JPS6399868A - Production of composite material coated with calcium phosphate - Google Patents

Production of composite material coated with calcium phosphate

Info

Publication number
JPS6399868A
JPS6399868A JP61247161A JP24716186A JPS6399868A JP S6399868 A JPS6399868 A JP S6399868A JP 61247161 A JP61247161 A JP 61247161A JP 24716186 A JP24716186 A JP 24716186A JP S6399868 A JPS6399868 A JP S6399868A
Authority
JP
Japan
Prior art keywords
base material
oxide layer
metal base
metal
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61247161A
Other languages
Japanese (ja)
Other versions
JPH0214060B2 (en
Inventor
孝之 島宗
正志 細沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP61247161A priority Critical patent/JPS6399868A/en
Priority to CA000549336A priority patent/CA1269898A/en
Priority to DE8787830365T priority patent/DE3776066D1/en
Priority to EP87830365A priority patent/EP0264354B1/en
Priority to US07/109,378 priority patent/US4818572A/en
Publication of JPS6399868A publication Critical patent/JPS6399868A/en
Publication of JPH0214060B2 publication Critical patent/JPH0214060B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Prosthetics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、人工骨、歯、歯根等のインブラント材並びに
それらの接合材等に有用な、表面を骨や歯の組織との親
和性に特に優れたリン酸カルシウム化合物で被覆した金
属基材から成る複合材の製造方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention is useful for implant materials such as artificial bones, teeth, tooth roots, etc., as well as their bonding materials. The present invention relates to a method for producing a composite material comprising a metal substrate coated with a calcium phosphate compound having particularly excellent properties.

(従来技術とその問題点) 人工骨、人工歯根等の生体インブラント材は、事故等に
より骨が欠損した場合や歯が抜けた場合等に、残ってい
る骨に接合したり顎骨に植え込んだりして生来のものに
近い形で使用でき、快適な生活を維持することを可能に
するため最近注目を集めている。しかしながら、これら
インブラント材は人体内に埋め込むものであるため、人
体に無害であることが必須であり、更に強度が十分であ
る、加工性がある、溶出しない、適度の比重がある、生
体への親和性がある等の種々の条件をも具備しているも
のでなければならない。
(Prior art and its problems) Biomedical implant materials such as artificial bones and artificial tooth roots can be attached to the remaining bone or implanted into the jawbone in the event of bone loss or tooth loss due to an accident, etc. It has recently been attracting attention because it can be used in a form similar to that of natural substances and allows us to maintain a comfortable life. However, since these implant materials are to be implanted into the human body, they must be harmless to the human body, and they must also be strong enough, processable, non-eluting, have an appropriate specific gravity, and be suitable for living organisms. It must also meet various conditions, such as having compatibility with

従来から貴金属等の金属、ステンレススチール等の合金
及びα−アルミナ等のセラミック、更にアパタイトセラ
ミックスがインブラント材として使・用されているが、
これらの材料は毒性がある、強度が不十分である、加工
性がない、溶出する、生体との親和性に欠けるという欠
点のうちの少なくとも1つを有している。
Conventionally, metals such as precious metals, alloys such as stainless steel, ceramics such as α-alumina, and apatite ceramics have been used as implant materials.
These materials have at least one of the following disadvantages: toxicity, insufficient strength, lack of processability, leaching, and lack of biocompatibility.

これらの欠点を解消するため金属やセラミックの表面に
アパタイトコーティングを行い複合材として生体親和性
を有する金属やセラミック材の開発が望まれている。こ
のためには金属−セラミック−セラミックーセラミック
接合技術が必要であるが、従来はプラズマ溶射法のみが
知られていた。
In order to eliminate these drawbacks, it is desired to develop a biocompatible metal or ceramic material as a composite material by coating the surface of metal or ceramic with apatite. For this purpose, metal-ceramic-ceramic-ceramic bonding technology is required, but until now only plasma spraying was known.

しかし、プラズマ溶射法はこのような接合には有用であ
るが、高価なアパタイト粒子の歩留まりが悪いこと、コ
ーティングと基材の接合が必ずしも十分でない等の欠点
を有する。また、条件が厳しすぎると、溶射処理中に一
部が分解してしまい、結晶化等の付加処理を加える必要
が生ずる。
However, although plasma spraying is useful for such bonding, it has drawbacks such as poor yield of expensive apatite particles and insufficient bonding between the coating and the base material. Furthermore, if the conditions are too severe, a portion of the material will decompose during the thermal spraying process, making it necessary to perform additional processing such as crystallization.

本出願人は、従来のこれらの欠点を解消するために、溶
射法を使用しなくても製造することのできる、金属基材
とリン酸カルシウム化合物から成る被覆層とを、リン酸
カルシウム化合物を含む中間層を介して(特願昭61−
64012号、同61−64013号及び同61−70
504号)あるいは介さずに(特願昭61−16954
7号)強固に接合したインブラント材を提案した。
In order to eliminate these conventional drawbacks, the applicant has developed a coating layer consisting of a metal substrate and a calcium phosphate compound, which can be manufactured without using a thermal spraying method, and an intermediate layer containing a calcium phosphate compound. Through (Special application 1986-
No. 64012, No. 61-64013 and No. 61-70
504) or without intervention (Patent Application No. 16954/1986)
No. 7) We proposed a strongly bonded implant material.

これらのインブラント材は、金属基材とリン酸カルシウ
ム化合物の被覆層との間の接合強度は十分大きいが、生
体に埋め込んだ場合、長時間経過するうちには、これら
の歯を含めた骨組織と親和性の良好なリン酸カルシウム
化合物の被覆が骨組織と同化し、最終的には骨組織と金
属基材が直接接触する可能性がある。ところが金属基材
と骨組織との親和性は不十分であるため、骨組織の退化
が生じ、両者の耐着性を悪化させたり、最悪の場合には
抜は落ちてしまうことが考えられる。
These implant materials have a sufficiently high bonding strength between the metal base material and the calcium phosphate compound coating layer, but when implanted in a living body, over a long period of time they will bond with the bone tissue including these teeth. A coating of a calcium phosphate compound with good affinity can be assimilated into the bone tissue, eventually leading to direct contact between the bone tissue and the metal substrate. However, since the affinity between the metal base material and the bone tissue is insufficient, degeneration of the bone tissue may occur, which may deteriorate the adhesion resistance of the two, or in the worst case, lead to failure of extraction.

