JPS6399225A - Substrate for electronic device - Google Patents

Substrate for electronic device

Info

Publication number
JPS6399225A
JPS6399225A JP24500686A JP24500686A JPS6399225A JP S6399225 A JPS6399225 A JP S6399225A JP 24500686 A JP24500686 A JP 24500686A JP 24500686 A JP24500686 A JP 24500686A JP S6399225 A JPS6399225 A JP S6399225A
Authority
JP
Japan
Prior art keywords
film
thermal diffusivity
polymer film
substrate
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24500686A
Other languages
Japanese (ja)
Inventor
Masaharu Sato
正春 佐藤
Harumasa Yamazaki
山崎 晴正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP24500686A priority Critical patent/JPS6399225A/en
Publication of JPS6399225A publication Critical patent/JPS6399225A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Organic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain the titled substrate, consisting of an organic high polymer film with a specific value or above of thermal diffusivity, having excellent heat radiation properties and capable of improving reliability of electronic parts as well as electronic devices. CONSTITUTION:A substrate consisting of an organic high polymer film having >=0.01cm<2>/sec, preferably >=0.015cm<2>/sec thermal diffusivity at 20 deg.C, preferably electron conjugated high polymer film, e.g. polypyrrole, polythiophene, polyfuran, poly-p-phenylene, poly-p-phenylenevinylene, polyanthracene, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子工学分野に利用される電子デバイス用基板
に関するものであり、詳しくは高熱拡散率を有する放熱
性に優れた有機高分子膜からなる電子デバイス用基板に
関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a substrate for electronic devices used in the field of electronic engineering, and more specifically, it relates to a substrate for an electronic device that is used in the field of electronic engineering. The present invention relates to a substrate for electronic devices.

〔従来の技術〕[Conventional technology]

科学技術の進歩と共に、新しい機能を有する電気、電子
材料の開発が求められており、高分子の分野においても
活発に研究が行われている。
As science and technology progress, there is a need for the development of electrical and electronic materials with new functions, and research is being actively conducted in the field of polymers.

従来より高分子材料は絶縁性や誘電性等の特性を利用し
た電子材料として電子工学分野で用いられている。例え
ば、半導体素子加工過程でのフォントレジストなどのり
ゾグラフィ材料、眉間絶縁膜を初めとする絶縁材料、被
覆材料、封止材料及びプリント基板等の構造材料、フロ
ッピーディスク、光ディスク及び磁気テープ等のベース
材等がその主なものである。
BACKGROUND OF THE INVENTION Polymer materials have traditionally been used in the field of electronic engineering as electronic materials that take advantage of their properties such as insulating and dielectric properties. For example, lathographic materials such as font resists used in the semiconductor device processing process, insulating materials such as glabella insulating films, coating materials, sealing materials, structural materials such as printed circuit boards, base materials such as floppy disks, optical disks, and magnetic tapes. etc. are the main ones.

しかしながら、−iに高分子は耐熱性が悪く、可燃性で
あり、又、熱拡散率も小さい為に、電子材料として製造
及び使用する場合には十分に注意する必要があり、信頬
性も問題がないとは言い難かった。
However, polymers have poor heat resistance, are flammable, and have a low thermal diffusivity, so it is necessary to be careful when manufacturing and using them as electronic materials, and the reliability is also low. It was hard to say that there were no problems.

又、最近の電子工学技術の進歩により、半導体素子の集
積化が進み、単位面積当たりの発熱量も増大しているが
、使用する高分子材料の放熱性が悪いために、発熱体を
分散させたり、冷却ファンで強制的に冷却するのが現状
であった。
In addition, with recent advances in electronic engineering technology, the integration of semiconductor elements has progressed, and the amount of heat generated per unit area has also increased, but because the heat dissipation of the polymer materials used is poor, it is difficult to disperse the heating element. The current situation is to use a cooling fan to cool the device forcibly.

