JPS6398805A - Magnetic head - Google Patents
Magnetic headInfo
- Publication number
- JPS6398805A JPS6398805A JP24604486A JP24604486A JPS6398805A JP S6398805 A JPS6398805 A JP S6398805A JP 24604486 A JP24604486 A JP 24604486A JP 24604486 A JP24604486 A JP 24604486A JP S6398805 A JPS6398805 A JP S6398805A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- film
- gap
- head
- depth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004804 winding Methods 0.000 claims abstract description 21
- 239000000463 material Substances 0.000 claims abstract description 15
- 230000035699 permeability Effects 0.000 claims abstract description 13
- 230000004907 flux Effects 0.000 claims description 10
- 239000000696 magnetic material Substances 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 abstract description 26
- 239000000956 alloy Substances 0.000 abstract description 26
- 230000000694 effects Effects 0.000 abstract description 15
- 239000010408 film Substances 0.000 abstract 9
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 239000010409 thin film Substances 0.000 abstract 1
- 229910000859 α-Fe Inorganic materials 0.000 description 15
- 229910001004 magnetic alloy Inorganic materials 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000002844 melting Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000011521 glass Substances 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000003754 machining Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 230000001154 acute effect Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 229910000702 sendust Inorganic materials 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- AYTAKQFHWFYBMA-UHFFFAOYSA-N chromium dioxide Chemical compound O=[Cr]=O AYTAKQFHWFYBMA-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229910000889 permalloy Inorganic materials 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Magnetic Heads (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は磁気ヘッドに関し、特に高透磁率磁性材上に、
高飽和磁束密度磁性膜を被着してなる磁気ヘッドに関す
るものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a magnetic head, and in particular, to a magnetic head having a high permeability magnetic material.
This invention relates to a magnetic head coated with a high saturation magnetic flux density magnetic film.
近年抗磁力の高い磁気記録媒体、例えばメタル塗布、金
属蒸着テープ等に対して記録再生の可能なMIG(Me
tal In Gap)ヘッドと呼ばれるが利用される
様になって来た。In recent years, MIG (Me
tal in gap) head has come to be used.
MIGヘッドは、コアの大部分にフェライト等の高透磁
率材を用いギャップ近傍の磁極先端部を高飽和磁束密度
材、即ち、パーマロイ、センダスト、アモルファス等の
合金磁性材で形成したti造となっている。The MIG head has a Ti structure in which most of the core is made of a high magnetic permeability material such as ferrite, and the tip of the magnetic pole near the gap is made of a high saturation magnetic flux density material, that is, an alloy magnetic material such as permalloy, sendust, or amorphous. ing.
M I Gヘッドの最も単純な電磁変換部近傍の形態を
第4図(A)、(B)に示す。図中1は単結晶フェライ
ト等の高透磁率材チップ、2はセンダスト等の高色和磁
束密度合金よりなる磁性合金膜、3は非磁性材よりなる
磁気ギャップ部である。尚第4図(A)は巻線溝内には
磁性合金膜を被若しないタイプ、(B)は巻線溝内には
磁性合金膜な被着しないタイプのそれを示している。The simplest form of the MIG head near the electromagnetic transducer is shown in FIGS. 4(A) and 4(B). In the figure, 1 is a chip made of a high magnetic permeability material such as single crystal ferrite, 2 is a magnetic alloy film made of a high color summation magnetic flux density alloy such as Sendust, and 3 is a magnetic gap portion made of a nonmagnetic material. 4(A) shows a type in which no magnetic alloy film is deposited within the winding groove, and FIG. 4(B) shows a type in which no magnetic alloy film is deposited within the winding groove.
MIGヘッドにはその基本構造を第4図(A)。The basic structure of the MIG head is shown in Figure 4 (A).
(B)に示している桟に磁気記録媒体摺動面に於ける磁
性合金膜2と高透磁率材1との境界が磁気ギャップ3に
平行なタイプ(以下Pタイプと称する)と磁気ギャップ
に非平行でアジマス角を有するタイプ(以下Aタイプと
称する)とが考えられている。例えばPタイプのMIG
ヘッドとしては特開昭51−140708号公報に開示
されているもの、AタイプのMIGヘッドとしては例え
ば特開昭60−32107号公報に開示されているもの
がある。In the crosspiece shown in (B), there is a type in which the boundary between the magnetic alloy film 2 and the high magnetic permeability material 1 on the sliding surface of the magnetic recording medium is parallel to the magnetic gap 3 (hereinafter referred to as P type), and a type in which the boundary between the magnetic alloy film 2 and the high magnetic permeability material 1 is parallel to the magnetic gap 3. A type (hereinafter referred to as A type) that is non-parallel and has an azimuth angle is considered. For example, P type MIG
The head is disclosed in Japanese Patent Application Laid-Open No. 51-140708, and the A type MIG head is disclosed in, for example, Japanese Patent Application Laid-Open No. 60-32107.