(発明の目的) 本発明の目的は、工作性が良好でしかも機械強度が十分
にあり、しかも骨Mi織との親和性を高め長期間にわた
って安定した密着性を保持できる人工骨、人工歯根等の
インブラント材に適した複合材の製造方法を提供するこ
とにある。
(Objective of the Invention) The object of the present invention is to provide an artificial bone, an artificial tooth root, etc., which have good workability and sufficient mechanical strength, and which have high affinity with bone-Mi fabric and maintain stable adhesion over a long period of time. An object of the present invention is to provide a method for manufacturing a composite material suitable for use as an implant material.

(問題点を解決するための手段) 本発明は、金属基材を陽極とし導電性の電解液中におい
て該金属基材を電解的に酸化して、金属基材成分単独の
酸化物層又は金属基材成分と前記電解液中の金属成分と
の混合酸化物層を形成し、必要に応じて該金属基材を加
熱してその表面を安定化した後、更に該表面にリン酸カ
ルシウム化合物の被覆層を形成することから成るリン酸
カルシウム化合物被覆複合材の製造方法であり、最大の
特徴とするところは、金属基材とリン酸カルシウム化合
物の被覆層の間に生体内での親和性が比較的良好で耐食
性が十分に大きい金属酸化物から成る酸化物層又は混合
酸化物層を前記金属基材を電解的に酸化することにより
形成し、これにより表面のリン酸カルシウム化合物の被
覆層が骨組織に吸収された場合にも金属基材と骨組織と
が直接接触して両者の密着性が劣化すること等を防止す
る点にある。
(Means for Solving the Problems) The present invention uses a metal base material as an anode and electrolytically oxidizes the metal base material in a conductive electrolyte solution to form an oxide layer of a single metal base component component or a metal base material as an anode. After forming a mixed oxide layer of the base material component and the metal component in the electrolytic solution and, if necessary, heating the metal base material to stabilize its surface, a coating layer of a calcium phosphate compound is further applied to the surface. The most important feature is that the metal base material and the calcium phosphate compound coating layer have relatively good in-vivo affinity and corrosion resistance. An oxide layer or a mixed oxide layer consisting of a sufficiently large metal oxide is formed by electrolytically oxidizing the metal substrate, so that when the coating layer of the calcium phosphate compound on the surface is absorbed into bone tissue, Another point is to prevent the metal base material and the bone tissue from coming into direct contact and deteriorating the adhesion between the two.

以下本発明をより詳細に説明する。The present invention will be explained in more detail below.

本発明は、金属基材を、電解液中で電解してその表面に
、生体内での耐食性に極めて優れた、該金属基材成分単
独の酸化物層又は金属基材成分と前記電解液中の金属成
分との混合酸化物層を形成した後、更にその表面に水酸
アパタイト等の生体との親和性の極めて良好なリン酸カ
ルシウム化合物の被覆層を形成したインブラント材とし
て好適なリン酸カルシウム化合物被覆複合材であり、こ
れにより生体内において十分大きな親和力で骨組織等と
接合できしかも長期間にわたって安定した親和力を保持
でき生体に悪影響を及ぼすことのない複合材を提供する
ことができる。
The present invention provides a method for electrolyzing a metal base material in an electrolytic solution and applying an oxide layer of the metal base component alone or a metal base component in the electrolyte solution to the surface of the metal base material, which has extremely excellent corrosion resistance in vivo. After forming a mixed oxide layer with a metal component of This makes it possible to provide a composite material that can be bonded to bone tissue etc. with a sufficiently large affinity in the living body, maintains stable affinity for a long period of time, and has no adverse effects on the living body.

本発明における金属基材とは、生体内において安定なチ
タン、チタン合金並びにステンレススチール、クロム−
コバルト基合金等から選択される基材をいう。ここでい
うチタン又はチタン合金とは、金属チタン及び例えばT
a、Nbs白金族金属、AI、 V等を添加したチタン
合金から選択されるものであり、又ステンレススチール
とは、JIS(日本工業規格)SUS304.310及
び316等であり、コバルト−クロム基合金とは、生体
埋め込み用のコバルト−クロム合金を含む耐食性合金を
含むものである。このような金属から成る金属基材はそ
の形状が板状、棒状等の平滑なものであっても、スポン
ジ状の多孔表面を有するものであっても、又エクスパン
ドメツシュや多孔板であってもよい。基材としてこれら
の金属を使用するのは、焼結体やガラスと比較して機械
的強度が十分に大きくかつ工作が容易だからであり、該
基材は予めその表面を水洗、酸洗、超音波洗浄、蒸気洗
浄等により洗浄化処理して不純物を除去して電解により
形成される酸化物層又は混合酸化物層の均一性を向上さ
せてもよ(、更に必要に応じて該表面をプラスト及び/
又はエツチング処理により粗面化して後述するリン酸カ
ルシウム化合物の被覆層との親和性を向上させるととも
に活性化を行うようにすることもできる。なお、エツチ
ングは化学的な方法ばかりでなく、スバタリング等の物
理的方法で行ってもよい。
The metal base materials used in the present invention include titanium, titanium alloys, stainless steel, and chromium-based materials, which are stable in vivo.
A base material selected from cobalt-based alloys, etc. Titanium or titanium alloy here refers to metallic titanium and, for example, T
Stainless steel is selected from titanium alloys with additions of a, Nbs platinum group metals, AI, V, etc., and stainless steel is JIS (Japanese Industrial Standards) SUS304.310 and 316, etc., and cobalt-chromium based alloys. includes corrosion-resistant alloys, including cobalt-chromium alloys, for bioimplantation. Metal substrates made of such metals may be smooth such as a plate or rod, or may have a sponge-like porous surface, or may be an expanded mesh or perforated plate. Good too. These metals are used as base materials because they have sufficiently high mechanical strength and are easy to work with compared to sintered bodies or glass. The uniformity of the oxide layer or mixed oxide layer formed by electrolysis may be improved by removing impurities through cleaning treatment using sonic cleaning, steam cleaning, etc. as well as/
Alternatively, the surface may be roughened by etching treatment to improve affinity with a coating layer of a calcium phosphate compound to be described later, and to activate the surface. Note that etching may be performed not only by a chemical method but also by a physical method such as sputtering.