一方、高分子の分野においても新しい材料の開発が進み
、その結果ポリアセチレン、ポリバラフェニレン等の共
役系ポリマーフィルム、或いはこれに電子供与性や電子
吸引性化合物(ドーパント)を保持(ドーピング)させ
た高分子半導体がこれまでに開発されている。この中で
、特に芳香族化合物を単量体とするポリマーは空気中で
の安定性や耐熱性に優れている為に注目されている。例
えば、本発明者らによる[ジャーナル・オブ・ザ・ケミ
カルソサエティ、ケミカル・コミュニケーションズ」誌
1985年、1629頁にはベンゼンの電解酸化重合に
よるポリバラフェニレンフィルムが例示されている。こ
のフィルムは空気中で安定であり、更に500℃までの
耐熱性を有しており、ドーパントの種類と量により電気
伝導度等の電気的性質や吸収光等の光学的性質が大きく
変化する。しかしながら、このような芳香族共役系ポリ
マーフィルムは現在研究開発段階であり、物理的性質や
構造に不明確な点も多く、現在の所、工業的利用はなさ
れていない。
On the other hand, the development of new materials has progressed in the field of polymers, resulting in conjugated polymer films such as polyacetylene and polyvaraphenylene, or films in which electron-donating or electron-withdrawing compounds (dopants) are retained (doped). Polymer semiconductors have been developed to date. Among these, polymers containing aromatic compounds as monomers are attracting attention because of their excellent stability in air and heat resistance. For example, in Journal of the Chemical Society, Chemical Communications, 1985, p. 1629, by the present inventors, a polyvaraphenylene film produced by electrolytic oxidative polymerization of benzene is exemplified. This film is stable in air and has heat resistance up to 500°C, and its electrical properties such as electrical conductivity and optical properties such as absorbed light vary greatly depending on the type and amount of dopant. However, such aromatic conjugated polymer films are currently in the research and development stage, and their physical properties and structures are often unclear, so they have not been used industrially at present.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のように、電子工学的分野において用いられる高分
子材料は一般に耐熱性が悪く可燃性であり、また熱拡散
率も小さい為に、製造条件及び使用条件が限定されると
いう問題点があった。また、同様の理由のために、高分
子材料を使った部品や機材自体の信頼性も低下するとい
う問題点もあった。
As mentioned above, polymer materials used in the electronics field generally have poor heat resistance, are flammable, and have a low thermal diffusivity, which limits the manufacturing and usage conditions. . Furthermore, for the same reason, there was also the problem that the reliability of parts and equipment themselves using polymeric materials decreased.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記の問題点、即ち電子工学分野において
用いられる高分子材料は一般に耐熱性や放熱性が不十分
であり、そのために製造条件や使用条件が限定されたり
、これを使った部品や機材自体の信頼性も低下するとい
った問題点を解決するために種々検討の結果、20℃の
温度での熱拡散率が0.01cm”/see以上の有機
高分子膜からなる電子デバイス用基板を見出し、本発明
を完成した。つまり本発明は電子工学分野に利用される
高熱拡散率を有する放熱性に優れた有機高分子膜からな
る電子デバイス用基板を提供するものである。
The present inventors have addressed the above-mentioned problem, namely that polymer materials used in the electronics field generally have insufficient heat resistance and heat dissipation properties, which limits manufacturing and usage conditions and the use of parts using them. As a result of various studies, we have developed a substrate for electronic devices made of an organic polymer film with a thermal diffusivity of 0.01 cm"/see or higher at a temperature of 20 degrees Celsius. Thus, the present invention provides a substrate for an electronic device made of an organic polymer film having a high thermal diffusivity and excellent heat dissipation properties, which is used in the field of electronic engineering.

尚、本発明の有機高分子には、有機化合物を800℃以
上の高温で処理して得られる炭素繊維等の炭素材料は含
まない。
Note that the organic polymer of the present invention does not include carbon materials such as carbon fibers obtained by treating organic compounds at high temperatures of 800° C. or higher.

本発明の電子デバイス用基板を構成する有機高分子膜は
高熱拡散率を有することを特徴としており、具体的には
20℃の温度での熱拡散率が0.01 cm”/sec
以上、好ましくは0.015cm”/sec以上である
。これらの値は通常用いられるポリマーフィルム、例え
ば低密度ポリエチレンの0.0013cm”7secや
、ポリスチレン、ポリメチルメタクリレートの0.00
1cn+”/sec、ポリテトラフルオロエチレンの0
.00098cm”/seeに比べてはるかに大きく、
一般のポリマーフィルムの範囲をはるかに越えており、
金属の領域に近いものである。
The organic polymer film constituting the electronic device substrate of the present invention is characterized by having a high thermal diffusivity, and specifically, the thermal diffusivity at a temperature of 20°C is 0.01 cm"/sec.
The above value is preferably 0.015 cm"/sec or more. These values are 0.0013 cm"/sec for commonly used polymer films, such as low density polyethylene, and 0.00 cm"/sec for polystyrene and polymethyl methacrylate.
1 cn+”/sec, 0 of polytetrafluoroethylene
.. Much larger than 00098cm”/see,
Far beyond the scope of general polymer films,
It is close to the realm of metals.

