JPS6410400B2 - - Google Patents

Info

Publication number
JPS6410400B2
JPS6410400B2 JP15986982A JP15986982A JPS6410400B2 JP S6410400 B2 JPS6410400 B2 JP S6410400B2 JP 15986982 A JP15986982 A JP 15986982A JP 15986982 A JP15986982 A JP 15986982A JP S6410400 B2 JPS6410400 B2 JP S6410400B2
Authority
JP
Japan
Prior art keywords
memory element
shape memory
heat
substrate
attached
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15986982A
Other languages
Japanese (ja)
Other versions
JPS5949616A (en
Inventor
Toshio Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15986982A priority Critical patent/JPS5949616A/en
Publication of JPS5949616A publication Critical patent/JPS5949616A/en
Publication of JPS6410400B2 publication Critical patent/JPS6410400B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/02Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature
    • G05D23/024Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature the sensing element being of the rod type, tube type, or of a similar type

Description

【発明の詳細な説明】 この発明は人工衛星等の宇宙飛しよう体に搭載
され、搭載機器の熱制御を行うサーマルルーバ
(Thermal louver)の改良に関するもので、詳
しくはサーマルルーバの羽根の駆動機構に形状記
憶素子を用い、日照時における羽根の回動を制御
するサーマルルーバを提供するものである。
[Detailed Description of the Invention] This invention relates to the improvement of a thermal louver mounted on a spacecraft such as an artificial satellite to control the heat of onboard equipment. The present invention provides a thermal louver that uses a shape memory element to control the rotation of the blades during sunlight.

まず従来のサーマルルーバについて図を用いて
簡単に説明する。第1図は従来のこの種装置の構
成図、第2図は従来のこの種装置の動作特性図、
第3図は従来のこの種装置の動作状態を示す図で
ある。図中1は搭載機器等の発熱体の取付けが行
われ熱制御の対象となる基板、2はこの基板1か
ら放射する熱、3は熱2の放射を制御するための
紙面右左方向に回動する羽根であつて、熱反射率
が大きく、かつ熱吸収率が少なくなるよう表面処
理を施してある。4は羽根3の回動を支持する回
転軸、5は回転軸4の端に取付けられ、羽根3を
回動する回転力を再板1の温度に関連して与える
駆動機構となるバイメタルスプリング、6は羽根
3はバイメタルスプリング5などを収納し、基板
1に取付けられ、熱2の放射側に開口を有する筐
体、7は、筐体6の開口部を覆うように取付けら
れ、太陽光8を反射する太陽光遮蔽材(例えば銀
蒸着テフロンフイルムなど)である。
First, a conventional thermal louver will be briefly explained using diagrams. Figure 1 is a configuration diagram of a conventional device of this type, Figure 2 is a diagram of operating characteristics of a conventional device of this type,
FIG. 3 is a diagram showing the operating state of a conventional device of this type. In the figure, 1 is a board to which heating elements such as on-board equipment are attached and is subject to heat control, 2 is heat radiated from this board 1, and 3 is a rotation in the left and right directions on the paper to control the radiation of heat 2. This blade has been surface-treated to have a high heat reflectance and a low heat absorption. 4 is a rotating shaft that supports the rotation of the blade 3; 5 is a bimetal spring that is attached to the end of the rotating shaft 4 and serves as a drive mechanism that provides rotational force to rotate the blade 3 in relation to the temperature of the plate 1; 6 is a housing in which the blade 3 houses the bimetal spring 5 and the like, is attached to the substrate 1, and has an opening on the radiation side of the heat 2; This is a sunlight shielding material (such as silver-deposited Teflon film) that reflects the sun's rays.

この様な構成において、基板1の温度が高まる
と、熱2は基板1から放射される。この熱2は羽
根3にぶつかると反射されるから、羽根3の回転
角度θに依存して基板1の熱放射量は決定され
る。つまり基板1は熱的な意味でθが90度のとき
最大熱放射面が得られ、θが0度のとき熱放射が
無くなつて最小熱放射面となる。
In such a configuration, when the temperature of the substrate 1 increases, heat 2 is radiated from the substrate 1. Since this heat 2 is reflected when it hits the blade 3, the amount of heat radiation from the substrate 1 is determined depending on the rotation angle θ of the blade 3. In other words, in a thermal sense, the substrate 1 has a maximum heat radiation surface when θ is 90 degrees, and has a minimum heat radiation surface with no heat radiation when θ is 0 degrees.