次に、該金属基材を電解的に酸化してその表面に酸化物
層又は混合酸化物層を形成する。一般にチタン又はチタ
ン合金及びステンレススチール等の耐食性金属合金を陽
極とし、導電性電解液中で通電すると該陽極表面に不働
態の酸化物の薄層が形成されて電位が上昇し過不働態と
なり酸素を発生する。この電位になるまでの酸化物の薄
層の厚さは数人〜数百人であり、本発明の目的のために
効果があるが、より厚い酸化物層を形成することが好ま
しく、I A/d11”以上、望ましくは5 A/da
+g以上の電流を流すことにより前記不動[#化物層を
高電圧で破壊して厚い酸化物層を形成することができる
。該酸化物層の形成に必要な条件は、金属基材及び電解
液の種類等により異なるが、例えば炭酸ナトリウム、炭
酸カリウム、炭酸カルシウム、硫酸ナトリウム、硫酸カ
リウム及び硫酸カルシウム等を含む電解液では、40〜
200Vの電圧で、5〜200 AIdts”0)電流
密度で10秒から2分間処理することにより、所望の厚
さの酸化物層を得ることができる。この際電解液中で火
花の発生を伴うことがあり、該現象は液中火花放電と呼
ばれる。
Next, the metal substrate is electrolytically oxidized to form an oxide layer or mixed oxide layer on its surface. In general, titanium or a corrosion-resistant metal alloy such as titanium alloy or stainless steel is used as an anode, and when electricity is applied in a conductive electrolyte, a thin layer of passive oxide is formed on the surface of the anode, the potential increases, and a hyperpassive state occurs, resulting in oxygen occurs. The thickness of a thin layer of oxide up to this potential ranges from a few to a few hundred thick, and is effective for the purposes of the present invention, but it is preferable to form a thicker oxide layer, and IA /d11” or more, preferably 5 A/da
By passing a current of +g or more, the immobile [# oxide layer can be destroyed at a high voltage and a thick oxide layer can be formed. The conditions necessary for forming the oxide layer vary depending on the metal substrate and the type of electrolyte, but for example, in an electrolyte containing sodium carbonate, potassium carbonate, calcium carbonate, sodium sulfate, potassium sulfate, calcium sulfate, etc. 40~
An oxide layer of the desired thickness can be obtained by treatment at a voltage of 200 V and a current density of 5 to 200 AIdts for 10 seconds to 2 minutes, accompanied by the generation of sparks in the electrolyte. This phenomenon is sometimes called submerged spark discharge.

前記通電時に、金属基材の表面が一部電解液中に溶出し
、再び金属基材表面に酸化物の形で析出する現象が起こ
り、電解液中に金属イオンが存在すると該イオンを同時
に取り込んで析出しこの場合には、金属基材の成分であ
る金属と電解液中の金属との混合酸化物層が金属基材上
に形成されることになる0例えばチタン基材を使用し、
硫酸クロム水溶液中で極間を30w1として酸化を行う
と、約40Vの電圧で100A/dがの電流密度が得ら
れ、30秒から1分で0.1μm〜数十μmの厚さのク
ロムを含浸した酸化チタンの混合酸化物層が得られる。
When the current is applied, a part of the surface of the metal base material is eluted into the electrolyte solution, and a phenomenon occurs where the surface of the metal base material is deposited again in the form of an oxide on the surface of the metal base material, and if metal ions are present in the electrolyte solution, the ions are taken in at the same time. In this case, a mixed oxide layer of the metal that is a component of the metal base material and the metal in the electrolyte will be formed on the metal base material.For example, using a titanium base material,
When oxidation is carried out in an aqueous chromium sulfate solution with an electrode gap of 30 w1, a current density of 100 A/d can be obtained at a voltage of about 40 V, and chromium with a thickness of 0.1 μm to several tens of μm can be oxidized in 30 seconds to 1 minute. A mixed oxide layer of impregnated titanium oxide is obtained.

このように形成される酸化物層又は混合酸化物層は金属
基材全面に形成されるが、その表面は均一ではなく凹凸
があるので、その上に後述するリン酸カルシウム化合物
の被覆層を形成する際には実質接触面積が増大し強固な
密着性を得るために有効に働く。また該酸化物層又は混
合酸化物層は厚さが比較的厚く、結晶性は低く、一部電
解液成分を含む場合もあるので、必要に応じて加熱し安
定化することができる。加熱は空気中200〜700℃
で行うことが適当であり、加熱時間は適宜選択できるが
10分から3時間で適当である。200℃未満では酸化
物層に取り込まれることのあるOH基を分離することが
できず、また700℃を超えると金属基材自体の酸化が
進行し、酸化物層が安定化されても金属基材から剥離し
やすくなる。
The oxide layer or mixed oxide layer formed in this way is formed on the entire surface of the metal substrate, but the surface is not uniform and has irregularities, so when forming the coating layer of the calcium phosphate compound described below on it, it is difficult to This effectively increases the contact area and provides strong adhesion. Further, the oxide layer or mixed oxide layer is relatively thick, has low crystallinity, and may partially contain electrolyte components, so it can be stabilized by heating if necessary. Heating is 200-700℃ in air
The heating time can be selected as appropriate, but 10 minutes to 3 hours is appropriate. At temperatures below 200°C, OH groups that may be incorporated into the oxide layer cannot be separated, and at temperatures above 700°C, oxidation of the metal base material itself progresses, and even if the oxide layer is stabilized, the metal base It becomes easy to peel off from the material.