本発明ではこれらの高熱拡散性有機高分子膜を電子デバ
イス用基板として、種々の電子部品又は電子機器に用い
るわけであるが、その主なものとしては、層間絶縁膜を
初めとする絶縁材料や被覆材料、集積回路等の封止材料
、及びプリント基板、フロッピーディスク、熱転写イン
クリボン、磁気テープ等のベース材としての用途、コン
デンサー等の誘電体としての用途等が挙げられる。従来
より、これらの用途にはポリエステルやフェノール樹脂
等のポリマーフィルムが用いられているが、それらの熱
拡散率は、いずれも0.002 cmz/sec以下で
あった。
In the present invention, these highly thermally diffusive organic polymer films are used as substrates for electronic devices in various electronic components or electronic equipment, and are mainly used for insulating materials such as interlayer insulating films, Applications include coating materials, sealing materials for integrated circuits, base materials for printed circuit boards, floppy disks, thermal transfer ink ribbons, magnetic tapes, etc., and dielectrics for capacitors. Conventionally, polymer films such as polyester and phenol resin have been used for these purposes, but their thermal diffusivities have all been 0.002 cmz/sec or less.

本発明者らは以上の点に鑑み、鋭意検討を重ねた結果、
熱拡散率と放熱性の関係を求め、20℃の温度での熱拡
散率が0.01cn+”/sec以上の有機ポリマーフ
ィルムでは実用上十分な放熱性を有しているという結論
を得た。
In view of the above points, the inventors of the present invention have made extensive studies and have found that
The relationship between thermal diffusivity and heat dissipation was determined, and it was concluded that an organic polymer film with a thermal diffusivity of 0.01 cn+''/sec or more at a temperature of 20° C. has sufficient heat dissipation for practical use.

本発明の高熱拡散性有機ポリマーフィルムとしては、主
に各種の電子共役系ポリマーが挙げられ、中でもポリマ
ー繰り返し単位が芳香族化合物及びその誘導体であるも
のが好ましい。このような電子共役系ポリマーとしては
、ポリピロール、ポリチオフェン、ポリフラン等の複素
五員環式化合物の重合物及びこれらの誘導体、ポリパラ
フェニレン、ポリパラフェニレンビニレン、ポリアニリ
ン等のベンゼン及びベンゼン誘導体の重合物、ポリナフ
タレン、ポリアントラセン、ポリテトラセン等の多核芳
香族化合物の重合物等が挙げられる。
The highly thermally diffusible organic polymer film of the present invention mainly includes various electronically conjugated polymers, and among them, those whose polymer repeating units are aromatic compounds and derivatives thereof are preferred. Examples of such electronically conjugated polymers include polymers of five-membered heterocyclic compounds such as polypyrrole, polythiophene, and polyfuran, and derivatives thereof, and polymers of benzene and benzene derivatives such as polyparaphenylene, polyparaphenylene vinylene, and polyaniline. , polymers of polynuclear aromatic compounds such as polynaphthalene, polyanthracene, and polytetracene.

上記の電子共役系ポリマーの製造方法としてはモノマー
である芳香族化合物又はその誘導体を酸化剤や酸化触媒
、グリニヤール触媒等を用いて重合する方法や、電解液
中に溶解又は分散して電気化学的に陽極酸化重合する方
法、及び非電子共役系ポリマーフィルムを中間体として
、これを600℃以下の温度で熱処押して電子共役系ポ
リマーフィルムとする方法等が挙げられる。
The above-mentioned electronically conjugated polymers can be produced by polymerizing monomers such as aromatic compounds or their derivatives using an oxidizing agent, oxidation catalyst, Grignard catalyst, etc., or by electrochemical polymerization by dissolving or dispersing them in an electrolytic solution. Examples include a method of performing anodic oxidation polymerization, and a method of using a non-electronically conjugated polymer film as an intermediate and heat-pressing it at a temperature of 600° C. or lower to obtain an electronically conjugated polymer film.