さて、羽根3は回転軸4を中心にしてθが0度
から90度の範囲で回動するのであるが、この回動
のための力はバイメタルスプリング5により与え
られる。それはバイメタルスプリング5が基板1
に熱的伝導状態にあるため、温められたときθが
大きくなる方向、つまり紙面で左回転方向へ回動
し冷却されたときは右回転方向へ回動する。
Now, the blade 3 rotates around the rotating shaft 4 within a range of θ from 0 degrees to 90 degrees, and the force for this rotation is provided by the bimetal spring 5. That is, the bimetal spring 5 is the substrate 1
Since it is in a thermally conductive state, when it is warmed, it rotates in the direction in which θ becomes larger, that is, in the counterclockwise rotation direction as seen in the paper, and when it is cooled, it rotates in the clockwise rotation direction.

この動作を第2図で見ると、第2図は基板1の
温度T0,T1,T2(T0<T1<T2)におけるθの様
子を示したものであるが、基板1の温度をT0
維持する時に、温度上昇があつてTからT1、さ
らにT2に移行するとθは曲線C1に沿つて増大し、
次に温度がT2からT1、さらにT0へと低下する
と、曲線C2に沿つてθが減少する。
Looking at this operation in Figure 2, Figure 2 shows the state of θ at the temperatures T 0 , T 1 , T 2 (T 0 <T 1 <T 2 ) of the substrate 1. When maintaining the temperature at T 0 , when the temperature rises and moves from T to T 1 and then to T 2 , θ increases along the curve C 1 ,
Then, as the temperature decreases from T 2 to T 1 to T 0 , θ decreases along curve C 2 .

次に羽根3が回動したときに太陽光8が基板1
に入射する事を防ぐため筐体6に取付けられた太
陽光遮蔽材7によつて太陽光8を反射させ、熱2
だけ太陽光遮蔽材を透過させるようにしている。
このように熱的負帰還が行われるため基板1の熱
制御が可能となり現在広く人工衛星等に用いられ
ている。
Next, when the blade 3 rotates, sunlight 8 is transmitted to the substrate 1.
The sunlight 8 is reflected by the sunlight shielding material 7 attached to the housing 6 in order to prevent it from entering the body, and the heat 2
Only the sunlight is allowed to pass through the sunlight shielding material.
Since thermal negative feedback is performed in this way, it is possible to control the temperature of the substrate 1, and it is currently widely used in artificial satellites and the like.

しかしながら、このような従来のサーマルルー
バにおいては、基板1の温度だけで羽根3の回転
角度θが決定されるため第3図に示されているよ
うに、日陰時は基板1の温度がT0からT1,T2
と高温になるにつれてθが0゜から90゜、すなわち
全閉から全開へ推移するので適切な熱制御が行わ
れるのであるが、日照時においても同様の動作を
するので、特に太陽光8の入射角θの範囲内に入
ると熱放射が行えなくなり、場合によつては温度
を上昇させてしまい熱制御を不能とするだけでな
く機器を熱的に破損してしまう熱暴走の危険があ
る。
However, in such a conventional thermal louver, since the rotation angle θ of the blade 3 is determined only by the temperature of the substrate 1, as shown in FIG. 3, the temperature of the substrate 1 is T 0 in the shade. As the temperature increases from T 1 to T 2 , θ changes from 0° to 90°, that is, from fully closed to fully open, so appropriate thermal control is performed, but the same operation occurs even in sunlight. , especially when it falls within the range of the incident angle θ of sunlight 8, it becomes impossible to radiate heat, and in some cases, the temperature increases, not only making thermal control impossible but also thermally damaging the equipment. There is a risk of thermal runaway.

そこで太陽光遮蔽材7を用いて太陽光8を熱的
に遮蔽するのであるが、熱2の放熱に悪影響を及
ぼすので熱放射の効率が著しく悪くなる結果、所
要の能力を得るために熱放射面を大きくとらねば
ならず重量と形状が増大するという問題点があつ
た。
Therefore, sunlight shielding material 7 is used to thermally shield sunlight 8, but it has a negative effect on the heat radiation of heat 2, and as a result, the efficiency of heat radiation deteriorates significantly. There was a problem that the surface had to be made larger, which increased the weight and shape.

この事は形状、寸法が制約される人工衛星にお
いては、サーマルルーバの取付け位置や大きさに
制約があるところから大きな問題となつており、
その解決が望まれていた。
This is a big problem in artificial satellites where the shape and dimensions are restricted, as there are restrictions on the mounting position and size of the thermal louver.
A solution was desired.

この発明はこの様な従来のサーマルルーバにお
ける問題点を改善し、サーマルルーバに太陽光が
入射する場合において熱暴走を防止する構造の簡
単なサーマルルーバを提供するもので以下図を用
いて詳述する。
This invention improves the problems with conventional thermal louvers and provides a thermal louver with a simple structure that prevents thermal runaway when sunlight is incident on the thermal louver. do.

