JPS639976B2 - - Google Patents
Info
- Publication number
- JPS639976B2 JPS639976B2 JP58106719A JP10671983A JPS639976B2 JP S639976 B2 JPS639976 B2 JP S639976B2 JP 58106719 A JP58106719 A JP 58106719A JP 10671983 A JP10671983 A JP 10671983A JP S639976 B2 JPS639976 B2 JP S639976B2
- Authority
- JP
- Japan
- Prior art keywords
- band
- cross
- sectional area
- hollow
- bands
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000004806 packaging method and process Methods 0.000 claims description 38
- 229920005989 resin Polymers 0.000 claims description 19
- 239000011347 resin Substances 0.000 claims description 19
- 238000005192 partition Methods 0.000 claims description 13
- 229920005992 thermoplastic resin Polymers 0.000 claims description 6
- 239000004743 Polypropylene Substances 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 14
- 238000012856 packing Methods 0.000 description 12
- 238000005452 bending Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000011084 recovery Methods 0.000 description 6
- 230000007547 defect Effects 0.000 description 5
- 208000026438 poor feeding Diseases 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000006260 foam Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000004088 foaming agent Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000003763 resistance to breakage Effects 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Package Frames And Binding Bands (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Description
本発明は熱可塑性樹脂製梱包用中空バンドに関
するものである。
従来のポリプロピレン製の汎用梱包バンドは、
単に矩形断面のダイスから溶融押出した後、これ
を冷却固化及び延伸したもので、バンドは比較的
固く、梱包時にダンボール箱等の被梱包物に喰い
込んだり、傷付けたりし、更には梱包後の荷役作
業時にバンドを持つ手を切つたり痛めることがあ
つた。
上記の問題を解決するために、発泡剤を添加
し、溶融押出し時に発泡剤を分解して発泡させた
発泡バンドが提供されているが、この発泡バンド
はバンド中に小さな泡が無数に断続的に存在し、
このため充分な破断強力を得ることができない。
また、梱包用バンドの大部分は自動梱包機に使用
されているが、その際、バンドには長さ方向の剛
性が要求される。
バンドに長さ方向の剛性がないと、バンド送り
時にアーチ通過性が悪く送り不良の原因となる。
梱包ラインが無人化及び高速化している昨今では
自動梱包機への機械適性が、バンドの基本物性と
同様非常に重要である。ところが、発泡バンドは
長さ方向の曲げ剛性が小さいために自動梱包機へ
の機械適性が劣り、梱包不良発生率の点で問題が
あつた。
本発明は係る従来の欠点を解決すべく鋭意研究
した結果なされたもので、その目的は破断強力が
大きく、剛性があつて自動梱包機適性に優れ、か
つ軟らかで手触りの良い梱包用中空バンドを提供
するにある。
即ち、本発明によれば、熱可塑性樹脂をダイス
より一体的に押出した後長手方向に延伸配向され
た熱可塑性樹脂製バンドであつて、前記バンド
は、相互に平行に配設され、実質的に同一な肉厚
の上下辺および左右側辺から形成される略矩形状
の外周と、前記上下辺間に連接され前記外周を長
手方向に平行に仕切る仕切脚とからなり、前記仕
切脚によつて相隣接する多数の中空部を画成する
とともに、この中空部の横断面積が前記外周の全
断面積の20〜80%、前記バンドの厚みが0.3〜0.7
mm、前記外周と仕切脚とからなる樹脂部の単位断
面積当りの強度が40Kg/mm2以上である。
このような本発明の中空バンドでは、成形時に
外周部分も仕切脚部分も冷却が均一に行なわれる