金属基材としてステンレススチールやコバルト−クロム
基合金を使用する場合には、チタン又はチタン合金の場
合と異なり、電解液の選択には注意を要する。即ち、酸
性溶液中で陽分極を行うと金属の表面が溶は出し酸化物
層を得にくくなる。
When stainless steel or a cobalt-chromium based alloy is used as the metal base material, care must be taken in selecting the electrolyte, unlike when using titanium or a titanium alloy. That is, when anodic polarization is performed in an acidic solution, the surface of the metal leaches out, making it difficult to obtain an oxide layer.

また強アルカリ溶液中では、生成した金属基材表面の酸
化物が僅かに溶は出すため十分成長した酸化物層が得ら
れないことがある。従ってpH6〜13の電解液を選択
する必要があり、その種類は問わないが、例えば各種金
属の炭酸塩、硫酸塩水溶液又はこれらを支持電解質とす
る有機浴が有効であり、有機浴に使用する有機化合物と
しては、例エバエチルアルコール、n−ブチルアルコー
ル及びイソプロピルアルコール等を挙げることができる
Further, in a strong alkaline solution, the generated oxide on the surface of the metal base material slightly dissolves, so that a sufficiently grown oxide layer may not be obtained. Therefore, it is necessary to select an electrolytic solution with a pH of 6 to 13. Although the type of electrolytic solution does not matter, for example, carbonate or sulfate aqueous solutions of various metals, or organic baths containing these as supporting electrolytes are effective, and they can be used in organic baths. Examples of organic compounds include ethyl alcohol, n-butyl alcohol, and isopropyl alcohol.

塩素等のハロゲンイオンを含む電解液でも同様にして酸
化物層又は混合酸化物層を形成することができるが、加
熱処理を行っても該層中にハロゲンイオンが残ることが
あり、長期間使用する間にはステンレススチールやコバ
ルト−クロム基合金が腐食することがあり、安定性の面
で問題があるため、これらを金属基材として使用する場
合には、ハロゲンを含む電解液を使用することは好まし
くない。
An oxide layer or mixed oxide layer can be formed in the same way with an electrolytic solution containing halogen ions such as chlorine, but halogen ions may remain in the layer even after heat treatment, making it difficult to use for a long period of time. Stainless steel and cobalt-chromium-based alloys may corrode during this process, which poses problems in terms of stability. Therefore, when using these as metal substrates, electrolytes containing halogens should be used. is not desirable.

この他にも、ステンレススチールやコバルト−クロム基
合金は酸化物層の形成速度が小さく、800℃以上の加
熱に耐えることができる。
In addition, stainless steel and cobalt-chromium based alloys have a low rate of oxide layer formation and can withstand heating of 800° C. or higher.

金属基材として上記したちの以外の金属や合金を使用す
る場合にも該金属等の特性に基づいて条件を適宜選定す
ることにより目的とする酸化物層を得ることができる。
Even when a metal or alloy other than those mentioned above is used as the metal base material, the desired oxide layer can be obtained by appropriately selecting conditions based on the characteristics of the metal.

次に、このようにして酸化物層又は混合酸化物層を形成
した金属基材の該酸化物層上にリン酸カルシウム化合物
の被WINを形成する。本発明においてリン酸カルシウ
ム化合物とは、主として水酸アパタイトを指称し、更に
本発明方法による水酸アパタイトの加熱焼成等により副
生ずると考えられるリン酸三カルシウム、リン酸水素カ
ルシウム、リン酸二水素カルシウムの他、不純物成分又
は酸化物層又は混合酸化物層中の成分と水酸アパタイト
とによって形成するリン酸カルシウム系の化合物を含む
ものである。
Next, WIN of a calcium phosphate compound is formed on the oxide layer of the metal base material on which the oxide layer or mixed oxide layer has been formed in this manner. In the present invention, the term "calcium phosphate compound" mainly refers to hydroxyapatite, and further includes tricalcium phosphate, calcium hydrogen phosphate, and calcium dihydrogen phosphate, which are thought to be by-products due to heating and firing of hydroxyapatite in the method of the present invention. In addition, it contains a calcium phosphate compound formed by impurity components or components in the oxide layer or mixed oxide layer and hydroxyapatite.

被覆形成の方法や条件は特に限定されないが、代表的な
方法としては、プラズマ溶射法と熱分解法がある。
The method and conditions for forming the coating are not particularly limited, but representative methods include plasma spraying and thermal decomposition.

プラズマ溶射法は、前述の通り高価な水酸アパタイトを
使用し、その歩留まりが不十分なこと等の問題点を有す
る反面、容易に被覆を形成することができるという長所
を有している。しかし、従来は金属上に直接溶射をする
場合には、十分な密着性を得るためには厳しい条件で溶
射を行わなければならず、高価な水酸アパタイトの一部
が分解してしまうという欠点があったが、本発明では該
リン酸カルシウム化合物の被覆層の下地が酸化物層であ
り水酸アパタイトが分解しない条件で溶射を行っても十
分強固な密着性を得ることができる。
Although the plasma spraying method uses expensive hydroxyapatite as described above and has problems such as insufficient yield, it has the advantage of being able to easily form a coating. However, in the past, when spraying directly onto metal, the spraying had to be carried out under harsh conditions in order to obtain sufficient adhesion, which resulted in the decomposition of some of the expensive hydroxyapatite. However, in the present invention, the base of the coating layer of the calcium phosphate compound is an oxide layer, and even if thermal spraying is performed under conditions where the hydroxyapatite does not decompose, sufficiently strong adhesion can be obtained.