第4図はこの発明の一実施例の構成を示す正面
図、第5図はこの発明の一実施例の構成を示す側
面図、第6図は形状記憶素子の応力対変形量特性
を示す図、第7図は形状記憶素子の変形量対温度
特性を示す図、第8図は形状記憶素子の擬弾性特
性を示す図、第9図はこの発明の一実施例の動作
状態表である。
FIG. 4 is a front view showing the structure of an embodiment of the present invention, FIG. 5 is a side view showing the structure of an embodiment of the invention, and FIG. 6 is a diagram showing stress versus deformation characteristics of a shape memory element. , FIG. 7 is a diagram showing the deformation amount versus temperature characteristic of the shape memory element, FIG. 8 is a diagram showing the pseudoelasticity characteristic of the shape memory element, and FIG. 9 is an operation state table of an embodiment of the present invention.

図中、1,2,3,4,8は第1図と同じであ
る。9は形状記憶合金のワイヤを直巻スプリング
状に形成し、その1端を基板1へ熱的伝導性を維
持して取付け、その他端を可動子13へ取付けた
第1の形状記憶素子、10は第1の形状記憶素子
9と同じ材質と形状を有し、その一端を熱吸収板
11に熱伝導性を維持して取付け、その他端子を
可動子13に取付けた第2の形状記憶素子であ
る。上記熱吸収板11は熱伝導材の表面に赤外線
吸収率を高めるための表面処理を施し、赤外線ウ
インドウ12の裏面に取付けられている。12は
この熱吸収板11の表面に取付けられ、赤外線透
過材(例えば臭化マグネシウムの結晶体など)を
平板に形成し太陽光8に含まれる赤外線を屈折さ
せ熱吸収板11へ入射させる赤外線ウインドウ、
13は熱絶縁材で長立方体に形成され、内部に貫
通する孔15を有し第1の形状記憶素子9と第2
の形状記憶素子10との間に取付けられた可動
子、14は一端が可動子13の孔15に挿入され
他端が可動子13の上下運動を回転運動に変換す
るため回転軸4へ接続される変換子、16は回転
軸4を支持するベアリング17を固定する支持
台、18は熱吸収板11と基板1を固定接続する
支柱、19は赤外線ウインドウ12の熱入射面で
ある。
In the figure, 1, 2, 3, 4, and 8 are the same as in FIG. 9 is a first shape memory element formed of a shape memory alloy wire in the shape of a series-wound spring, one end of which is attached to the substrate 1 while maintaining thermal conductivity, and the other end is attached to the mover 13; is a second shape memory element having the same material and shape as the first shape memory element 9, one end of which is attached to the heat absorption plate 11 while maintaining thermal conductivity, and the other terminal is attached to the mover 13. be. The heat-absorbing plate 11 is made of a heat-conducting material whose surface is treated to increase its infrared absorption rate, and is attached to the back surface of the infrared window 12. An infrared window 12 is attached to the surface of the heat absorption plate 11 and is made of an infrared transmitting material (for example, crystalline magnesium bromide) formed into a flat plate to refract the infrared rays contained in the sunlight 8 and make them enter the heat absorption plate 11. ,
Reference numeral 13 is made of a heat insulating material and is formed into a long cube shape, and has a hole 15 passing through the inside to connect the first shape memory element 9 and the second shape memory element 9.
The mover 14 installed between the shape memory element 10 of the mover 14 has one end inserted into the hole 15 of the mover 13 and the other end connected to the rotating shaft 4 in order to convert the vertical movement of the mover 13 into rotational movement. 16 is a support base for fixing a bearing 17 that supports the rotating shaft 4; 18 is a support that fixedly connects the heat absorption plate 11 and the substrate 1; and 19 is a heat incidence surface of the infrared window 12.

次にこの発明の動作を第4図から第9図を用い
て説明する。第4図及び第5図において、基板1
から放射する熱2の放射量を羽根3が制御する作
用は第1図と同じである。さて、基板1に電子機
器などの発熱体が取付けられ、基板1の温度を制
御することによつて電子機器の温度を所定の温度
に制御しようとする時、基板1に関する熱2の放
射と太陽光8の入射を制御するため羽根3を回動
する駆動機構として、第1の形状記憶素子9と、
第2の形状記憶素子10と、熱吸収板11と、赤
外線ウインドウ12と可動子13および変換子1
4とを備えて、羽根3を回動する回転力を発生さ
せているが、これらの作用についてまず説明す
る。
Next, the operation of the present invention will be explained using FIGS. 4 to 9. In FIGS. 4 and 5, the substrate 1
The function of the blades 3 to control the amount of heat 2 radiated from the blades is the same as that shown in FIG. Now, when a heating element such as an electronic device is attached to the substrate 1 and an attempt is made to control the temperature of the electronic device to a predetermined temperature by controlling the temperature of the substrate 1, the radiation of heat 2 related to the substrate 1 and the solar radiation As a drive mechanism for rotating the blade 3 to control the incidence of the light 8, a first shape memory element 9;
The second shape memory element 10, the heat absorption plate 11, the infrared window 12, the mover 13, and the converter 1
4 to generate a rotational force for rotating the blades 3, their functions will be explained first.