ため、これらの間で分子の配向にムラが生ぜず、
延伸配向性に優れ、破断強力の大きいバンドが容
易に得られる。これに対し、汎用梱包バンドは単
に矩形の断面のダイスから溶融状態で押出し冷却
固化するため、外周部分と中心部分とでは冷却速
度が異なるため結晶状態が外周部分と中心部分で
異なり、そのため中空バンドに比べ延伸配向性が
劣り、破断強力が充分出ないものと考えられる。
尚、発泡バンドはバンド中に小さな泡が無数に断
続的に存在し、これが欠陥となつて切断し破断強
力が出ない。
上記の理由から本発明の中空バンドでは、その
単位樹脂部断面積当りの破断強力は汎用梱包バン
ドの1.3〜1.5倍、また発泡バンドの1.5〜2.0倍も
の高い値が得られた。従つて中空バンドは汎用梱
包バンドの67〜77%、発泡バンドの50〜67%の樹
脂材料で同一の破断強力が得られることになり、
樹脂材料の節減とコストダウンが達成されるとと
もに単位長さ当りの重量が軽くなり、バンド自体
の荷扱いが容易となる。
また、本発明の中空バンドの場合は長さ方向に
平行した多数の仕切脚が入つており、また樹脂部
断面積の割りには厚みが大きくできるためにバン
ドの長さ方向の曲げ剛性は大きく、自動梱包機へ
の機械適性が優れている。
更に中空バンドは空気中間層があるために、バ
ンドの幅方向の剛性は小さく、全体として軟らか
いので、梱包時に被梱包物を傷付けることもなく
梱包後の荷役作業時にバンドを持つても、手を切
つたり手を痛めることがない。これに対し、発泡
バンドの場合は破断強力の点、及び製造上の問題
から発泡倍率は1.5倍(空間部断面積比は全体の
35%)以上は上げるのが困難であるが、中空バン
ドの場合は破断強力及び製造上の安定性も優れて
いるので用途に応じ空間部の比率を幅広く任意に
変えられる。この特徴は手動梱包用として使用さ
れる場合に更に有用なものとなる。
梱包用バンドの大部分は自動梱包機で使用され
るが、手動梱包用としても多く使われている。例
えば熱溶着機構の付いた手動引締機による梱包,
手動引締機と封縅機とを使つた金具シール梱包,
スピードストツパーやバツクル梱包,更には手結
び梱包と手動梱包にも多くの方法がある。これら
いずれの場合も、梱包作業時に手でバンドを梱包
物に巻付け引つ張るという操作を行なうために、
自動梱包機用の場合より更にバンドの軟らかさ、
手触りの良さが要求される。従つて、破断強力が
大きく空間部の比率を幅広く任意に変えられ、嵩
高で軟らかく手触りの良い中空バンドは手動梱包
用にも従来のバンドよりはるかに適している。更
に中空バンドは、その断面形状の特異性から金具
シール強力,スピードストツパー及びバツクル強
度さらに結んだ時の結節強度が優れている。これ
は、従来のバンドが金具シール、スピードストツ
パー,バツクル及び結び目のシール部が滑るため
強力が出なかつたのに対し、中空バンドは局部的
な集中応力に対し潰れるために滑りが発生せず高
いシール強力が得られるのである。
以上要約すると、中空バンドは汎用梱包バンド
及び発泡バンドに対し次の様な特徴を持つてい
る。
単位樹脂部断面積当りの強度が優れている。
長さ方向の剛性があり、自動梱包機への機械
適性が優れている。
幅方向の剛性は小さく、バンドは軟らかく手
触りが良い。
空間部の比率を幅広く任意に変えられる。
金具シール強力,スピードストツパー強力及
び結節強力が優れている。
ここで、本発明の中空バンドの断面形状につい
て説明する。
中空バンドの断面形状は第2図〜第3図に示す
が如く種々あるが、いずれの断面形状にしても相
互に平行に配設され、実質的に同一な肉厚の上下
辺1,1と左右側辺1′,1′とから形成される略
矩形状の外周内に多数の中空部2が、長手方向に
走行する仕切脚3によつて画成され、中空部は全
断面積の20〜80%で、上下辺1,1間の厚みは
0.3〜0.7m/mで、且つ、外周と仕切脚3とから
なる樹脂部の単位断面積当りの強度が40Kg/mm2以
上であることが必要である。
すなわち、中空部が全断面積の20%未満の場合
は、充分な単位樹脂部断面積当りの破断強度が得
られず、また軟らかさが不充分で梱包時に梱包物
を傷つけたり荷役時に手を切つたり手を痛めたり
する。他方中空部が80%を越える場合にはバンド
は潰れ易くなり、自動梱包機の送りローラー及び
引締めローラーで押えられた時に潰れるためにバ
ンドの長さ方向の剛性が低下し、送り不良のトラ
ブルが発生しやすくなる。
一方、全体の厚みが0.3m/m未満の場合にも、
長さ方向の曲げ剛性が小さくなり、送り不良の発
生により自動梱包機への機械適性が低下する。逆
に厚みが0.7m/mを越る場合にはバンドは長さ
方向に曲がり癖が付きやすくまた折れやすい。す
なわち、バンドは紙管に巻いて供給されるが紙管
に巻いた状態の巻き癖が残りやすく、自動梱包機
で梱包する際、バンドはチヤンバー内に留め込ま
れるがその時に折れやすい。これが送り不良及び
引締め不良の原因となり機械適性が低下する。
樹脂部断面積が上と下で異なる場合には、断面
積の大きい面を内にして幅方向に反り返り、左と
右で異なる場合には断面積の大きい側を内にして
長さ方向に蛇行する現象が発生し、いずれもバン
ド送り及び引締め不良が発生しやすくなり、自動
梱包機への機械適性が低下する。
尚、本願明細書に記するバンド断面積、樹脂部
断面積、空間部断面積比、破断強度(単位樹脂部
断面積強度、以下同じ)、長さ方向剛性、折れに
くさ、全自動梱包機適性、幅方向剛性、金具シー
ル強力、スピードストツパー強力、結節強力、潰
れにくさ、長さ方向曲がり癖、及び長さ方向蛇行
の測定は各々次のように行なつた。
