JPS6410173B2 - - Google Patents

Info

Publication number
JPS6410173B2
JPS6410173B2 JP58072067A JP7206783A JPS6410173B2 JP S6410173 B2 JPS6410173 B2 JP S6410173B2 JP 58072067 A JP58072067 A JP 58072067A JP 7206783 A JP7206783 A JP 7206783A JP S6410173 B2 JPS6410173 B2 JP S6410173B2
Authority
JP
Japan
Prior art keywords
screw
flight
melting
solid bed
screw groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58072067A
Other languages
Japanese (ja)
Other versions
JPS59198132A (en
Inventor
Seizo Takayama
Kyoshi Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP58072067A priority Critical patent/JPS59198132A/en
Publication of JPS59198132A publication Critical patent/JPS59198132A/en
Publication of JPS6410173B2 publication Critical patent/JPS6410173B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/62Screws characterised by the shape of the thread channel, e.g. U-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 本発明は樹脂成形用スクリユに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a screw for resin molding.

押出成形機や射出成形機等の成形機における樹
脂の可塑化溶融は極めて重要な問題である。すな
わち、成形品の品質、生産性、不良率、人件費等
に大きい影響を与えることになるからである。し
たがつて、従来より、可塑化装置のスクリユに関
しては種々研究され、数多くの提案がなされて来
ている。
Plasticization and melting of resin in molding machines such as extrusion molding machines and injection molding machines is an extremely important problem. In other words, this has a large impact on the quality, productivity, defective rate, personnel costs, etc. of the molded product. Therefore, various studies have been conducted and numerous proposals have been made regarding the screws of plasticizing devices.

本発明は可塑化装置のスクリユに関するもので
あり、その目的は、溶融効率に優れ、可塑化能力
が大きく、均一な溶融で混練性に優れた可塑化ス
クリユを提供するにある。
The present invention relates to a screw for a plasticizing device, and its purpose is to provide a plasticizing screw that has excellent melting efficiency, large plasticizing ability, uniform melting, and excellent kneading properties.

一般に成形機に供されている可塑化スクリユは
第1図に示したものが多い。第1図で、スクリユ
1は、材料供給側から、スクリユ溝2が深い供給
ゾーン3、スクリユ溝深さが軸方向前方に行くに
したがつて漸次浅くなる圧縮ゾーン4、スクリユ
溝深さが浅い計量ゾーン4aで構成されている。
5はスクリユフライトである。このような通常の
スクリユ1に関する熱可塑性樹脂の溶融形態は、
第2図aに示した溶融モデルによつて説明され
る。第2図aは、スクリユ溝2中で未溶融固体
(ソリツドベツド)6とメルト(溶融体)7とが
分離共存する形態を示す。しかしながら、このよ
うな溶融形態も溶融が進行し、スクリユ溝2の幅
Wに対するスクリユ溝2中のソリツドベツド6の
幅Xの割合として示される未溶融比率X/Wが小
さくなると、ソリツドベツド6自体の昇温に伴う
剛性の変化、メルト7の剪断接触等により、この
溶融形態がくずれ、第2図bに示すように、メル
ト7中に未溶融固体片8が浮遊した形態を示す。
この形態はスクリユ1の回転を大きくした高速可
塑化の場合に顕著にあらわれ、成形品への未溶融
物の混入に伴い、成形品の強度のムラ、色調の変
化、カラーリング成形の色ムラ、流動性の変化、
気泡の混入等の多くの好ましくない結果をひき起
す。又、この形態が可塑化工程で発生しないよう
可塑化能力を制約すること、すなわち、サイクル
や連続生産量を制約することの原因になる。な
お、9は加熱筒である。
Generally, many of the plasticizing screws used in molding machines are shown in FIG. In Fig. 1, the screw 1 includes, from the material supply side, a supply zone 3 where the screw groove 2 is deep, a compression zone 4 where the screw groove depth gradually becomes shallower as it goes forward in the axial direction, and a compression zone 4 where the screw groove depth is shallow. It consists of a weighing zone 4a.
5 is Skrill Flight. The melt form of the thermoplastic resin for such a normal screw 1 is as follows:
This is illustrated by the melting model shown in Figure 2a. FIG. 2a shows a configuration in which an unmelted solid (solid bed) 6 and a melt (molten body) 7 coexist separately in the screw groove 2. However, even in such a molten state, as the melting progresses and the unmelted ratio X/W, which is expressed as the ratio of the width X of the solid bed 6 in the screw groove 2 to the width W of the screw groove 2, becomes smaller, the solid bed 6 itself will rise. Due to changes in rigidity due to temperature, shear contact of the melt 7, etc., this molten form is distorted, and as shown in FIG. 2b, unmelted solid pieces 8 are suspended in the melt 7.
This form is noticeable during high-speed plasticization when the rotation of the screw 1 is increased, and as unmelted substances are mixed into the molded product, uneven strength of the molded product, changes in color tone, color unevenness in coloring molding, etc. changes in liquidity;
This causes many undesirable consequences such as air bubble inclusion. Moreover, this form restricts the plasticizing ability so that it does not occur in the plasticizing process, that is, it causes restrictions on the cycle and continuous production amount. Note that 9 is a heating cylinder.