本発明では上記の有機ポリマーフィルムの熱拡散率と放
熱特性を検討し、20℃の温度における熱拡散率が0.
01cm”/sec以上のフィルムが電子デバイス用基
板として良好な特性を有することを見出したのであるが
、ここで熱拡散率は光交流法によって測定する。以下、
その原理について概説する。
In the present invention, the thermal diffusivity and heat dissipation characteristics of the above-mentioned organic polymer film were studied, and the thermal diffusivity at a temperature of 20°C was 0.
It has been found that a film with a heat dissipation rate of 0.01 cm"/sec or more has good properties as a substrate for electronic devices, and the thermal diffusivity is measured by the optical alternating current method.Hereinafter,
The principle will be outlined below.

即ち、フィルム状試料の一部に照度Qの光を断続的に照
射すると、照射面の境界から距離りの場所での交流温度
振幅I Tac lは次の式で示される。
That is, when part of a film-like sample is intermittently irradiated with light having an illuminance Q, the AC temperature amplitude I Tacl at a distance from the boundary of the irradiated surface is expressed by the following equation.

ω:断続周波数 C:単位体積当たりの熱容量 d:フィルムの厚さ D:熱拡散率 この時、L対するl Tac lの変化は次の式で示さ
れる。
ω: Intermittent frequency C: Heat capacity per unit volume d: Film thickness D: Thermal diffusivity At this time, the change in l Tac l with respect to L is expressed by the following equation.

In (lTacl tt*、1L))  −1n (
lTaclL)  =−にΔL従って、距離りを変化さ
せてl Tac lを実測し、その対数をプロットする
ことにより、傾きのような原理に基づく熱拡散率測定装
置としては真空理工■製、光交流法熱定数測定装置PI
T−1がある。
In (lTacl tt*, 1L)) −1n (
lTaclL) = ΔL, by changing the distance, actually measuring lTacl, and plotting its logarithm.As a thermal diffusivity measuring device based on the principle of slope, the optical AC manufactured by Shinku Riko ■ Legal thermal constant measuring device PI
There is T-1.

このように、本発明の高熱拡散性有機ポリマーフィルム
を電子デバイス用基板として使用すると、良好な放熱特
性のために冷却装置を省略或いは縮小することができる
という利点があるばかりではなく、特に有機ポリマーが
芳香族化合物又はその誘導体からなる繰り返し単位から
構成される電子共役系ポリマーである場合には、これら
のポリマーが200℃以上550℃までの耐熱性を有す
るために、これを使用した機器の高温における信顛性も
大幅に向上する。
As described above, when the highly thermally diffusive organic polymer film of the present invention is used as a substrate for electronic devices, there is not only the advantage that a cooling device can be omitted or downsized due to good heat dissipation properties, but also the organic polymer When is an electronically conjugated polymer composed of repeating units made of aromatic compounds or derivatives thereof, these polymers have heat resistance from 200°C to 550°C, so that the high temperature of equipment using this polymer is The credibility of the test will also be greatly improved.

熱拡散率としては0.015ca+2/sec以上のも
のが特に好ましく用いられる。
A thermal diffusivity of 0.015 ca+2/sec or more is particularly preferably used.

又、一般に電子共役系ポリマーはドーピングによって電
気伝導度を制御することができ、絶縁体から半導体、導
体へと電気伝導度の異なる種々の材料を用意できるが、
本発明の電子デバイス用基板は必要に応じて電気伝導度
を制御して用いられる。即ち、本発明の有機ポリマーが
電子共役系ポリマーである場合には、絶縁体とする時に
は、フィルム中に含まれるドーパントを電気化学的或い
は化学的に中和したり、200℃以上の高温で脱離させ
たりして用い、半導体や導体とする時には、電気化学的
或いは化学的方法でドーピングして用いる。
In general, the electrical conductivity of electronically conjugated polymers can be controlled by doping, and various materials with different electrical conductivities can be prepared, from insulators to semiconductors to conductors.
The electronic device substrate of the present invention can be used with electrical conductivity controlled as required. That is, when the organic polymer of the present invention is an electronically conjugated polymer, when it is made into an insulator, the dopant contained in the film is electrochemically or chemically neutralized or desorbed at a high temperature of 200°C or higher. When used as a semiconductor or conductor, it is doped using an electrochemical or chemical method.