・ バンド断面積は一定長のバンド重量を密度勾
配管で求めたバンドの見掛け比重で除して求め
た(但し、中空バンドは拡大写真より実測によ
り求めた。)。樹脂部断面積は一定長のバンドの
重量を、ホツトプレスにてバンドを溶融・脱泡
して求めた真比重で除して求め、空間部断面積
比はバンド断面積と樹脂部断面積の差から求め
た。
・ 破断強度の測定はチヤツク間200mmの試料を
200mm/分の引張速度で伸長させ、破断時の強
力を求め、これを樹脂部断面積で除して、破断
強度とした。
・ 長さ方向の剛性と折れにくさは長さ80mmの試
料を支点間47mmの2つの支点間に乗せ、その中
央に第3の支点を当てて、第3の支点を100
mm/分の速度で下げていつた時の最大応力を長
さ方向の剛性とし、その時の歪みを折れにくさ
とした。すなわち、最大応力が大きいもの程長
さ方向の剛性は大きく、その時の歪みが大きい
程折れにくいバンドである。尚、自動梱包機適
性からは各々110g以上、5.5mm以上が必要であ
る。
・ 全自動梱包機適性は、アーチ寸法1000W×
800HmmのD社全自動梱包機を用い、300W×
250H×500Lの木箱を2000回梱包し、その時に
発生した不良回数で調べた。全自動梱包用バン
ドとしては不良発生回数が0であることが要求
される。
・ 巾方向の剛性は長さ30mmの試料を、巾方向に
垂直に立て10mm/分の速度で圧縮して折れ曲が
る時の最大応力を幅方向の剛性とした。この巾
方向の剛性の小さいもの程被梱包物に喰い込ん
だり、傷付けたりすることもなく、バンドを握
つた時も軟らかく感じられる。
・ 金具シール強力は、厚み0.4mm、長さ27.5mm
の汎用オープンシールを封織機でシールした試
料を破断強力と同一方法にて測定し、スピード
ストツパー強度はスピードストツパーでバンド
の両端を固定した試料を、また結節強度は手結
びした試料を破断強度と同一方法にて測定し
た。
・ 潰れにくさは自動梱包機の送りローラーや引
締めローラーでの圧縮時の潰れと、解放後の回
復とを判断するために、圧縮回復率を測定し
た。すなわち、バンド全幅に半径5mmの円柱で
最大圧縮加重20Kg、圧縮及び回復速度0.5mm/
分での圧縮ヒステリシスカーブを求め、この時
の歪みと回復率から潰れにくさの判定を行なつ
た。
尚、自動梱包機適性からは歪みと回復率は
0.55mm以下、50%以上が必要である。
・ 長さ方向の曲がり癖は直径200mmの紙管に巻
いて一週間放置したバンド2mを2mの高さか
ら吊し床面からバンド端までの距離を測定して
求めた。自動梱包機適性からは300mm以下であ
ることが必要である。
・ 長さ方向の蛇行は、バンド2mを水平な台の
上に密着させて置いた時の最大蛇行量を測定し
て求めた。自動梱包機適性からは50mm以下が望
ましい。
<実施例 1>
MI(メルトインデツクス)が3のPP(ポリプロ
ピレン)を原料とした本発明の第2図に示した断
面形状の中空バンド(実施例1)とA社汎用PP
バンド、B社発泡PPバンド、及びC社発泡PPバ
ンドとを比較検討したところ、諸特性は表1の通
りで、実施例1のバンドは樹脂部断面積、すなわ
ち単位長さ当りの重量が汎用PPバンドの67%、
発泡PPバンドの71%及び56%であるにもかかわ
らず破断強度は汎用PPバンドと同等で発泡PPバ
ンドより大きい値を示している。また、長さ方向
の剛性も大きいために自動梱包機への機械適性も
発泡PPバンドより優れている。
更に横方向の剛性は汎用PPバンドよりはるか
に小さく発泡PPバンドより小さいため軟らかく
被梱包物への喰い込みがなく荷役作業時の適性も
優れている。
The present invention relates to a hollow packaging band made of thermoplastic resin. Conventional general-purpose packaging bands made of polypropylene are
The band is simply melted and extruded from a die with a rectangular cross section, then cooled, solidified, and stretched.The band is relatively hard and can dig into or damage objects such as cardboard boxes during packaging, and may even damage the product after packaging. During cargo handling work, there were cases where the hands holding the band were cut or injured. In order to solve the above problem, a foamed band is provided in which a foaming agent is added and the foaming agent is decomposed and foamed during melt extrusion, but this foamed band has numerous small intermittent bubbles in the band. exists in
For this reason, sufficient breaking strength cannot be obtained.