第1の形状記憶素子9は母相において、原形に
戻つて長手方向へ伸び、羽根3を紙面右回りに回
転角度θが0度から−90度まで回転させる伸長形
状となる。またマルテンサイト相において羽根3
を紙面左回りにθが0度から+90度まで回転させ
るよう長手方向に圧縮形状となる。
In the parent phase, the first shape memory element 9 returns to its original shape, extends in the longitudinal direction, and assumes an elongated shape that rotates the blade 3 clockwise in the plane of the drawing from a rotation angle θ of 0 degrees to −90 degrees. Also, in the martensitic phase, the blade 3
is compressed in the longitudinal direction so that θ is rotated counterclockwise in the paper from 0 degrees to +90 degrees.

また、第2の形状記憶素子10は母相において
羽根3を紙面左回りに回転角度θを0度から+90
度に回転させる伸長形状となり、マルテンサイト
相において羽根3を0度から−90度に回転させる
圧縮形状となる。そして、支柱18によつて熱吸
収板11が固定されているので、第1の形状記憶
素子9と第2の形状記憶素子10の伸長と圧縮運
動による差動的な応力は可動子13を基板1と熱
吸収板11との間で上下させることになるからこ
の可動子13に設けられた孔15に挿入された変
換子14を上下し、上記応力を変換して回転軸4
に回転力を与える。この回転軸4は支持台16に
保持されるベアリング17で支持されるから円滑
な回転を行うことができる。次に、第1の形状記
憶素子9は基板1に取付けられ熱的に良好な伝導
性を有するから基板1と同じ温度となる。一方、
第2の形状記憶素子10は赤外線ウインドウ12
によつて集められる太陽光8の赤外線を吸収する
熱吸収板11に熱伝導性を維持して取付けられて
いるから、第2の形状記憶素子10の温度は太陽
光8が赤外線ウインドウ12に入射する入射角θi
に依存する熱入射量によつて定まる。
In addition, the second shape memory element 10 rotates the blade 3 counterclockwise in the plane of the paper at a rotation angle θ from 0 degrees to +90 degrees.
It becomes an elongated shape in which the blade 3 is rotated from 0 degrees to -90 degrees in the martensitic phase, and a compressed shape in which the blade 3 is rotated from 0 degrees to -90 degrees in the martensitic phase. Since the heat absorbing plate 11 is fixed by the struts 18, the differential stress caused by the expansion and compression movements of the first shape memory element 9 and the second shape memory element 10 is applied to the movable element 13. 1 and the heat absorbing plate 11, the transducer 14 inserted into the hole 15 provided in the movable element 13 is moved up and down, converting the above-mentioned stress, and the rotating shaft 4
gives rotational force to. Since this rotating shaft 4 is supported by a bearing 17 held on a support stand 16, it can rotate smoothly. Next, the first shape memory element 9 is attached to the substrate 1 and has good thermal conductivity, so that it has the same temperature as the substrate 1. on the other hand,
The second shape memory element 10 has an infrared window 12
Since the second shape memory element 10 is attached to a heat absorption plate 11 that absorbs the infrared rays of the sunlight 8 collected by the infrared rays window 12 while maintaining thermal conductivity, the temperature of the second shape memory element 10 is the same as that of the sunlight 8 that enters the infrared window 12. The angle of incidence θ i
It is determined by the amount of heat input that depends on .

その熱入射量の検出は赤外線ウインドウ12の
熱入射面19に入射する太陽光8の入射角θiが赤
外線ウインドウ12の個有のブリユスター角θb
範囲内に入つていれば太陽光8を透過させるが、
θbの範囲外にあれば全反射するので特定の入射角
θiで光入射面19に入射する太陽光8に対して、
その熱入射量を検出することができる。
The amount of heat incident is detected if the incident angle θ i of the sunlight 8 incident on the heat incidence surface 19 of the infrared window 12 is within the range of the unique Brillustre angle θ b of the infrared window 12 . It passes through, but
If it is outside the range of θ b , it will be totally reflected, so for sunlight 8 that enters the light incidence surface 19 at a specific angle of incidence θ i ,
The amount of heat incident thereon can be detected.