〔実施例〕〔Example〕

以下、実施例で具体的に本発明を説明するが、本発明は
これらの実施例のみに限定されるものではない。
EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these Examples.

実施例1 以下に示す有機ポリマーフィルムA〜Hを用意した。Example 1 Organic polymer films A to H shown below were prepared.

tJ、料A :ポリパラフェニレンフィルム製造法; 0.5Mのベンゼン、0.1 MのLiAsF、及び0
.1MのCuC1zを含むニトロベンゼン溶液に白金板
(2枚)を電極として浸漬し、20■の定電圧を120
分間印加してベンゼンの陽極酸化重合を行った。減圧乾
燥後の生成物は膜厚18席の黒色のフィルムであった。
tJ, Material A: Polyparaphenylene film manufacturing method; 0.5 M benzene, 0.1 M LiAsF, and 0
.. Two platinum plates were immersed as electrodes in a nitrobenzene solution containing 1M CuC1z, and a constant voltage of 20μ was applied to 120
Anodic oxidation polymerization of benzene was performed by applying it for a minute. The product after drying under reduced pressure was a black film with a thickness of 18 layers.

E14B:ポリパラフェニレンフィルム製造法; 試料へを減圧下400℃で6時間熱処理して製造した。E14B: Polyparaphenylene film manufacturing method; The sample was manufactured by heat-treating it at 400° C. for 6 hours under reduced pressure.

試料C:ボリピロールフィルム 製造法; 0.2Mのピロール、0.1Mのメタニトロヘンゼンス
ルホン酸ソーダを含むアセトニトリル溶液に白金板(2
枚)を電極として浸漬し、4.0■の定電圧を120分
間印加してビロールの陽極酸化重合を行った。減圧乾燥
後の生成物は膜厚15−の黒色のフィルムであった。
Sample C: Polypyrrole film manufacturing method; A platinum plate (2
A constant voltage of 4.0 μm was applied for 120 minutes to carry out anodic oxidation polymerization of virol. The product after drying under reduced pressure was a black film with a thickness of 15 mm.

試料D=ポリチオフェンフィルム 製造法; 0.1Mのチオフェン、0.5 MのLiBFnを含む
ベンゾニトリル溶液に白金板(2枚)を電極として浸漬
し、15Vの定電圧を60分間印加してチオフェンの陽
極酸化重合を行った。反応後、陽極と陰極を30分間短
絡して電気化学的に脱ドーピングして、生成物を取り出
した。減圧乾燥後の生成物は膜厚20−の光沢を有する
緑色のフィルムであった。
Sample D = Polythiophene film manufacturing method; Platinum plates (2 pieces) were immersed as electrodes in a benzonitrile solution containing 0.1 M thiophene and 0.5 M LiBFn, and a constant voltage of 15 V was applied for 60 minutes to release thiophene. Anodic oxidation polymerization was performed. After the reaction, the anode and cathode were short-circuited for 30 minutes for electrochemical dedoping, and the product was taken out. The product after drying under reduced pressure was a glossy green film with a thickness of 20 mm.

IE、ポリフランフィルム 製造法; 0.1Mのフラン、0.5MのLiClO4を含むアセ
トニトリル溶液に白金板(2枚)を電極として浸漬し、
6.5Vの定電圧を150分間印加してフランの陽極酸
化重合を行った。
IE, polyfuran film manufacturing method: Platinum plates (2 pieces) were immersed as electrodes in an acetonitrile solution containing 0.1M furan and 0.5M LiClO4,
A constant voltage of 6.5 V was applied for 150 minutes to perform anodic oxidation polymerization of furan.

反応後、陽極と陰極を30分間短絡して電気化学的に脱
ドーピングして、生成物を取り出した。減圧乾燥後の生
成物は膜厚18−の黒褐色のフィルムであった。
After the reaction, the anode and cathode were short-circuited for 30 minutes for electrochemical dedoping, and the product was taken out. The product after drying under reduced pressure was a dark brown film with a thickness of 18 mm.