Further, most of the packaging bands are used in automatic packaging machines, and in this case, the bands are required to have rigidity in the longitudinal direction. If the band lacks rigidity in the longitudinal direction, it will have poor passage through the arch when feeding the band, leading to poor feeding.
Nowadays, packaging lines are becoming unmanned and faster, and mechanical suitability for automatic packaging machines is as important as the basic physical properties of the band. However, foamed bands have low bending rigidity in the longitudinal direction, and therefore have poor mechanical suitability for automatic packaging machines, resulting in problems in terms of the incidence of packaging defects. The present invention was made as a result of intensive research to solve the conventional drawbacks, and its purpose is to provide a hollow band for packaging that has high breaking strength, high rigidity, excellent suitability for automatic packaging machines, and is soft and pleasant to the touch. It is on offer. That is, according to the present invention, a thermoplastic resin band is formed by integrally extruding a thermoplastic resin from a die and then stretched and oriented in the longitudinal direction, and the bands are arranged parallel to each other and substantially It consists of a substantially rectangular outer periphery formed from upper and lower sides and left and right sides with the same wall thickness, and a partition leg that is connected between the upper and lower sides and partitions the outer periphery in parallel to the longitudinal direction, and the partition leg The band defines a number of adjacent hollow parts, and the cross-sectional area of the hollow parts is 20 to 80% of the total cross-sectional area of the outer periphery, and the thickness of the band is 0.3 to 0.7.
mm, and the strength per unit cross-sectional area of the resin portion consisting of the outer periphery and the partition leg is 40 kg/mm 2 or more. In the hollow band of the present invention, both the outer peripheral part and the partition leg part are uniformly cooled during molding, so there is no uneven molecular orientation between them.
A band with excellent stretching orientation and high breaking strength can be easily obtained. On the other hand, general-purpose packaging bands are simply extruded from a die with a rectangular cross section in a molten state and cooled to solidify, so the cooling rate is different between the outer periphery and the center, so the crystalline state is different between the outer periphery and the center. It is thought that the stretching orientation is inferior compared to that of the above-mentioned materials, and that the breaking strength is not sufficient.
It should be noted that the foamed band has countless small bubbles intermittently present in the band, which become defects and cause the band to break, resulting in a lack of breaking strength. For the above reasons, the hollow band of the present invention has a breaking strength per unit cross-sectional area of the resin part that is 1.3 to 1.5 times higher than that of a general-purpose packaging band, and 1.5 to 2.0 times higher than that of a foamed band. Therefore, hollow bands can achieve the same breaking strength with 67 to 77% of the resin material of general-purpose packaging bands and 50 to 67% of foam bands.
The use of resin materials and costs are reduced, and the weight per unit length is reduced, making the band itself easier to handle. In addition, in the case of the hollow band of the present invention, there are many partition legs parallel to the length direction, and since the thickness can be increased relative to the cross-sectional area of the resin part, the bending rigidity in the length direction of the band is large. , has excellent mechanical suitability for automatic packaging machines. Furthermore, since the hollow band has an air intermediate layer, the band has low rigidity in the width direction and is soft overall, so it will not damage the items to be packed during packaging, and it will not hurt your hands even if you hold the band during cargo handling after packing. It won't cut or hurt your hands. On the other hand, in the case of foam bands, the foaming ratio is 1.5 times (the cross-sectional area ratio of the space is 1.5 times) due to the breaking strength and manufacturing issues.
35%) or more, it is difficult to increase the ratio above 35%, but hollow bands have excellent breaking strength and manufacturing stability, so the ratio of the space can be varied widely depending on the application. This feature becomes even more useful when used for manual packaging. Most packing bands are used in automatic packing machines, but they are also often used for manual packing. For example, packaging using a manual tightening machine with a heat welding mechanism,
Metal fittings seal packaging using manual tightening machine and sealing machine,
There are many methods for speed stopper and buckle packing, as well as hand-tied and manual packing. In any of these cases, the band is wrapped around the packaged item by hand and pulled.
The band is even softer than that for automatic packaging machines.