このような溶融形態の改善をしたものに第3図
に示すものがある。すなわち、スクリユ溝底を半
径方向に変位させて通路断面積を変化させたもの
である。第4図a,bは第3図のA−A断面およ
びB−B断面を示したのであるが、断面形状が第
3図の如く円形のものでも多角形状でもよいが、
要は、スクリユ溝通路断面積を変化させることに
より、溶融初期の第2図aの形態のソリツドベツ
ド6を圧縮、弛緩を繰り返すことにより、ソリツ
ドベツド6に強い押圧作用を与えて変形させた
り、メルト7のみを優先的に前方へ輸送したりし
て、溶融の効率をはかろうとするものである。こ
の溶融形態は、溶融の初期では溶融促進の効果が
あり、溶融の後期の末溶融固体片8が浮遊する段
階では、スクリユギヤツプをより浅くして未溶融
固体片8を選別的に溶融するという効果がある。
There is one shown in FIG. 3 that has improved the melting form. That is, the cross-sectional area of the passage is changed by displacing the screw groove bottom in the radial direction. 4a and 4b show the AA cross section and the BB cross section of FIG. 3, but the cross-sectional shape may be circular as shown in FIG. 3 or polygonal.
In short, by changing the cross-sectional area of the screw groove passage and repeatedly compressing and relaxing the solid bed 6 in the form shown in FIG. The aim is to increase the efficiency of melting by preferentially transporting only the molten metal to the front. This melting form has the effect of promoting melting in the early stage of melting, and in the late stage of melting when the molten solid pieces 8 are floating, the screw gap is made shallower and the unmelted solid pieces 8 are selectively melted. There is.

しかしながら、第1図に示した通常型の従来の
スクリユ1と同様に根本的に溶融のメカニズムの
改善はなされてなく、高速回転においてスクリユ
溝2がすべてソリツドベツド6で満たされ、可塑
化能力の低下もしくは変動をひき起す。すなわ
ち、スクリユ溝2で形成されたソリツドベツド6
は、加熱筒9内壁との接触面において、スクリユ
溝内圧により、加熱筒内壁に押圧され、加熱筒内
壁から受熱するとともに、スクリユ回転による加
熱筒内壁とソリツドベツドとの間の剪断作用によ
る樹脂の発熱により溶融し、メルトフイルムを形
成する。したがつて、溶融はソリツドベツドが加
熱筒内壁との接触面から順次行われる形態であ
る。つまり、ソリツドベツドはソリツドベツドの
外周から熱伝導による昇温が期待できるのみで、
しかも、樹脂は熱の不良導体であり、多くは期待
できないという溶融メカニズムの欠点がある。
However, like the conventional conventional screw 1 shown in Fig. 1, the melting mechanism has not been fundamentally improved, and the screw groove 2 is completely filled with solid bed 6 during high-speed rotation, resulting in a decrease in plasticizing ability. Or cause change. That is, the solid bed 6 formed by the screw groove 2
At the contact surface with the inner wall of the heating cylinder 9, it is pressed against the inner wall of the heating cylinder by the internal pressure of the screw groove and receives heat from the inner wall of the heating cylinder, and at the same time, the resin generates heat due to the shearing action between the inner wall of the heating cylinder and the solid bed due to the rotation of the screw. to form a melt film. Therefore, melting is performed sequentially from the contact surface of the solid bed with the inner wall of the heating cylinder. In other words, the temperature of the solid bed can only be expected to increase due to heat conduction from the outer periphery of the solid bed.
Moreover, resin is a poor conductor of heat and has a disadvantage in its melting mechanism, which is not very promising.