溶射の条件は、例えばアルゴンガスと水素から成る雰囲
気中、30kW程度の電力で十分であり、水酸アパタイ
トの粒径は125〜345メツシュ程度の中位の粒径と
することが望ましい。
The thermal spraying conditions are, for example, an atmosphere consisting of argon gas and hydrogen, and a power of about 30 kW is sufficient, and the grain size of the hydroxyapatite is preferably a medium grain size of about 125 to 345 mesh.

熱分解法を採用する場合には、リン酸カルシウム化合物
、好ましくは水酸アパタイトを溶解、望ましくは飽和さ
せた例えば硝酸水溶液を前記酸化物層の表面に塗布し、
加熱焼成して金属基材の前記酸化物層と強固な密着性を
有する被覆層を形成する。この場合の加熱焼成生成物は
、主として水酸アパタイトから成るリン酸カルシウム化
合物である。加熱焼成の条件は、使用する液、特に硝酸
濃度によって最適値が変化し、その最適温度は硝酸濃度
が高い程上昇し、10%硝酸では350〜500℃、6
0%硝酸では450〜800℃が最適である。加熱焼成
温度は300〜800℃が望ましく、300℃未満では
リン酸カルシウム化合物の被覆層の強度が不十分となり
、800℃以上では金属基材の酸化速度が大きくなり、
該金属基材と前記酸化物層との間で剥離が生じやすくな
る。
When a thermal decomposition method is employed, a calcium phosphate compound, preferably hydroxyapatite, is dissolved, preferably saturated, for example, in an aqueous nitric acid solution, and applied to the surface of the oxide layer,
A coating layer having strong adhesion to the oxide layer of the metal base material is formed by heating and baking. The heated and calcined product in this case is a calcium phosphate compound mainly composed of hydroxyapatite. The optimal heating and firing conditions vary depending on the liquid used, especially the nitric acid concentration, and the optimal temperature increases as the nitric acid concentration increases.
For 0% nitric acid, 450 to 800°C is optimal. The heating and firing temperature is preferably 300 to 800°C; if it is less than 300°C, the strength of the calcium phosphate compound coating layer will be insufficient, and if it is higher than 800°C, the oxidation rate of the metal base material will increase.
Peeling is likely to occur between the metal base material and the oxide layer.

該加熱焼成は、空気に代表される酸化性雰囲気中で行っ
てもよいが、アルゴンに代表される不活性雰囲気中で行
うことが好ましい。
The heating and firing may be performed in an oxidizing atmosphere such as air, but is preferably performed in an inert atmosphere such as argon.

またこのほかに、炭酸カルシウムとリン酸カルシウムの
適止の混合物溶液を塗布し、酸化性又は不活性雰囲気中
で加熱焼成を行って被覆層を形成することができるが、
この場合には更に水熱処理を行って結晶性を向上させる
ことが好ましい。
In addition to this, a coating layer can be formed by applying a suitable mixture solution of calcium carbonate and calcium phosphate and heating and baking it in an oxidizing or inert atmosphere.
In this case, it is preferable to further perform hydrothermal treatment to improve crystallinity.

以上の操作により、工作性が良好でしかも機械強度が十
分にあり、しかも骨組織生体内での親和性を高め長期間
にわたって生体との間に安定した密着性を保持できるイ
ンブラント材を得ることができる。
Through the above operations, it is possible to obtain an implant material that has good workability, has sufficient mechanical strength, has increased affinity with bone tissue in vivo, and can maintain stable adhesion with the living body for a long period of time. Can be done.

(実施例) 以下実施例により本発明をより詳細に説明するが、該実
施例は本発明を限定するものではない。
(Examples) The present invention will be explained in more detail with reference to Examples below, but these Examples do not limit the present invention.

大潮史上 厚さ1龍のJISI種チタフチタン圧延板0m、横29
mmの大きさに切り出し、トリクロルエチレン蒸気中で
脱脂し金属基材とした。該金属基材を陽極とし、5%炭
酸カリウム水溶液を電解液として通電を行った。電流密
度を50 A/d+m”としたところ液中で火花を発し
、チタン基材の一部が溶解して液が白濁した。このとき
の電圧は70Vであった0通電を1分間行い、チタン基
材を取り出したところ該チタン基材の表面は梨地状とな
っており、白色の硬い被覆で覆われていた。該チタン基
材を脱イオン水で洗浄し乾燥後X線回折計を用いて表面
の白色被覆の同定を行ったところ結晶度の低いルチル(
Ti(h)であることが分かった。
JISI type titanium rolled plate with thickness of 1 dragon in spring tide history 0m, width 29
It was cut to a size of mm and degreased in trichlorethylene vapor to obtain a metal base material. Electricity was applied using the metal base material as an anode and a 5% potassium carbonate aqueous solution as an electrolyte. When the current density was set to 50 A/d+m'', sparks were emitted in the liquid, part of the titanium base material dissolved, and the liquid became cloudy.The voltage at this time was 70V. When the base material was taken out, the surface of the titanium base material was satin-like and covered with a white hard coating.The titanium base material was washed with deionized water, dried, and then examined using an X-ray diffractometer. The white coating on the surface was identified as rutile with low crystallinity (
It turned out to be Ti(h).

該酸化物層を形成したチタン基材の表面に、熱分解法を
用いて水酸アパタイトを主とする被覆層の形成を行つた
。被覆形成用塗布液として、水酸アパタイト粉末3gを
25%硝酸水溶液10gに溶解した液を用い、該塗布液
を前記基材に塗布し、アルゴンガス雰囲気中で500℃
15分間熱分解を行った。更に塗布−加熱の操作を4回
繰り返した。これにより実質的に水酸アパタイトから成
る極めて強固な被覆層が酸化チタンの酸化物層を介して
チタン基材上に形成された。
A coating layer mainly composed of hydroxyapatite was formed on the surface of the titanium base material on which the oxide layer was formed using a thermal decomposition method. As a coating solution for coating formation, a solution prepared by dissolving 3 g of hydroxyapatite powder in 10 g of a 25% nitric acid aqueous solution was used, and the coating solution was applied to the base material and heated at 500° C. in an argon gas atmosphere.
Pyrolysis was carried out for 15 minutes. Further, the coating-heating operation was repeated four times. As a result, an extremely strong coating layer consisting essentially of hydroxyapatite was formed on the titanium substrate via the titanium oxide oxide layer.