A good feel is required. Therefore, a hollow band that has high breaking strength, allows the proportion of the space to be changed widely, and is bulky, soft, and comfortable to the touch is far more suitable for manual packaging than conventional bands. Further, due to the unique cross-sectional shape of the hollow band, it has excellent metal sealing strength, speed stopper strength, buckle strength, and knot strength when tied. This is because the metal fitting seal, speed stopper, buckle, and knot seals of conventional bands slip, making them less strong, whereas hollow bands collapse under local concentrated stress, so no slipping occurs. This results in high seal strength. In summary, hollow bands have the following characteristics compared to general-purpose packing bands and foam bands. Excellent strength per unit resin section cross-sectional area. It has rigidity in the length direction and has excellent mechanical suitability for automatic packaging machines. The rigidity in the width direction is small, and the band is soft and feels good to the touch. The ratio of the space can be changed widely and arbitrarily. Excellent metal seal strength, speed stopper strength, and knot strength. Here, the cross-sectional shape of the hollow band of the present invention will be explained. There are various cross-sectional shapes of the hollow band as shown in FIGS. 2 and 3, but regardless of the cross-sectional shape, they are arranged parallel to each other and have upper and lower sides 1 and 1 of substantially the same thickness. A large number of hollow parts 2 are defined within the generally rectangular outer periphery formed by the left and right sides 1', 1' by partition legs 3 running in the longitudinal direction, and the hollow parts have a total cross-sectional area of 20 ~80%, and the thickness between the top and bottom sides 1 and 1 is
0.3 to 0.7 m/m, and the strength per unit cross-sectional area of the resin part consisting of the outer periphery and the partition legs 3 must be 40 Kg/mm 2 or more. In other words, if the hollow part is less than 20% of the total cross-sectional area, sufficient breaking strength per unit cross-sectional area of the resin part will not be obtained, and the softness will not be sufficient, causing damage to the packaged items during packaging or making it difficult for hands to handle during cargo handling. It can cut you or hurt your hand. On the other hand, if the hollow portion exceeds 80%, the band will be easily crushed and will be crushed when pressed by the feed roller and tightening roller of the automatic packaging machine, reducing the rigidity in the longitudinal direction of the band and causing problems with poor feeding. more likely to occur. On the other hand, even if the total thickness is less than 0.3m/m,
The bending rigidity in the longitudinal direction is reduced, and mechanical suitability for automatic packaging machines is reduced due to the occurrence of feeding errors. On the other hand, if the thickness exceeds 0.7 m/m, the band tends to bend in the length direction and is likely to break. That is, although the band is supplied wrapped around a paper tube, the curl tends to remain when it is wound around the paper tube, and when it is packed with an automatic packing machine, the band is held in the chamber, but it is likely to break at that time. This causes poor feeding and poor tightening, resulting in decreased mechanical suitability. If the cross-sectional area of the resin part is different on the top and bottom, it will warp in the width direction with the side with the larger cross-sectional area inward, and if it is different on the left and right, it will meander in the length direction with the side with the larger cross-sectional area inward. In both cases, band feeding and tightening defects are likely to occur, and the suitability of the machine for automatic packaging machines is reduced. In addition, the band cross-sectional area, resin part cross-sectional area, space part cross-sectional area ratio, breaking strength (unit resin part cross-sectional area strength, the same shall apply hereinafter), longitudinal rigidity, resistance to breakage, fully automatic packaging machine as described in the specification of this application. The suitability, width direction rigidity, metal seal strength, speed stopper strength, knot strength, crush resistance, longitudinal bending tendency, and longitudinal meandering were measured as follows. - The cross-sectional area of the band was determined by dividing the weight of a certain length of band by the apparent specific gravity of the band determined using a density gradient tube (however, hollow bands were determined by actual measurements from enlarged photographs). The cross-sectional area of the resin part is determined by dividing the weight of a band of a certain length by the true specific gravity determined by melting and defoaming the band using a hot press.The cross-sectional area ratio of the space part is the difference between the cross-sectional area of the band and the cross-sectional area of the resin part. I asked for it from・Measurement of breaking strength was performed using a sample with a chuck distance of 200 mm.
It was stretched at a tensile speed of 200 mm/min, the strength at break was determined, and this was divided by the cross-sectional area of the resin portion to determine the strength at break.・Longitudinal rigidity and resistance to bending are determined by placing a sample with a length of 80 mm between two fulcrums with a distance of 47 mm, placing the third fulcrum in the center, and placing the third fulcrum at a distance of 100 mm.
The maximum stress when lowering at a speed of mm/min was taken as the stiffness in the length direction, and the strain at that time was taken as the resistance to breakage. That is, the greater the maximum stress, the greater the rigidity in the longitudinal direction, and the greater the strain at that time, the more difficult the band is to break. In addition, from the viewpoint of suitability for automatic packaging machines, each must be at least 110g and at least 5.5mm.・ Suitability for fully automatic packing machine is arch size 1000W x
Using 800Hmm fully automatic packing machine from Company D, 300W×
A 250H x 500L wooden box was packed 2000 times, and the number of defects that occurred during that time was investigated. As a fully automatic packaging band, it is required that the number of failures occur is 0. - For the stiffness in the width direction, the stiffness in the width direction was defined as the maximum stress when a sample with a length of 30 mm was stood perpendicular to the width direction, compressed at a speed of 10 mm/min, and bent. The smaller the rigidity of the band in the width direction, the less it will dig into or damage the item to be packaged, and the more the band will feel soft when gripped.・ Strong metal seal is 0.4 mm thick and 27.5 mm long.