さて、次に第4図、第5図に示した各構成要素
の動作が、組み合わされてどのような総合的な動
作を行うかについて説明する。まず第1の形状記
憶素子9と第2の形状記憶素子10の変形量と応
力との関係は、第6図において曲線C3と曲線C4
のようになつているから、例えば第1の形状記憶
素子9が母相にあり、C4の特性を有し一方、第
2の形状記憶素子10がマルテンサイト相にあ
り、C3の特性を有しているとき、C4とC3の差に
相当する力Fが生じ、第1の形状記憶素子9と第
2の形状記憶素子10の逆変態応力を差動的に取
出すことができる。
Now, what kind of overall operation is performed by combining the operations of each component shown in FIGS. 4 and 5 will be explained. First, the relationship between the amount of deformation and stress of the first shape memory element 9 and the second shape memory element 10 is shown by curve C 3 and curve C 4 in FIG.
For example, the first shape memory element 9 is in the matrix phase and has the characteristics of C4 , while the second shape memory element 10 is in the martensitic phase and has the characteristics of C3. When the force F corresponds to the difference between C 4 and C 3 is generated, the reverse transformation stress of the first shape memory element 9 and the second shape memory element 10 can be differentially extracted.

次に、温度と変形量との関係は第7図における
C5とC6の様になつている、第1の形状記憶素子
9と第2の形状記憶素子10の温度対変形量特性
は一致するよう作られるから、変態終了温度Mf
以下では共にマルテンサイト相となり、順次温度
が上昇すると曲線C5に沿つて推移し、逆変態開
始温度Asで母相への逆変態が開始し、逆変態終
了温度Afで逆変態が終了し、一定の変形量とな
る。次に温度が低下すると曲線C6に沿つて推移
しマルテンサイト相への変態開始温度Msに至る
と変態が開始しMfで終了する。
Next, the relationship between temperature and deformation is shown in Figure 7.
Since the temperature vs. deformation characteristics of the first shape memory element 9 and the second shape memory element 10, which are shaped like C5 and C6 , are made to match, the transformation end temperature Mf
Below, both become martensitic phases, and as the temperature increases sequentially, it changes along the curve C 5 , the reverse transformation to the parent phase starts at the reverse transformation start temperature As, and the reverse transformation ends at the reverse transformation end temperature Af, The amount of deformation is constant. Next, when the temperature decreases, it changes along the curve C6 , and when it reaches the transformation start temperature Ms to the martensitic phase, the transformation starts and ends at Mf.