叉施班1 実施例1と同様にチタン基材を準備した。該基材を陽極
として、50g/IIの硫酸コバルトと50g/lの硫
酸の混合水溶液を電解液として通電した。電流密度を1
00 A/dll”としたところ、液中で火花を発し、
チタン基材の一部が溶解して液が白濁した。このときの
電圧は50Vであった。
Forging Team 1 A titanium base material was prepared in the same manner as in Example 1. Using the base material as an anode, electricity was applied using a mixed aqueous solution of 50 g/II cobalt sulfate and 50 g/l sulfuric acid as an electrolyte. Current density is 1
00 A/dll”, sparks were emitted in the liquid,
Part of the titanium base material dissolved and the liquid became cloudy. The voltage at this time was 50V.

通電を1分間行い、チタン基材を取り出したところ該チ
タン基材の表面は梨地状となっており、黄緑色の硬い被
覆で覆われていた。該チタン基材を脱イオン水で洗浄し
乾燥後500℃の空気を流した電気炉に入れて1時間加
熱した。この加熱による色調の変化は観察されなかった
。このように作製した混合酸化物層の構成成分と構造を
調べるために、X線マイクロアナライザーにより元素分
析を、またX線回折針により状態分析を行った。元素分
析の結果、構成成分はTi:Co=95 : 5 (金
属モル%)であることが分かった。xi回折では、ルチ
ル型結晶相でルチル型酸化チタン(TiO□)にC。
When electricity was applied for 1 minute and the titanium base material was taken out, the surface of the titanium base material was found to be satin-like and covered with a yellow-green hard coating. The titanium base material was washed with deionized water, dried, and then placed in an electric furnace flowing air at 500° C. and heated for 1 hour. No change in color tone was observed due to this heating. In order to investigate the constituent components and structure of the mixed oxide layer produced in this manner, elemental analysis was performed using an X-ray microanalyzer, and state analysis was performed using an X-ray diffraction needle. As a result of elemental analysis, it was found that the constituent components were Ti:Co=95:5 (metal mol%). In xi diffraction, C is found in rutile-type titanium oxide (TiO□) in the rutile-type crystal phase.

が固溶したものであることが分かった。該チタン基材に
実施例1と同一条件で水酸アパタイトの被覆層を形成し
た。テープテストにより該被覆層を形成したチタン基材
の耐着強度を測定したが、被覆の剥離は全く認められな
かった。
was found to be a solid solution. A coating layer of hydroxyapatite was formed on the titanium base material under the same conditions as in Example 1. The adhesion strength of the titanium base material on which the coating layer was formed was measured by a tape test, and no peeling of the coating was observed.

裏旌■1 厚さIRのステンレススチール5US316L板を縦4
0m、横201mの大きさに切り出し、表面を#80の
スチールショットを使用してブラスト掛けを行い粗面化
した。該5US316L板を40℃の25%塩酸水溶液
中に30分間浸漬して表面の附着物を除去した。
Ura 挌 ■ 1 IR thickness stainless steel 5US316L plate vertically 4
It was cut out to a size of 0 m by 201 m in width, and the surface was roughened by blasting using #80 steel shot. The 5US316L plate was immersed in a 25% aqueous hydrochloric acid solution at 40° C. for 30 minutes to remove deposits on the surface.

該ステンレススチール基材を陽極とし、pH12に調整
した0、5モル%の炭酸カルシウム水溶液中、95℃で
電解を行った。最初に0.5A/dI112の電流密度
で電解を行ったところ表面に酸化物の形成が認められな
かったので、電流密度をIA/dm2にして電解を続け
た。約30分間電解を続けたところ基材表面が黒色とな
り電解電圧が1■上昇した。更に60分間電解を続けた
ところ更に2V電圧上昇があり、急激に電圧が上昇しは
じめたため電解を停止した。該ステンレススチール基材
を脱イオン水で洗浄後350℃の電気炉に入れて1時間
加熱した。該基材の表面をX線回折法で調べたところ、
結晶性の低いα−Fez03を主とする酸化物であるこ
とが分かった。
Using the stainless steel base material as an anode, electrolysis was performed at 95° C. in a 0.5 mol % calcium carbonate aqueous solution adjusted to pH 12. When electrolysis was first performed at a current density of 0.5 A/dI112, no oxide formation was observed on the surface, so electrolysis was continued at a current density of IA/dm2. When electrolysis continued for about 30 minutes, the surface of the substrate turned black and the electrolysis voltage increased by 1 inch. When electrolysis was continued for another 60 minutes, the voltage increased by another 2V, and as the voltage began to rise rapidly, electrolysis was stopped. After washing the stainless steel substrate with deionized water, it was placed in an electric furnace at 350° C. and heated for 1 hour. When the surface of the base material was examined by X-ray diffraction method, it was found that
It was found that the oxide was mainly composed of α-Fez03 with low crystallinity.

次に該ステンレススチール基材上にプラズマ溶射法によ
り水酸アパタイトを主とするリン酸カルシウム化合物の
被覆層を形成した。粒度125〜345メツシユの試薬
級の水酸アパクイト粉末を溶射材とし、アルゴン:水素
=5:1(体積比)のプラズマガスを使用しアーク電圧
60V、アーク電流500Aで、厚さ約100μmの被
覆層が形成された。該被覆層はリン酸三カルシウムを僅
かに含む水酸アパタイトであった。該被覆層はテープテ
ストによっても全く剥離を生ずることがなく、極めて強
固な耐着性を有することが分かった。
Next, a coating layer of a calcium phosphate compound mainly composed of hydroxyapatite was formed on the stainless steel base material by plasma spraying. Using reagent-grade hydroxyapacite powder with a particle size of 125 to 345 mesh as a thermal spraying material, and using plasma gas with an argon:hydrogen ratio of 5:1 (volume ratio), an arc voltage of 60 V and an arc current of 500 A were used to coat the coating to a thickness of approximately 100 μm. A layer was formed. The coating layer was hydroxyapatite containing a small amount of tricalcium phosphate. The coating layer did not peel off at all even in a tape test, and was found to have extremely strong adhesion resistance.