The breaking strength was measured using the same method as the breaking strength of a sample sealed with a general-purpose open seal using a binding loom, and the speed stopper strength was measured using a sample with both ends of the band fixed with a speed stopper, and the knot strength was measured using a hand-tied sample. It was measured using the same method as strength. - The compression recovery rate was measured to determine the resistance to crushing when compressed by the feed roller or tightening roller of an automatic packaging machine, and the recovery after release. In other words, the maximum compression load is 20Kg with a cylinder with a radius of 5mm across the entire width of the band, and the compression and recovery speed is 0.5mm/
The compression hysteresis curve in minutes was determined, and the resistance to crushing was determined from the strain and recovery rate at this time. In addition, from the suitability of automatic packing machines, the distortion and recovery rate are
0.55mm or less and 50% or more are required. - The bending tendency in the length direction was determined by hanging a 2m band wrapped around a 200mm diameter paper tube and leaving it for one week from a height of 2m and measuring the distance from the floor to the end of the band. In order to be suitable for automatic packaging machines, it must be 300mm or less. - The meandering in the length direction was determined by measuring the maximum amount of meandering when a 2m band was placed closely on a horizontal table. 50mm or less is desirable for suitability for automatic packaging machines. <Example 1> A hollow band of the present invention with the cross-sectional shape shown in FIG. 2 made from PP (polypropylene) with an MI (melt index) of 3 (Example 1) and general-purpose PP from Company A
A comparison study of the band, the foamed PP band of company B, and the foamed PP band of company C revealed that the various properties are as shown in Table 1. 67% of PP band,
Although the breaking strength is 71% and 56% of that of the foamed PP band, the breaking strength is the same as that of a general-purpose PP band and is larger than that of the foamed PP band. In addition, since it has greater rigidity in the longitudinal direction, it has better mechanical suitability for automatic packaging machines than foamed PP bands. Furthermore, the lateral rigidity is much lower than general-purpose PP bands and smaller than foamed PP bands, so it is soft and does not dig into the packaged items, making it highly suitable for cargo handling work.
【表】
<実施例 2,3>
MIが1で、PEを7%含むPP―PEブロツク共
重合体を原料とした本発明の第2図に示した断面
形状であつて、厚みおよび断面積比の異なる中空
バンド(実施例2,3)と、同一原料で試作した
従来バンドと同一形状のバンド(比較例1)、及
びA社の汎用PPバンド及びA社の発泡PPバンド
とを比較検討した結果を表2に示す。この結果、
実施例2,3の中空バンドは、樹脂部断面積すな
わち単位長さ当りの重量が汎用PPバンドの69%、
発泡PPバンドの60%であるにもかかわず、汎用
PPバンド及び発泡PPバンドより金具シール強
力、スピードストツパー強力、結節強力とも優れ
ている。[Table] <Examples 2 and 3> The cross-sectional shape shown in FIG. 2 of the present invention made from a PP-PE block copolymer with an MI of 1 and containing 7% PE, and the thickness and cross-sectional area A comparative study of hollow bands with different ratios (Examples 2 and 3), a band with the same shape as a conventional band prototyped from the same raw material (Comparative Example 1), a general-purpose PP band from Company A, and a foamed PP band from Company A. The results are shown in Table 2. As a result,
In the hollow bands of Examples 2 and 3, the cross-sectional area of the resin part, that is, the weight per unit length, was 69% of that of the general-purpose PP band.
Although it is 60% of the foamed PP band, it is versatile.
Superior metal sealing strength, speed stopper strength, and knot strength compared to PP bands and foamed PP bands.
【表】【table】
【表】
また手動梱包作業性も、中空バンドは軟らかく
手触りが良いためにいずれのバンドよりも優れて
いる。
尚、樹脂による差は小さく断面形状による差が
はるかに大きい。
<実施例 4,5>
MIが3のPPに炭酸カルシウム微粉末を3%添
加した原料で、空間部断面積比を変えた本発明の
2種類の中空バンド(実施例4,5)と、断面積
比が18%(比較例2)、同82%(比較例3)とを
比較したところ、空間部断面積比が18%の比較例
2では単位樹脂断面積強度が33Kg/mm2と充分では
なく、軟らかさも不充分である。逆に断面積比が
82%の比較例3では圧縮歪みが大きく回復率も悪
いため自動梱包機への機械適性が良くなかつた。
他方25%及び75%の実施例4,5では実用上全く
問題がなかつた。[Table] Also, in terms of manual packing workability, hollow bands are superior to other bands because they are soft and have a good feel. Note that the difference depending on the resin is small, and the difference depending on the cross-sectional shape is much larger. <Examples 4 and 5> Two types of hollow bands of the present invention (Examples 4 and 5), which are made of a raw material in which 3% calcium carbonate fine powder is added to PP with an MI of 3, and have different spatial cross-sectional area ratios, Comparing the cross-sectional area ratios of 18% (Comparative Example 2) and 82% (Comparative Example 3), the unit resin cross-sectional area strength of Comparative Example 2 with a space cross-sectional area ratio of 18% was 33 Kg/mm 2 . It is not sufficient and the softness is also insufficient. On the other hand, the cross-sectional area ratio
In Comparative Example 3 with 82%, the compressive strain was large and the recovery rate was poor, so the mechanical suitability for automatic packaging machines was not good.