試料F:ボリアントラセンフィルム 製造法; 0.2Mのアントラセン、0.1Mの過塩素酸テトラブ
チルアンモニウム、0.1MのCuCLzを含むオルト
ジクロルベンゼン溶液に白金板(2枚)を電極として浸
漬し、15Vの定電圧を60分間印加してアントラセン
の陽極酸化重合を行った。減圧乾燥後の生成物は膜厚1
2虜の黒色のフィルムであった。
Sample F: Borianthracene film production method; Platinum plates (2 pieces) were immersed as electrodes in an orthodichlorobenzene solution containing 0.2M anthracene, 0.1M tetrabutylammonium perchlorate, and 0.1M CuCLz. , a constant voltage of 15 V was applied for 60 minutes to carry out anodic oxidation polymerization of anthracene. The product after vacuum drying has a film thickness of 1
It was a black film that caught my attention.

試料G:低密度ポリエチレンフィルム 膜厚25−の市販のフィルムをそのまま用いた。Sample G: Low density polyethylene film A commercially available film with a thickness of 25 mm was used as it was.

試料H:ポリテトラフルオロエチレンフィルム膜厚25
I!mの市販のフィルムをそのまま用いた。
Sample H: Polytetrafluoroethylene film thickness 25
I! A commercially available film of M was used as it was.

以上の試料A〜Hについて、熱拡散率及び放熱特性の評
価を行った。熱拡散率の測定は真空理工■調光交流法熱
定数測定装置PIT−1を用いて20°Cの温度で行っ
た。又、放熱特性の評価は試料を空気中20℃で幅1c
n+、長さ2c+nで銅製のチャックで把持し、試料中
央部を局部的に40℃まで加熱し、放熱特性を調べた。
Thermal diffusivity and heat dissipation characteristics of the above samples A to H were evaluated. Thermal diffusivity was measured at a temperature of 20°C using a vacuum Riko's dimming alternating current method thermal constant measuring device PIT-1. In addition, the heat dissipation characteristics were evaluated by placing the sample in the air at 20°C with a width of 1 cm.
The sample was gripped with a copper chuck with a length of 2c+n, and the center of the sample was locally heated to 40° C. to examine the heat dissipation characteristics.

加熱は光照射によって行い、光源としては300−の電
球を用い、照射面積は0.5 cmXo、5 cmであ
る。この測定では熱は加熱部分から試料を通って銅製の
チャックに流れ、より実際の系に近い評価ができるが、
熱伝導度等の物性値は得られない。その為、加熱停止後
の温度低下の度合を相対的に評価し、実用上有利に使用
できると考えられるものを○、不利であると考えられる
ものを×、それ以外のものを△て示した。
Heating was performed by light irradiation, using a 300-inch light bulb as the light source, and the irradiation area was 0.5 cm x 5 cm. In this measurement, heat flows from the heating part through the sample to the copper chuck, allowing for an evaluation that is more similar to the actual system.
Physical property values such as thermal conductivity cannot be obtained. Therefore, we relatively evaluated the degree of temperature drop after heating was stopped, and marked ○ for those considered to be advantageous in practical use, × for those considered to be disadvantageous, and △ for others. .

第1表に得られた結果をまとめて示す。Table 1 summarizes the results obtained.

第   1   表 第1表で示したように、熱拡散率の高い本発明の試料で
は良好な放熱特性を示しており、電子デバイス用基板と
してポリエチレンやポリテトラフルオロエチレン等の従
来のポリマーを使ったものに比べて装置の冷却や信頼性
の面で優れていることがわかる。
Table 1 As shown in Table 1, the sample of the present invention, which has a high thermal diffusivity, exhibits good heat dissipation properties, and is superior to conventional polymers such as polyethylene and polytetrafluoroethylene as substrates for electronic devices. It can be seen that the cooling and reliability of the device is superior to that of the standard.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明を実施することにより、電子工学分
野に利用される放熱性に優れた有機ポリマーフィルムか
らなる電子デバイス用基板を提供することができ、その
結果として、これを用いた電子部品、電子機器の信頼性
を向上することができるので工業的価値がある。
By carrying out the present invention as described above, it is possible to provide an electronic device substrate made of an organic polymer film with excellent heat dissipation properties used in the field of electronic engineering, and as a result, electronic components using the same can be provided. , it has industrial value because it can improve the reliability of electronic equipment.