本発明はこの点に鑑み、上流でソリツドベツド
を積極的に破壊して溶融効率を上げ、又、下流で
は、メルトはそのまま通過させ、溶融していない
ものは溶融させるという選別的溶融を行うべく、
第5図に示す如く、スクリユ溝底2をスクリユフ
ライト5に沿つて半径方向に変位させてスクリユ
溝2の通路断面積を変化させ、上流の通路断面積
が漸次大きくなり、やがて小さくなる範囲のスク
リユ溝底にスクリユフライト5に沿つて単一もし
くは複数個の凹部10又は溝を設け、選別溶融を
行う領域では該凹部10等を設けないようにし
た。
In view of this point, the present invention aims to actively destroy the solid bed upstream to increase melting efficiency, and downstream to perform selective melting in which the melt passes through as is and unmelted material is melted.
As shown in FIG. 5, the passage cross-sectional area of the screw groove 2 is changed by displacing the screw groove bottom 2 in the radial direction along the screw flight 5, so that the upstream passage cross-sectional area gradually increases and eventually becomes smaller. A single or plural recesses 10 or grooves are provided at the bottom of the screw groove along the screw flight 5, and the recesses 10 and the like are not provided in the area where selective melting is performed.

第6図はその概念図を示す。つまり、スクリユ
溝2をスクリユフライト5に沿つて展開し、凹部
10をスクリユフライト5に沿つた断面として示
したモデル図である。
FIG. 6 shows its conceptual diagram. In other words, it is a model diagram in which the screw groove 2 is developed along the screw flight 5 and the recess 10 is shown as a cross section along the screw flight 5.

第6図においては、スクリユ溝底2aが次第に
浅くなり続いて次第に深くなる1周部分Pに凹部
10を設けた実施例を示した。ただし、第6図で
は左右方にのみ、かなり縮めた状態で示した。な
お、この例ではPの長さはスクリユ1の1周分の
長さであるが、これは、スクリユ溝底2aが次第
に浅くなり続いて次第に深くなる部分がスクリユ
1の半周分とが2周分であれば、それに応じて長
さを適宜変えて設けることができる。
FIG. 6 shows an embodiment in which a recess 10 is provided in a circumferential portion P where the screw groove bottom 2a becomes gradually shallower and then gradually deeper. However, in Fig. 6, it is shown in a considerably shrunken state only in the left and right directions. In this example, the length of P is the length of one circumference of the screw 1, but this means that the portion where the screw groove bottom 2a gradually becomes shallower and then gradually becomes deeper is the length of half the circumference of the screw 1, which is two turns. If the length is longer, the length can be changed accordingly.

第7図は第5図におけるスクリユフライト5に
沿つた軸断面の一例である。
FIG. 7 is an example of an axial cross section taken along the screw flight 5 in FIG.

このように構成したスクリユ1の動作につい
て、第8図a〜dにより詳細に説明する。
The operation of the screw 1 constructed in this way will be explained in detail with reference to FIGS. 8a to 8d.