このような特性を有する第1の形状記憶素子9
と第2の形状記憶素子10をそれぞれ基板1と熱
吸収板11の温度にしたとき羽根3の動作がどの
ようになるかを第7図と第9図を用いて説明す
る。第7図において第1の形状記憶素子9と第2
の形状記憶素子10の温度をT1,T2,T3,T4
びT5で例示的に示している。これらの温度にお
ける羽根3の回転角度θを第9図に示している。
第9図において行方向T1,T2,T3,T4及びT5
第2の形状記憶素子10の温度を示し、列方向の
T1,T2,T3,T4及びT5は第1の形状記憶素子9
の温度を示す。これらの温度における回転角度θ
の値に例示的に第9図に示されているが、例えば
太陽光8の入射が無いとき、すなわち日陰時には
赤外線ウインドウ12と熱吸収板11への熱入射
が無く、熱吸収板11は熱放射のみを行うからそ
の温度は低下しT1(例えば−10℃)となる。この
とき第2の形状記憶素子10はMf以下の温度に
おいてマルテンサイト相となるのでわずかな力で
変形する状態となる。そして基板1の温度がT1
から順次T5(例えば60℃)まで上昇していくと
き、第1の形状記憶素子9は第7図における曲線
C5のように変形する。したがつて第9図におい
て第1列に示されたようにT1で羽根3は全閉で、
T5で全開となる。この動作は第1図と同じであ
る。次に、日照時において熱吸収板11が高温と
なりT5となつたとき第9図の第5列に示された
ように、第2の形状記憶素子10は母相にあるか
ら、第1の形状記憶素子9がT1のときマルテン
サイト相となつて羽根3は左回りに90゜回転する。
そして基板1が太陽光8の入射により熱せられて
温度が上昇する。次に第1の形状記憶素子9の温
度がT2(例えば30℃)に達したときその長さが少
し伸長して羽根3を左回りに80゜の回転角度に設
定する。このとき太陽光8は第4図において赤外
線ウインドウ12の光入射面19にθb以内の入射
角θiで入射しており羽根3で大部分は遮光、反射
されて基板1へ到達しないが、羽根3相互の反射
によつて基板1へ入射する。一方基板1は羽根3
が開いているから熱放射を行うので両方の強さの
割合いによつて基板1の温度が決まる。ところで
羽根3の回転角度θが小さくなるほど太陽光8が
反射される割合が大きくなるから基板1への入射
が少なくなるという関係が成立する。したがつて
基板1が低温のときは羽根3を左回転させて太陽
光8が基板1へ入射する割合を大きくして暖め、
基板1が高温のときは、羽根3を閉じて基板1へ
の入射を防止することになる。
First shape memory element 9 having such characteristics
How the blade 3 operates when the temperature of the substrate 1 and the second shape memory element 10 are set to the temperature of the substrate 1 and the heat absorption plate 11 will be explained with reference to FIGS. 7 and 9. In FIG. 7, the first shape memory element 9 and the second
The temperatures of the shape memory element 10 are exemplarily shown as T 1 , T 2 , T 3 , T 4 and T 5 . The rotation angle θ of the blade 3 at these temperatures is shown in FIG.
In FIG. 9, T 1 , T 2 , T 3 , T 4 and T 5 in the row direction indicate the temperature of the second shape memory element 10, and in the column direction
T 1 , T 2 , T 3 , T 4 and T 5 are the first shape memory element 9
indicates the temperature of The rotation angle θ at these temperatures
For example, when there is no sunlight 8 incident, that is, in the shade, there is no heat input to the infrared window 12 and the heat absorption plate 11, and the heat absorption plate 11 absorbs no heat. Since only radiation is performed, the temperature decreases to T 1 (eg -10°C). At this time, the second shape memory element 10 enters a martensitic phase at a temperature below Mf, so that it is deformed by a slight force. And the temperature of substrate 1 is T 1
When the temperature is gradually increased from
Transform like C 5 . Therefore, as shown in the first row of FIG. 9, the blade 3 is fully closed at T 1 ,
Fully open at T5 . This operation is the same as in FIG. Next, when the heat absorbing plate 11 becomes high in temperature during sunshine and reaches T 5 , the second shape memory element 10 is in the matrix phase as shown in the fifth column of FIG. When the shape memory element 9 is at T1 , it enters the martensitic phase and the blade 3 rotates counterclockwise by 90 degrees.
The substrate 1 is heated by the sunlight 8 and its temperature rises. Next, when the temperature of the first shape memory element 9 reaches T 2 (for example, 30° C.), its length is slightly expanded and the blade 3 is set at a rotation angle of 80° counterclockwise. At this time, sunlight 8 is incident on the light incident surface 19 of the infrared window 12 at an incident angle θ i within θ b in FIG. 4, and most of it is blocked and reflected by the blade 3 and does not reach the substrate 1. The light is incident on the substrate 1 by mutual reflection between the blades 3. On the other hand, the substrate 1 has blades 3
Since it is open, heat is radiated, and the temperature of the substrate 1 is determined by the ratio of both intensities. By the way, as the rotation angle θ of the blade 3 becomes smaller, the proportion of sunlight 8 that is reflected becomes larger, and therefore the amount of sunlight 8 that is incident on the substrate 1 becomes smaller. Therefore, when the substrate 1 is at a low temperature, the blades 3 are rotated counterclockwise to increase the proportion of sunlight 8 that enters the substrate 1 to warm it up.
When the substrate 1 is at a high temperature, the blades 3 are closed to prevent light from entering the substrate 1.

太陽光8の入射量と基板1の温度の関係は赤外
線ウインドウ12のブリユスター角θbと、熱吸収
板11の熱吸収率及び第1の形状記憶素子9と第
2の形状記憶素子10の熱弾性特性を調節するこ
とによつて所要の状態に設定することができる。
The relationship between the incident amount of sunlight 8 and the temperature of the substrate 1 is determined by the Brillister angle θ b of the infrared window 12, the heat absorption rate of the heat absorption plate 11, and the heat of the first shape memory element 9 and the second shape memory element 10. The desired state can be set by adjusting the elastic properties.

次に第1の形状記憶素子9と第2の形状記憶素
子10が共に母相にあるとき、すなわちいずれも
伸長状態にあるとき、相互の力によつて変形する
ことになるのであるが、第8図に示された擬弾性
の効果が生ずる。
Next, when the first shape memory element 9 and the second shape memory element 10 are both in the parent phase, that is, when both are in an elongated state, they are deformed by mutual force. The pseudoelastic effect shown in FIG. 8 occurs.

すなわち母相において応力を与えると曲線C7
に沿つて変形するが応力を除くと曲線C8に沿つ
て元の形に復帰するという秀れた弾性を有するの
で、例えば第1の形状記憶素子9と第2の形状記
憶素子10が共にT5の温度に達した時、共に伸
長して、それぞれの応力や均衡して羽根3を閉じ
るという動作を正確に繰返すことができる。
In other words, when stress is applied to the matrix, curve C 7
It has excellent elasticity in that it deforms along the curve C8 but returns to its original shape along the curve C8 when the stress is removed. When the temperature of 5 is reached, the blades 3 are expanded together, and the action of closing the blades 3 by balancing their respective stresses can be repeated accurately.