Claims (1)

【特許請求の範囲】 1、20℃の温度での熱拡散率が0.01cm^2/s
ec以上の有機高分子膜からなる電子デバイス用基板。 2、有機高分子膜が電子共役系高分子膜である特許請求
の範囲第1項記載の電子デバイス用基板。 3、電子共役系高分子が、ポリピロール、ポリチオフェ
ン、ポリフラン、ポリパラフェニレン、ポリパラフェニ
レンビニレン、ポリアントラセンからなる群から選ばれ
たものである特許請求の範囲第2項記載の電子デバイス
用基板。
[Claims] Thermal diffusivity at a temperature of 1.20°C is 0.01cm^2/s
An electronic device substrate made of an organic polymer film of EC or higher. 2. The electronic device substrate according to claim 1, wherein the organic polymer film is an electronically conjugated polymer film. 3. The electronic device substrate according to claim 2, wherein the electronically conjugated polymer is selected from the group consisting of polypyrrole, polythiophene, polyfuran, polyparaphenylene, polyparaphenylene vinylene, and polyanthracene.
JP24500686A 1986-10-15 1986-10-15 Substrate for electronic device Pending JPS6399225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24500686A JPS6399225A (en) 1986-10-15 1986-10-15 Substrate for electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24500686A JPS6399225A (en) 1986-10-15 1986-10-15 Substrate for electronic device

Publications (1)

Publication Number Publication Date
JPS6399225A true JPS6399225A (en) 1988-04-30

Family

ID=17127172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24500686A Pending JPS6399225A (en) 1986-10-15 1986-10-15 Substrate for electronic device

Country Status (1)

Country Link
JP (1) JPS6399225A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534936A (en) * 2010-06-04 2013-09-09 トンジ ユニバーシティ Method for producing polyanthracene and use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534936A (en) * 2010-06-04 2013-09-09 トンジ ユニバーシティ Method for producing polyanthracene and use thereof
US8735537B2 (en) 2010-06-04 2014-05-27 Tongji University Methods of producing polyanthracene and uses thereof
US9290610B2 (en) 2010-06-04 2016-03-22 Tongji University Methods of producing polyanthracene and uses thereof

Similar Documents

Publication Publication Date Title
US7248461B2 (en) Conducting polymer composite and solid electrolytic capacitor using the same
Bhide et al. Ionic transport studies on (PEO) 6: NaPO3 polymer electrolyte plasticized with PEG400
US5286413A (en) Mixtures of polar polymers and dedoped conductive polymers, processes for obtaining these mixtures and use of these mixtures to produce electronic, optoelectrical, electrical and electromechanical devices
Belaabed et al. Polyaniline-doped benzene sulfonic acid/epoxy resin composites: structural, morphological, thermal and dielectric behaviors
US5225495A (en) Conductive polymer film formation using initiator pretreatment
US6692663B2 (en) Compositions produced by solvent exchange methods and uses thereof
US7932320B2 (en) Process for preparing electroconductive coatings
Zhang et al. Thermoelectric properties of PEDOT films prepared by electrochemical polymerization
EP1456856B1 (en) Material for making a conductive pattern
Yue et al. Facile electrosynthesis and thermoelectric performance of electroactive free-standing polythieno [3, 2-b] thiophene films
EP1003179A1 (en) A method for preparing a conductive polythiophene layer at low temperature
Pavani et al. Physical investigations on pure and KBr doped poly (vinyl alcohol)(PVA) polymer electrolyte films for solid state battery applications
Rammelt et al. Semiconducting properties of polypyrrole films in aqueous solution
US6333145B1 (en) Method for preparing a conductive polythiophene layer at low temperature
Kudoh et al. Stability study of polypyrrole and application to highly thermostable aluminum solid electrolytic capacitor
KR100995561B1 (en) Process for preparing electroconductive coatings
JP2000153229A (en) Method for forming conductive polythiophene layer at low temperature
JPS6399225A (en) Substrate for electronic device
Keyhanpour et al. Electropolymerization and characterization of polyaniline, poly (2-anilinoethanol) and poly (aniline-co-2-anilinoethanol)
Nilsson et al. Alkyl benzene sulfonate doping of poly (alkylthiophenes)
Ha et al. Electronic properties of the polypyrrole-dopant anions ClO 4− and MoO 4 2−: a density functional theory study
Lewandowski et al. Impedance studies on poly (ethylene oxide)-Cu (CF3SO3) 2-sulfolane solid electrolyte
JPS63175493A (en) Printed wiring board
El Kadiri et al. Frequency and temperature-dependent complex conductivity of some conducting polymers
Chandrasekhar et al. Characterization Methods