しかしながらPタイプのMIGヘッドは、磁気ギャップ
と平行である処の高透磁率材と合金磁性材との境界部分
の磁気的性質の不連続性のために、コンタ−効果と呼ば
れる現象が発生し、第5図に示すように、周波数対出力
特性曲線に、少ない場合で3〜4dB程度のリップルが
現われるため、記録再生用ヘッドとして未た実用化され
ていない。However, in P-type MIG heads, a phenomenon called the contour effect occurs due to the discontinuity of magnetic properties at the boundary between the high permeability material and the alloy magnetic material, which is parallel to the magnetic gap. As shown in FIG. 5, ripples of about 3 to 4 dB appear in the frequency vs. output characteristic curve in some cases, so that this head has not yet been put to practical use as a recording/reproducing head.
その様な現象を避ける為に考案されたものがAタイプの
MIGヘットてあり、上記特開昭60−32107号公
報に開示のものがVTR用として実用化されている。The A-type MIG head was devised to avoid such a phenomenon, and the one disclosed in the above-mentioned Japanese Patent Laid-Open No. 60-32107 has been put into practical use for VTRs.
ところが、一般的にAタイプのMIGヘッドはPタイプ
のMIGヘッドに比べて、複雑な構造となるので、製造
工程数が多くなると同時に製品歩留りも低くなっていた
。そのため製造コスト面に於いてかなり割高であった。However, since the A-type MIG head generally has a more complicated structure than the P-type MIG head, the number of manufacturing steps is increased and the product yield is also lower. Therefore, the manufacturing cost was quite high.
また、AタイプのMIGヘッドで例えば60μmもの広
いトラック幅を有するヘッドを製造しようとすると、そ
の構造と製造法によっては、40μm前後の厚さの磁性
合金膜をスパッタリング等の物理蒸着法で成膜する工程
が必要となる。In addition, when attempting to manufacture an A-type MIG head with a track width as wide as 60 μm, depending on the structure and manufacturing method, a magnetic alloy film with a thickness of around 40 μm may be deposited using a physical vapor deposition method such as sputtering. A process is required.
このような厚さの膜をスパッタリングで成膜するには、
成膜時間のみで数時間を要し、また仮に成膜したとして
も、内部応力の蓄積の為、膜そのものや、基板であるフ
ェライトにクラックが入ったりはなはだしい場合、割れ
てしまうこともある。そのため機械加工や、500℃〜
6oo℃前後のガラス溶岩工程などの過酷な工程を経て
完成に至るヘッドは少なく、歩留りの低下を増長する結
果となる。To form a film of such thickness by sputtering,
It takes several hours just to form the film, and even if the film is formed, the film itself or the ferrite substrate may crack or break due to the accumulation of internal stress. Therefore, machining and 500℃~
Few heads are completed through a harsh process such as a glass lava process at around 60°C, which results in a further decline in yield.
本発明は上述の如き問題に鑑みてなされ、簡易な製造工
程により製造が可能でかつ製造コストが高くなることが
なく、良好な電磁変換特性を有する磁気ヘッドを提供す
ることを目的としている。The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a magnetic head that can be manufactured using a simple manufacturing process, does not increase manufacturing costs, and has good electromagnetic conversion characteristics.
かかる目的下に於いて本発明の磁気ヘッドに於いては高
透磁率磁性材上に高飽和磁束密度磁性膜を被着してなる
コアハーフ同志を磁気ギャップ材を介して突合せてなる
磁気ヘッドに於いて少なくとも一方のコアハーフに於け
る前記磁性膜の膜厚が作動ギャップの深さの範囲内にて
前記磁気ヘッドの媒体摺接面からの深さに応じて大略一
定の割合で連続的に変化する構成としている。For this purpose, in the magnetic head of the present invention, core halves each having a high saturation magnetic flux density magnetic film coated on a high magnetic permeability magnetic material are butted together via a magnetic gap material. and the thickness of the magnetic film in at least one core half changes continuously at a substantially constant rate within the depth range of the working gap depending on the depth from the medium sliding surface of the magnetic head. It is structured as follows.
上述の如く構成することにより、コンタ−効果による電
磁変換特性の影響を低下させることができ、磁性膜の膜
厚を大略一定の割合で連続的に変化させる構造となって
いるため、被着面の形状は単純であり、製造工程上極め
て有利なものである。By configuring as described above, it is possible to reduce the influence of the electromagnetic conversion characteristics due to the contour effect, and since the film thickness of the magnetic film is continuously changed at a roughly constant rate, it is possible to The shape is simple, which is extremely advantageous in terms of manufacturing process.