On the other hand, Examples 4 and 5 with 25% and 75% had no practical problems.
【表】【table】
【表】
<実施例 6,7>
MIが3のPPに、炭酸カルシウム微粉末を3%
添加した原料で厚みを変えた本発明の2種類の中
空バンド(実施例6,7)と、厚みが0.25m/m
の比較例4、同0.75m/mの比較例5の中空バン
ドとを比較したところ、見掛け厚みが0.25m/m
の実施例4では長さ方向の曲げ剛性が小さく送り
不良の発生により自動梱包機適性が良くなかつ
た。
逆に0.75m/mの比較例5は、長さ方向に曲が
り癖がつきやすく、折れやすいために送り不良が
発生した。他方0.3m/m及び0.70mmの実施例6,
7では全く問題なかつた。[Table] <Example 6, 7> Add 3% calcium carbonate fine powder to PP with MI of 3
Two types of hollow bands of the present invention (Examples 6 and 7) whose thickness was changed depending on the added raw material, and a band whose thickness was 0.25 m/m
Comparing the hollow bands of Comparative Example 4 and Comparative Example 5 of 0.75 m/m, the apparent thickness was 0.25 m/m.
In Example 4, the bending rigidity in the longitudinal direction was small and feed defects occurred, so the suitability for automatic packaging machines was not good. On the other hand, Comparative Example 5 of 0.75 m/m tended to bend in the length direction and easily broke, resulting in poor feeding. Example 6 with 0.3 m/m and 0.70 mm on the other hand,
7 had no problems at all.
【表】【table】
【表】
<実施例 8,9>
MIが3で、PEを3%含むPP―PEランダム共
重合体を原料とし、バンドの樹脂部断面積が上と
下で異なる中空バンド(比較例6)及び左と右で
異なる中空バンド(比較例7)と、上と下及び左
と右が同一である本発明の中空バンド(実施例
8,9)を製作し比較した。断面積が上と下で異
なる比較例6では巾方向に反り返り、左と右とで
異なる比較例8では、長さ方向に蛇行するために
送り不良となり自動梱包機適性が著しく悪かつ
た。他方上と下及び左と右が同一である実施例
8,9では全く問題なかつた。[Table] <Examples 8 and 9> A hollow band (Comparative Example 6) and a left band using a PP-PE random copolymer having an MI of 3 and containing 3% PE as a raw material and having different cross-sectional areas of the resin part at the top and bottom of the band (Comparative Example 6) and the left A hollow band with different sides (Comparative Example 7) and a hollow band of the present invention with the same top and bottom and left and right sides (Examples 8 and 9) were manufactured and compared. In Comparative Example 6, where the cross-sectional area was different at the top and bottom, it warped in the width direction, and in Comparative Example 8, where the cross-sectional area was different at the left and right sides, it meandered in the length direction, resulting in poor feeding and was extremely unsuitable for automatic packaging machines. On the other hand, in Examples 8 and 9 in which the top and bottom and left and right sides were the same, there was no problem at all.
【表】【table】
【表】
尚、巾方向の反りはバンドの両側端を結ぶ線の
中心とバンド表面の中央との間の距離として計つ
た。また、長さ方向蛇行はバンドの長さ2mの間
における円弧状弯曲の程度を、その円弧の弦の中
心とバンドの弯曲側側面の長さ方向中心との間の
距離として計つた。[Table] The warpage in the width direction was measured as the distance between the center of the line connecting both ends of the band and the center of the band surface. In addition, the longitudinal meandering was measured by measuring the degree of arcuate curvature within the 2 m length of the band as the distance between the center of the chord of the arc and the longitudinal center of the curved side surface of the band.
図面は、本発明に係る中空バンドの代表例を示
すもので、第1図はその斜視図、第2図はその断
面図、第3図は他の異形断面例である。尚、図中
符号は次の通りである。
1……上,下辺、2……バンド中空部、3……
バンド仕切脚部。
The drawings show a typical example of the hollow band according to the present invention, and FIG. 1 is a perspective view thereof, FIG. 2 is a sectional view thereof, and FIG. 3 is an example of another modified cross section. Note that the symbols in the figure are as follows. 1...Top, bottom side, 2...Band hollow part, 3...
