)
JPH0419864B2 (en)
JPS63270325A (en) Mold material for molding
JPS60204636A (en) Production of calcium phosphate based dental material
JPH04317461A (en) Casting mold material for casting high melting point metal
JPH0651577B2 (en) Method for producing calcium phosphate-based crystallized glass
JPH0424300B2 (en)
JPS60211063A (en) Preparation of dental material comprising calcium phosphate having low melting point
SU774767A1 (en) Mixture for producing ceramic casting mould
SU1214309A1 (en) Composition for making ceramic moulds