以上説明した様に、この発明によれば太陽光が
サーマルルーバに入射するとき羽根3の回転角度
θを熱吸収板11と基板1の温度に従つて調節す
るから、日照時における熱的暴走を防ぎ安全性が
高く、かつ排熱効果が高いという利点が生ずる。
As explained above, according to the present invention, when sunlight enters the thermal louver, the rotation angle θ of the blade 3 is adjusted according to the temperature of the heat absorption plate 11 and the substrate 1, so that thermal runaway during sunlight can be prevented. This has the advantages of high prevention and safety and high heat exhaust effect.

さらに、基板1が低温時に、太陽光を適当に基
板1へ入射させることができるから、従来のサー
マルルーバが排熱のみ行うのに比らべ、この発明
によれば吸熱をも行うことができるから、高温と
低温の両方にわたつて熱制御を行うことができる
利点が生ずる。
Furthermore, since sunlight can be appropriately allowed to enter the substrate 1 when the substrate 1 is at a low temperature, the present invention can also absorb heat, compared to conventional thermal louvers that only exhaust heat. This provides the advantage of being able to provide thermal control over both high and low temperatures.

なお、上記実施例では熱吸収板11は赤外線ウ
インドウ12の裏面に設けたが、赤外線ウインド
ウ12を省略して光入射面19の裏面に設けても
良く、また熱吸収板11の表面形状を凹面や凸面
とし、あるいはこれらを組み合わせて所要の熱吸
収特性を持たせても良い。また支柱18は筐体6
と一体化できるし、また形状記憶素子は板状や棒
状のものでも良いなど、この発明の要旨とする点
を免脱しない範囲において様々な変形がある。
In the above embodiment, the heat absorption plate 11 was provided on the back surface of the infrared window 12, but the infrared window 12 may be omitted and provided on the back surface of the light incident surface 19. It may be made to have a convex or convex surface, or a combination of these may be used to provide the required heat absorption characteristics. Also, the pillar 18 is connected to the housing 6
There are various modifications possible without departing from the gist of the present invention, such as the shape memory element may be integrated with the shape memory element, or the shape memory element may be plate-shaped or rod-shaped.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のサーマルルーバの構成図、第2
図は従来のサーマルルーバの動作特性図、第3図
は従来のサーマルルーバの動作状態を示す図、第
4図はこの発明の一実施例の構成を示す正面図、
第5図はこの発明の一実施例の構成を示す側面
図、第6図は形状記憶素子の応力対変形量特性を
示す図、第7図は形状記憶素子の変形量対温度特
性を示す図、第8図は形状記憶素子の擬弾性特性
を示す図、第9図はこの発明の一実施例の動作状
態を示す図である。図中1は基板、2は熱、3は
羽根、4は回転軸、5はバイメタルスプリング、
6は筐体、7は太陽光遮蔽材、8は太陽光、9は
第1の形状記憶素子、10は第2の形状記憶素
子、11は熱吸収板、12は赤外線ウインドウ、
13は可動子、14は変換子、15は孔、16は
支持台、18は支柱、19は熱入射面である。 なお、図中同一あるいは相当部分には同一符号
を付して示してある。
Figure 1 is a configuration diagram of a conventional thermal louver, Figure 2
FIG. 3 is a diagram showing the operational characteristics of a conventional thermal louver, FIG. 4 is a front view showing the configuration of an embodiment of the present invention, and FIG.
FIG. 5 is a side view showing the configuration of an embodiment of the present invention, FIG. 6 is a diagram showing stress versus deformation characteristics of the shape memory element, and FIG. 7 is a diagram showing deformation vs. temperature characteristics of the shape memory element. , FIG. 8 is a diagram showing the pseudoelastic characteristics of the shape memory element, and FIG. 9 is a diagram showing the operating state of one embodiment of the present invention. In the figure, 1 is the board, 2 is the heat, 3 is the blade, 4 is the rotating shaft, 5 is the bimetal spring,
6 is a housing, 7 is a sunlight shielding material, 8 is sunlight, 9 is a first shape memory element, 10 is a second shape memory element, 11 is a heat absorption plate, 12 is an infrared window,
13 is a mover, 14 is a converter, 15 is a hole, 16 is a support base, 18 is a column, and 19 is a heat incidence surface. It should be noted that the same or corresponding parts in the drawings are designated by the same reference numerals.