溶融の初期段階で、第8図aに示す如く、スク
リユ溝2に形成したソリツドベツド6は、本発明
のソリツドベツド破壊ゾーンにおけるスクリユ溝
2が半径方向に変位して、スクリユ溝通路断面積
が漸次減少し再び増加する範囲に、スクリユフラ
イトに沿つて複数の凹部10を設けているため、
第8図bに示す如く、ソリツドベツド6はこの凹
部10に陥没し、凹部10周縁を起点として破壊
する。一方、凹部10以外の漸次通路面積が減少
するスクリユ溝底2a上を移動するソリツドベツ
ド6は加熱筒9内壁に押圧され押圧接触面から溶
融するとともに、陥没ソリツドベツド6の上に重
ね合わさつていく。この過程で、ソリツドベツド
6の陥没破壊面にメルト7が接触するため、この
複数の破壊面から熱いメルト7の熱が冷いソリツ
ドベツド6へ移るという授熱が起り、ソリツドベ
ツド6の昇温軟化が促進するとともに、メルト7
の過熱が防止され、熱いメルト7と冷いソリツド
ベツド6の画然とした分離併存から、より熱的な
接近、均質化が両者の間に起り、溶融の促進と混
合が行われる。こうして、一度破壊したソリツド
ベツド6は、ソリツドベツド6同士の相対位置の
変化を加えながら、スクリユ溝底2aに凹部10
のない範囲で、再び新しいソリツドベツド6を第
8図cに示す如く形成する。この形成されたソリ
ツドベツド6は、第8図dに示す如く、次の段階
で再び、新しい陥没破壊面を形成する。このよう
な破壊面でのメルト7との剪断接触が、より良好
なソリツドベツド6の昇温、溶融の促進、混合の
向上等という前述の効果を高める。次に、繰り返
しソリツドベツド6を破壊し、溶融されたメメル
ト7はスクリユ1の前方へ輸送され、下流の計量
ゾーン4aともほぼ共通する溶融選別ゾーン12
において、より狭いスクリユギヤツプδで未溶融
固体片8に選別的に強い剪断作用を与えて溶融
し、混合し、混練して均質化を行う。なお、11
はスクリユギヤツプの比較的大きいソリツドベツ
ド破壊ゾーンである。
In the initial stage of melting, as shown in FIG. 8a, the solid bed 6 formed in the screw groove 2 is displaced in the radial direction in the solid bed fracture zone of the present invention, and the cross-sectional area of the screw groove passage gradually decreases. Since a plurality of concave portions 10 are provided along the screw flight in the range where the curve increases again,
As shown in FIG. 8b, the solid bed 6 sinks into the recess 10 and breaks starting from the periphery of the recess 10. On the other hand, the solid bed 6 moving on the screw groove bottom 2a whose passage area other than the recess 10 gradually decreases is pressed against the inner wall of the heating cylinder 9 and melts from the pressed contact surface, and is piled up on the depressed solid bed 6. During this process, the melt 7 comes into contact with the depressed and fractured surfaces of the solid bed 6, so heat transfer occurs in which the heat of the hot melt 7 is transferred from these multiple fracture surfaces to the cold solid bed 6, which promotes the temperature increase and softening of the solid bed 6. At the same time, Melt 7
The hot melt 7 and the cold solid bed 6 are distinctly separated and coexisted, so that closer thermal contact and homogenization occur between the two, promoting melting and mixing. In this way, once the solid bed 6 is destroyed, the recess 10 is formed in the screw groove bottom 2a while changing the relative position of the solid beds 6.
A new solid bed 6 is again formed as shown in FIG. This formed solid bed 6 again forms a new depressed fracture surface in the next step, as shown in FIG. 8d. Such shearing contact with the melt 7 on the fracture surface enhances the aforementioned effects such as better heating of the solid bed 6, promotion of melting, and improved mixing. Next, the solid bed 6 is repeatedly broken, and the melted memelt 7 is transported to the front of the screw 1, where it is transported to a melt sorting zone 12 which is almost common to the downstream metering zone 4a.
In the narrower screw gap δ, a strong shearing action is selectively applied to the unmelted solid pieces 8 to melt them, mix them, knead them, and homogenize them. In addition, 11
is a relatively large solid bed failure zone in the screw gap.