Band partition legs.
Claims (1)
後長手方向に延伸配向された熱可塑性樹脂製バン
ドであつて、前記バンドは、相互に平行に配設さ
れ、実質的に同一な肉厚の上下辺および左右側辺
から形成される略矩形状の外周と、前記上下辺間
に連接され前記外周を長手方向に平行に仕切る仕
切脚とからなり、前記仕切脚によつて相隣接する
多数の中空部を画成するとともに、この中空部の
横断面積が前記外周の全断面積の20〜80%、前記
バンドの厚みが0.3〜0.7mm、前記外周と仕切脚と
からなる樹脂部の単位断面積当りの強度が40Kg/
mm2以上であることを特徴とする熱可塑性樹脂製梱
包用中空バンド。1. A thermoplastic resin band formed by integrally extruding a thermoplastic resin from a die and then stretched and oriented in the longitudinal direction, wherein the band is arranged parallel to each other and has upper and lower layers of substantially the same thickness. a substantially rectangular outer periphery formed from sides and left and right sides, and partition legs that are connected between the upper and lower sides and partition the outer periphery in parallel to the longitudinal direction, and a large number of hollow spaces that are adjacent to each other by the partition legs. The cross-sectional area of this hollow part is 20 to 80% of the total cross-sectional area of the outer periphery, the thickness of the band is 0.3 to 0.7 mm, and the unit cross-sectional area of the resin part consisting of the outer periphery and the partition leg. The strength per unit is 40Kg/
A hollow band for packaging made of thermoplastic resin, characterized in that it has a diameter of mm 2 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58106719A JPS6013657A (en) | 1983-06-16 | 1983-06-16 | Hollow band for packing made of thermoplastic resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58106719A JPS6013657A (en) | 1983-06-16 | 1983-06-16 | Hollow band for packing made of thermoplastic resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6013657A JPS6013657A (en) | 1985-01-24 |
JPS639976B2 true JPS639976B2 (en) | 1988-03-03 |
Family
ID=14440757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58106719A Granted JPS6013657A (en) | 1983-06-16 | 1983-06-16 | Hollow band for packing made of thermoplastic resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6013657A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0274967U (en) * | 1988-11-29 | 1990-06-07 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS514783U (en) * | 1974-06-21 | 1976-01-14 | ||
JPS514784U (en) * | 1974-06-21 | 1976-01-14 | ||
JPS514785U (en) * | 1974-06-21 | 1976-01-14 | ||
JPS5849955Y2 (en) * | 1980-11-12 | 1983-11-14 | 義弘 林田 | synthetic resin band |
-
1983
- 1983-06-16 JP JP58106719A patent/JPS6013657A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0274967U (en) * | 1988-11-29 | 1990-06-07 |
Also Published As
Publication number | Publication date |
---|---|
JPS6013657A (en) | 1985-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3734273A (en) | Heat-shrinking package using foamed plastic sheet | |
US4136501A (en) | Elastic plastic netting, and pallet load wrapping therewith | |
US3642967A (en) | Method of producing net-like foamed thermoplastic material | |
US3575781A (en) | Plastic film wrapping material | |
US4621022A (en) | Expandable plastics granular material having at least one orifice | |
JPS60134874A (en) | Method and device for manufacturing cushioning material | |
CN106660694B (en) | Polysilicon package body | |
US3837560A (en) | Expanded polystyrene partition structure and method of making thereof | |
JP2004503401A (en) | Orthogonal laminate of film and method for producing the same | |
JPH02242765A (en) | Buffering packing material and its producing method | |
US3229814A (en) | Package having cushion separators | |
JPS639976B2 (en) | ||
US4606965A (en) | Loose fill packing element | |
CA2359981A1 (en) | Unitized package for insulation products | |
US3237255A (en) | Mechanical apparatus | |
JP2023158008A (en) | Biaxially oriented polypropylene-based resin film, and package using the same | |
EP2361759B1 (en) | Sheet of plastic material, tray for a food product obtained from said sheet, packaging comprising said tray and related manufacture method | |
JPS6241944B2 (en) | ||
JP5931354B2 (en) | Film for gusset folded packaging bags | |
US3329262A (en) | Elastic protective corner and tensioning strips for transportable brick packages | |
US3965271A (en) | Method for packaging cheese curd | |
JPH02258526A (en) | Overlap shrink wrapping method with laminated polyolefin heat shrinkable film | |
JP5715947B2 (en) | Foaming band for packing and manufacturing method thereof | |
KR101098328B1 (en) | Manufacturing method for air sheet and air sheet using the same | |
JP3060506U (en) | Vegetable container |