(発明の効果) 本発明では、第1に金属基材として特に耐食性のあるチ
タン、チタン合金又はステンレススチール又はクロム−
コバルト基合金等を使用し更にその表面に該金属基材の
金属成分を含む金属の酸化物層を電解的な酸化により形
成してあり、本発明に関わる複合材を人工骨や人工歯根
とした場合は生体に無害かつ安定で溶出の可能性も殆ど
なく、しかも機械強度が十分に大きく工作も容易である
(Effects of the Invention) In the present invention, firstly, the metal base material is titanium, titanium alloy, stainless steel, or chromium-based material, which has particularly corrosion resistance.
A cobalt-based alloy or the like is used, and a metal oxide layer containing the metal components of the metal base material is formed on the surface by electrolytic oxidation, and the composite material according to the present invention is used as an artificial bone or an artificial tooth root. It is harmless to living organisms, stable, and has almost no possibility of elution, and has sufficient mechanical strength and is easy to work with.

第2に、前記金属基材表面に水酸アパタイトを代表とす
るリン酸カルシウム化合物を被覆しであるため、生体内
における親和性が十分に太き(生体内の骨等と容易にか
つ十分な強度をもって接合することができる。
Second, because the surface of the metal base material is coated with a calcium phosphate compound, typified by hydroxyapatite, it has sufficient in-vivo affinity (it can easily and with sufficient strength be bonded to in-vivo bones, etc.). Can be joined.

第3に、上記した通り、金属基材の表面に金属の酸化物
層を形成しであるため、生体埋め込み後に、親和性に特
に優れたリン酸カルシウム化合物が長期間のうちに骨組
織に吸収された後にも、前記金属基材上に形成された酸
化物層が、骨組織と金属基材が直接接触することを防止
し、骨組織と金属基材間の親和性が不十分であることに
基づく両者の密着性の劣化等を防止して、長期間にわた
って本発明に係わるリン酸カルシウム化合物被覆複合材
を、インブラント材としての安定性に変化を生じさせる
ことなく使用することを可能にする。
Thirdly, as mentioned above, since a metal oxide layer is formed on the surface of the metal base material, the calcium phosphate compound, which has particularly excellent affinity, is absorbed into the bone tissue over a long period of time after implantation. Even later, the oxide layer formed on the metal base material prevents direct contact between the bone tissue and the metal base material, which is based on the insufficient affinity between the bone tissue and the metal base material. By preventing deterioration of the adhesion between the two, it is possible to use the calcium phosphate compound-coated composite material of the present invention for a long period of time without causing any change in stability as an implant material.

第4に、リン酸カルシウム化合物の被Mlと金属基材と
の間に金属酸化物層を形成してあり、該被覆層と金属酸
化物層は比較的穏やかな条件で溶射しても十分強固な接
合が得られるため、該被覆層を形成する際に、被覆の形
成が容易であるが水酸アパタイトの分解のため従来は使
用できなかった溶射法を使用することが可能になる。
Fourth, a metal oxide layer is formed between the Ml to be coated with the calcium phosphate compound and the metal base material, and the coating layer and the metal oxide layer have a sufficiently strong bond even when sprayed under relatively mild conditions. Therefore, when forming the coating layer, it becomes possible to use a thermal spraying method which is easy to form a coating but could not be used conventionally due to the decomposition of hydroxyapatite.

Claims (6)