Claims (1)

【特許請求の範囲】[Claims] 1 電子器機等の発熱体を取付ける基板の片面に
並設された羽根と、上記基板の片面に取付けられ
上記羽根を回動させる駆動機構とを備え、上記羽
根をこの駆動機構により回動させて上記基板の放
熱量を調節し、上記基板の熱制御を行うサーマル
ルーバにおいて、上記サーマルルーバへの熱入射
面の裏面側に設けられた熱吸収板と、一端が上記
基板に取付けられ、温度に応じて伸長形状と圧縮
形状となる第1の形状記憶素子と、一端が上記熱
吸収板に取付けられて、上記第1の形状記憶素子
と同様の動作をする第2の形状記憶素子と、上記
第1の形状記憶素子の他端と上記第2の形状記憶
素子の他端との間に取付けられ、上記第1、第2
の形状記憶素子の伸長と圧縮運動による差動的な
応力により上記基板と熱吸収板との間を往復運動
する可動子と、一端が上記羽根の回転軸に、また
他端は上記可動子に取付けられ、上記可動子の往
復運動を回転運動に変換し、その回転力を上記羽
根の回転軸に与える変換子とで上記駆動機構を構
成したことを特徴とするサーマルルーバ。
1 comprising blades arranged in parallel on one side of a substrate on which a heating element of an electronic device or the like is attached, and a drive mechanism attached to one side of the substrate to rotate the blades, the blades being rotated by the drive mechanism. A thermal louver that adjusts the amount of heat dissipated from the board and controls the heat of the board includes a heat absorbing plate provided on the back side of the heat incidence surface to the thermal louver, and one end of which is attached to the board, a first shape memory element that assumes an expanded shape and a compressed shape depending on the shape; a second shape memory element that has one end attached to the heat absorption plate and operates in the same manner as the first shape memory element; attached between the other end of the first shape memory element and the other end of the second shape memory element;
a mover that reciprocates between the substrate and the heat absorbing plate due to differential stress caused by the expansion and compression motion of the shape memory element; one end is connected to the rotation axis of the blade, and the other end is connected to the mover The thermal louver is characterized in that the drive mechanism is constituted by a converter that is attached to the movable element and converts the reciprocating motion of the movable element into rotational motion and applies the rotational force to the rotation axis of the blade.
JP15986982A 1982-09-14 1982-09-14 Thermal louver Granted JPS5949616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15986982A JPS5949616A (en) 1982-09-14 1982-09-14 Thermal louver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15986982A JPS5949616A (en) 1982-09-14 1982-09-14 Thermal louver

Publications (2)

Publication Number Publication Date
JPS5949616A JPS5949616A (en) 1984-03-22
JPS6410400B2 true JPS6410400B2 (en) 1989-02-21

Family

ID=15702986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15986982A Granted JPS5949616A (en) 1982-09-14 1982-09-14 Thermal louver

Country Status (1)

Country Link
JP (1) JPS5949616A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4979672A (en) * 1989-06-21 1990-12-25 Johnson Service Company Shape memory actuator
US5071064A (en) * 1989-06-21 1991-12-10 Johnson Service Company Shape memory actuator smart connector
DE19651480A1 (en) * 1996-12-11 1998-06-18 Krantz Tkt Gmbh Adjustment device
US7372355B2 (en) 2004-01-27 2008-05-13 Black & Decker Inc. Remote controlled wall switch actuator
US8153918B2 (en) 2005-01-27 2012-04-10 Black & Decker Inc. Automatic light switch with manual override

Also Published As

Publication number Publication date
JPS5949616A (en) 1984-03-22

Similar Documents

Publication Publication Date Title
Hollands Directional selectivity, emittance, and absorptance properties of vee corrugated specular surfaces
US4175391A (en) Self reorienting solar tracker
US3419434A (en) Solar cell assemblies
JP5497037B2 (en) Solar energy conversion
US4088116A (en) Radiant energy collector
US4211212A (en) Solar refrigeration system
US4475536A (en) Solar collector-skylight assembly
US4106480A (en) Reflective solar heat collector
EP3212504B1 (en) Spacecraft
EP3218266A1 (en) Spacecraft
US4137901A (en) Solar energy collecting and trapping apparatus for home heating or cooling
US4262654A (en) Solar-energy-powered sun tracker
JPS6410400B2 (en)
WO2012073664A1 (en) Solar thermal collector tube
Goetzberger et al. A new transparently insulated, bifacially irradiated solar flat-plate collector
US6062511A (en) Device for adjusting a solar panel on a spacecraft, and spacecraft equipped with such a device
KR20160121399A (en) Non-powered sunlight tracking device
JP4235110B2 (en) Optical surface reflector for spacecraft such as geostationary satellite
WO1978000019A1 (en) Energy concentrator system
JPH0262794B2 (en)
JP2008185299A (en) Heat collector
JPH0354097A (en) Thermal louver device
JP2001036276A (en) Thermal louver
US3519490A (en) High temperature thermal control foil shutter
JPH0725397A (en) Thermal louver device