第9図、第10図は他の実施例で、溶融選別ゾ
ーン12で、スクリユ溝底2aに半径方向の変位
を与えて加熱筒内壁と狭いスリツトを形成する代
りに、それぞれ、第2のフライト13、バリア1
4を設けて、加熱筒内壁と狭スリツトを形成し、
溶融選別を行うようにしたものである。ただし、
このスリツトクリアランスは、スクリユフライト
5と加熱筒9内壁とのフライトクリアランスより
は少くとも大きくしてあり、主として樹脂の種類
によつてクリアランスは決定される。このように
すると、前記したものとほぼ同様な効果が得られ
る。
9 and 10 show other embodiments in which, in the melting and sorting zone 12, instead of displacing the screw groove bottom 2a in the radial direction to form a narrow slit with the inner wall of the heating cylinder, a second flight is formed, respectively. 13. Barrier 1
4 to form a narrow slit with the inner wall of the heating cylinder,
It is designed to perform melt sorting. however,
This slit clearance is at least larger than the flight clearance between the screw flight 5 and the inner wall of the heating cylinder 9, and the clearance is determined mainly by the type of resin. In this way, substantially the same effects as those described above can be obtained.

このように、本発明によれば、早期ソリツドベ
ツドの破壊とこれに引続く選別溶融により、熱的
にも物理的にも均質にして熱効率のよい可塑溶融
を行うことが出来る。特に、結晶性低粘度樹脂で
は可塑化能力の向上が著しく、非晶性高粘度樹脂
ではスクリユ駆動トルクの軽減がい著しく、省エ
ネルギ化を達成できる。
As described above, according to the present invention, by early breaking of the solid bed and subsequent selective melting, it is possible to perform plastic melting that is thermally and physically homogeneous and has good thermal efficiency. In particular, with crystalline low viscosity resins, the plasticizing ability is significantly improved, and with amorphous high viscosity resins, the screw driving torque is significantly reduced, resulting in energy savings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第3図は本発明に類する従来の装
置のそれぞれ異なる例を示す正面図、第2図a,
bは第1図に示すスクリユにおける樹脂の溶融形
態を示す溶融モデル図、第4図a,bは第3図の
A−A線およびB−B線断面図、第5図は本発明
の1実施例を示す正面図、第6図は第5図に示し
たスクリユをスクリユフライトに沿つて展開して
示した展開断面図、第7図は第5図の−線断
面図、第8図a〜dは樹脂の溶融形態を示す説明
図、第9図および第10図は本発明のそれぞれ異
なる実施例を示す正面図である。 1……スクリユ、2……スクリユ溝、5……ス
クリユフライト、6……ソリツドベツド、7……
メルト、9加熱筒、10……凹部、13……第2
フライト、14……バリア。
FIGS. 1 and 3 are front views showing different examples of conventional devices similar to the present invention, FIGS.
b is a melting model diagram showing the melted form of the resin in the screw shown in FIG. 1, FIGS. 6 is a developed cross-sectional view showing the screw shown in FIG. 5 developed along the screw flight; FIG. 7 is a cross-sectional view taken along the - line in FIG. 5; FIG. 9 and 10 are front views showing different embodiments of the present invention, respectively. 1...Scrill, 2...Scrill groove, 5...Scrill flight, 6...Solid bed, 7...
Melt, 9 heating cylinder, 10... recess, 13... second
Flight, 14... Barrier.