【特許請求の範囲】[Claims] (1)金属基材を陽極とし導電性の電解液中において該
金属基材を電解的に酸化して、金属基材成分単独の酸化
物層又は金属基材成分と前記電解液中の金属成分との混
合酸化物層を形成し、必要に応じて該金属基材を加熱し
てその表面を安定化した後、更に該表面にリン酸カルシ
ウム化合物の被覆層を形成することから成るリン酸カル
シウム化合物被覆複合材の製造方法。
(1) Using a metal base material as an anode, the metal base material is electrolytically oxidized in a conductive electrolyte solution to form an oxide layer of the metal base component alone or a metal base component and the metal component in the electrolyte solution. A calcium phosphate compound-coated composite material comprising forming a mixed oxide layer with a metal substrate, heating the metal base material as necessary to stabilize its surface, and then further forming a coating layer of a calcium phosphate compound on the surface. manufacturing method.
(2)チタン又はチタン合金である金属基材を、硫酸、
硫酸塩及び/又は炭酸塩を含む電解液中で、1A/dm
^2以上の電流密度で電解処理を行って、前記金属基材
表面に酸化物層又は混合酸化物層を形成するようにした
特許請求の範囲第1項に記載の製造方法。
(2) A metal base material that is titanium or a titanium alloy is treated with sulfuric acid,
1A/dm in an electrolyte containing sulfate and/or carbonate
2. The manufacturing method according to claim 1, wherein an oxide layer or a mixed oxide layer is formed on the surface of the metal substrate by performing electrolytic treatment at a current density of ^2 or more.
(3)チタン又はチタン合金である金属基材を、コバル
ト及び/又はクロムイオンを含む電解液中で、1A/d
m^2以上の電流密度で電解処理を行って、前記金属基
材表面にコバルト及び/又はクロムを含む混合酸化物層
を形成するようにした特許請求の範囲第1項に記載の製
造方法。
(3) A metal base material that is titanium or a titanium alloy is heated at 1 A/d in an electrolytic solution containing cobalt and/or chromium ions.
2. The manufacturing method according to claim 1, wherein a mixed oxide layer containing cobalt and/or chromium is formed on the surface of the metal substrate by performing electrolytic treatment at a current density of m^2 or higher.
(4)ステンレススチール又はクロム−コバルト基合金
である金属基材を、中性又は弱アルカリ性水溶液又は有
機溶液である電解液中で1A/dm^2以上の電流密度
で電解処理を行って、前記金属基材表面に酸化物層を形
成するようにした特許請求の範囲第1項に記載の製造方
法。
(4) A metal base material made of stainless steel or a chromium-cobalt based alloy is electrolytically treated in an electrolytic solution which is a neutral or weakly alkaline aqueous solution or an organic solution at a current density of 1 A/dm^2 or more, and the above-mentioned The manufacturing method according to claim 1, wherein an oxide layer is formed on the surface of the metal base material.
(5)ステンレススチール又はクロム−コバルト基合金
である金属基材を、コバルト及び/又はクロムを含む電
解液中で1A/dm^2以上の電流密度で電解処理を行
って、前記金属基材表面にコバルト及び/又はクロムを
含む混合酸化物層を形成するようにした特許請求の範囲
第1項に記載の製造方法。
(5) A metal base material that is stainless steel or a chromium-cobalt based alloy is electrolytically treated in an electrolytic solution containing cobalt and/or chromium at a current density of 1 A/dm^2 or more to improve the surface of the metal base material. 2. The manufacturing method according to claim 1, wherein a mixed oxide layer containing cobalt and/or chromium is formed on the substrate.
(6)酸化物層又は混合酸化物層の加熱を、空気中20
0〜700℃で行うようにした特許請求の範囲第1項か
ら第5項までのいずれかに記載の製造方法。
(6) Heating the oxide layer or mixed oxide layer in air for 20
The manufacturing method according to any one of claims 1 to 5, wherein the manufacturing method is carried out at a temperature of 0 to 700°C.
JP61247161A 1986-10-17 1986-10-17 Production of composite material coated with calcium phosphate Granted JPS6399868A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61247161A JPS6399868A (en) 1986-10-17 1986-10-17 Production of composite material coated with calcium phosphate
CA000549336A CA1269898A (en) 1986-10-17 1987-10-15 Process for production of calcium phosphate compound- coated composite material
DE8787830365T DE3776066D1 (en) 1986-10-17 1987-10-16 METHOD FOR PRODUCING A COMPOSITE, COATED WITH A CALCIUM PHOSPHATE COMPOUND.
EP87830365A EP0264354B1 (en) 1986-10-17 1987-10-16 Process for production of calcium phosphate compoundcoated composite material
US07/109,378 US4818572A (en) 1986-10-17 1987-10-19 Process for production of calcium phosphate compound-coated composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61247161A JPS6399868A (en) 1986-10-17 1986-10-17 Production of composite material coated with calcium phosphate

Publications (2)

Publication Number Publication Date
JPS6399868A true JPS6399868A (en) 1988-05-02
JPH0214060B2 JPH0214060B2 (en) 1990-04-06

Family

ID=17159343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61247161A Granted JPS6399868A (en) 1986-10-17 1986-10-17 Production of composite material coated with calcium phosphate

Country Status (1)

Country Link
JP (1) JPS6399868A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128793A (en) * 1992-10-15 1994-05-10 Natl Inst For Res In Inorg Mater Apatite film forming electrolyte
JP2010516403A (en) * 2007-01-26 2010-05-20 ボストン サイエンティフィック リミテッド Implantable medical endoprosthesis
US8444017B2 (en) 2007-03-09 2013-05-21 Kao Corporation Pump-equipped container and duplex discharge container

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234566A (en) * 1985-08-08 1987-02-14 住友化学工業株式会社 Production of bone implant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234566A (en) * 1985-08-08 1987-02-14 住友化学工業株式会社 Production of bone implant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128793A (en) * 1992-10-15 1994-05-10 Natl Inst For Res In Inorg Mater Apatite film forming electrolyte
JP2010516403A (en) * 2007-01-26 2010-05-20 ボストン サイエンティフィック リミテッド Implantable medical endoprosthesis
US8444017B2 (en) 2007-03-09 2013-05-21 Kao Corporation Pump-equipped container and duplex discharge container

Also Published As

Publication number Publication date
JPH0214060B2 (en) 1990-04-06

Similar Documents

Publication Publication Date Title
EP0264354B1 (en) Process for production of calcium phosphate compoundcoated composite material
US4965088A (en) Calcium phosphate-coated composite material and process for production thereof
US6527938B2 (en) Method for microporous surface modification of implantable metallic medical articles
Songur et al. The plasma electrolytic oxidation (PEO) coatings to enhance in-vitro corrosion resistance of Ti–29Nb–13Ta–4.6 Zr alloys: The combined effect of duty cycle and the deposition frequency
US5413693A (en) Electrocrystallization of strongly adherent brushite coatings on prosthetic alloys
JP5135439B2 (en) Method for forming a bioactive coating
KR100985005B1 (en) Metal implants
US4794023A (en) Process for producing a calcium phosphate compound coated composite material
JP4457230B2 (en) Surface treatment method for medical implant material
KR20040098575A (en) Electrolytic electrode and process of producing the same
KR100402919B1 (en) An electrochemical surface treating method for implants comprising metallic titanium or titanium alloys
KR101015462B1 (en) Titanium dioxide ceramics for implant and fabricating method thereof
JPS6399868A (en) Production of composite material coated with calcium phosphate
CN114377198B (en) Biodegradable magnesium-based material containing degradable film layer and preparation method and application thereof
JPH08173523A (en) Inbone implant and its manufacture
JP3654204B2 (en) Oxygen generating anode
JPS6399869A (en) Production of composite material coated with calcium phosphate
JPH07229000A (en) Oxygen generating anode
JP3129041B2 (en) Implant and manufacturing method thereof
JPH0747116A (en) Manufacture of implant
JPH0747115A (en) Implant and its manufacture
CN104762645A (en) Medical implant material and preparation method thereof
KR20100122783A (en) Ha coating methods after two-step surface modification of dental implant for bioactivity
JPH0420988B2 (en)
JPH078511A (en) Implant and manufacture thereof