Claims (1)

【特許請求の範囲】 1 スクリユの溝底を半径方向に変位させてスク
リユ溝の通路断面積を変化させる領域を設けて、
該領域内の上流で、該通路断面積が漸次減少し増
加する範囲に、スクリユフライトに沿つて単一も
しくは複数個の凹部を設けた樹脂成形スクリユ。 2 スクリユが、凹部を設けた部分の下流で、ス
クリユフライトから第2のフライトを派生させて
再びスクリユフライトに接合させ、第2のフライ
ト部に、少なくとも前記スクリユフライトと加熱
筒内壁とのクリアランスよりも大きいクリアラン
スを有する構造になつている特許請求の範囲第1
項記載の樹脂成形用スクリユ。 3 スクリユが、凹部を設けた部分の下流で、ス
クリユ溝部に軸線方向に沿つたバリアを有し、バ
リア部に、スクリユフライトと加熱筒内壁とのク
リアランスよりも大きいクリアランスを有する構
造になつている特許請求の範囲第1項記載の樹脂
成形用スクリユ。
[Claims] 1. A region is provided in which the groove bottom of the screw groove is displaced in the radial direction to change the passage cross-sectional area of the screw groove,
A resin-molded screw in which a single or multiple recesses are provided along the screw flight in an area where the cross-sectional area of the passage gradually decreases and increases upstream within the region. 2. A second flight is derived from the screw flight downstream of the portion where the screw is provided with the concave portion, and the second flight is joined to the screw flight again, and at least the screw flight and the inner wall of the heating cylinder are attached to the second flight portion. Claim 1 has a structure having a clearance larger than the clearance of
Screw for resin molding as described in section. 3 The screw has a structure in which the screw groove has a barrier along the axial direction downstream of the portion where the recess is provided, and the barrier portion has a clearance larger than the clearance between the screw flight and the inner wall of the heating cylinder. A screw for resin molding according to claim 1.
JP58072067A 1983-04-26 1983-04-26 Screw for resin molding Granted JPS59198132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58072067A JPS59198132A (en) 1983-04-26 1983-04-26 Screw for resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58072067A JPS59198132A (en) 1983-04-26 1983-04-26 Screw for resin molding

Publications (2)

Publication Number Publication Date
JPS59198132A JPS59198132A (en) 1984-11-09
JPS6410173B2 true JPS6410173B2 (en) 1989-02-21

Family

ID=13478676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58072067A Granted JPS59198132A (en) 1983-04-26 1983-04-26 Screw for resin molding

Country Status (1)

Country Link
JP (1) JPS59198132A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342125A (en) * 1992-05-14 1994-08-30 Great Lakes Feedscrews, Inc. Feedscrew for injection molding and extrusion
US6132076A (en) * 1998-12-09 2000-10-17 General Electric Company Single extruder screw for efficient blending of miscible and immiscible polymeric materials

Also Published As

Publication number Publication date
JPS59198132A (en) 1984-11-09

Similar Documents

Publication Publication Date Title
US3652064A (en) Apparatus for conveying plastic material
US3680844A (en) Single worm extruder
JPS59188418A (en) Screw for resin molding
JPS6410173B2 (en)
JPS59194821A (en) Composite resin molding machine
JP2005131855A (en) Plasticator of injection molding machine
JPH06218781A (en) Screw for injection molding
JP3659685B2 (en) Thermoplastic resin kneading extruder
JPH05228920A (en) Screw type kneader
JPS59202835A (en) High kneading screw
JPS6139538Y2 (en)
JPH0550488A (en) Screw for molding machine
JPH018350Y2 (en)
JP2646154B2 (en) Plasticizer
JPH0839637A (en) Plasticizing screw
JPH0129066Y2 (en)
JPS621521A (en) Screw of multispindle extrusion molding machine
JPS58507Y2 (en) Screw for synthetic resin processing machinery
JPS6384904A (en) Thermoplastic resin kneading screw
JPS6319324B2 (en)
JPS6024570Y2 (en) Screw - Screw for inline injection molding machine
JP3113774B2 (en) Plastic molding screw
JPS59143626A (en) Extremely low temperature plasticizing device of injection molding machine
JPH07214624A (en) Kneader of injection molding machine
JPH03121822A (en) Screw for injection molding machine