(実施例)
以下本発明の最も典型的な実施例についてその構造を第
1図(A)、(B)、(C)、その製造工程を第2図(
A)、(B)、(C)、(D)を用いて説明する。(Example) The structure of the most typical example of the present invention is shown in Figures 1 (A), (B), and (C), and the manufacturing process is shown in Figure 2 (
This will be explained using A), (B), (C), and (D).
第1図(A)は本実施例の磁気ヘッドの外観斜視図であ
り、図中1はフェライトブロック、2は磁性合金膜、3
は磁気ギャップ部、6,8は低融点ガラス、9は巻線窓
である。第1図(A)の磁気ヘッドの電磁変換部近傍の
詳細を第1図(C)に示す。第1図(C)は第1図(A
)の磁気ヘッドを媒体の摺動方向に切断した場合の断面
図である。FIG. 1(A) is an external perspective view of the magnetic head of this embodiment, in which 1 is a ferrite block, 2 is a magnetic alloy film, and 3 is a ferrite block.
1 is a magnetic gap portion, 6 and 8 are low-melting glasses, and 9 is a wire-wound window. FIG. 1C shows details of the vicinity of the electromagnetic transducer section of the magnetic head shown in FIG. 1A. Figure 1 (C) is the same as Figure 1 (A).
) is a cross-sectional view of the magnetic head taken along the sliding direction of the medium.
’:(’、 1図(C)に示す如く本実施例の磁気ヘッ
ドにおいては、lj)動面側から見た基本構成はPタイ
プであっても、高透用皐材と、高飽和11i1束密度材
の境界面が、少なくとも必要デーギャップの深さの範囲
内で、ギャップ面に対し、一定方向の傾き、好ましくは
30°〜60°の鋭角を有し、連続的に膜厚が変化する
補遺にした。':(', As shown in Figure 1 (C), the magnetic head of this embodiment has lj) Even though the basic configuration as seen from the moving surface side is the P type, it is made of high permeability wick material and high saturation 11i1. The boundary surface of the flux density material has an inclination in a certain direction, preferably an acute angle of 30° to 60°, with respect to the gap surface at least within the depth of the required day gap, and the film thickness changes continuously. I made it an addendum.
このように簡単な構成をとることにより、コンタ−効果
によるリップルも、1dB以下に抑制され、ビデオヘッ
ドとして十分な電Iin変換特性を有し、コストダウン
も可能となることがわかった。It has been found that by employing such a simple configuration, the ripple due to the contour effect can be suppressed to 1 dB or less, the head has sufficient electrical Iin conversion characteristics as a video head, and costs can be reduced.
以下、本実施例の磁気ヘッドの製造方法について第2図
(A)〜(E)を用いて説明する。The method for manufacturing the magnetic head of this embodiment will be described below with reference to FIGS. 2(A) to 2(E).
第2図(A)において、1はフェライト謬結晶の直接方
体ブロックの一部を示し、その−面には、三つの壁面S
l+ 2.S3により形成される巻線窓用の溝4が切
られており、その溝4が刻まれた面には、溝の壁面も鳴
め、センダスト。In Fig. 2 (A), 1 indicates a part of a direct cubic block of ferrite crystal, and its - face has three wall surfaces S.
l+2. A groove 4 for the winding window formed by S3 is cut, and the wall surface of the groove is also cut on the surface in which the groove 4 is carved, and sendust is formed.
アモルファス、パーマロイ等の高飽和磁束密度を有する
合金用・11膜2か?皮着さ11ている。これらの合金
磁性膜は、スパッタ、蒸着、プラズマCVDなとの物理
蒸箔化学蒸着などの蒸着プロセスや、メッキなどの化学
的フロセスにより形成される。11 Film 2 for alloys with high saturation magnetic flux density such as amorphous and permalloy? There are 11 people wearing leather. These alloy magnetic films are formed by a vapor deposition process such as sputtering, vapor deposition, physical vapor deposition such as plasma CVD, or chemical vapor deposition such as plating.
たとえばスパッタリングでこれらの膜を形成する場合は
、フェライト1に刻まれた巻線窓用溝の三つの壁面Sl
、s2.S3の内、摺動面に近い斜面S、により厚い膜
が付着する様、矢印で示した如く、図の斜め下方向から
蒸着することが望ましい。8mmVTRのようにギャッ
プデプスか25μm程必要な場合、この斜面S1には、
合金石ri性膜をおよそ20μm〜25μm程成膜すわ
ば良い。For example, when forming these films by sputtering, the three wall surfaces Sl of the winding window groove carved in the ferrite 1
, s2. In order to deposit a thicker film on the slope S near the sliding surface in step S3, it is desirable to perform the deposition from diagonally downward in the figure as shown by the arrow. If a gap depth of about 25 μm is required, such as in an 8 mm VTR, this slope S1 should be
It is sufficient to form the alloy stone RI film to a thickness of approximately 20 μm to 25 μm.
成膜後は、第2図(B)に示すように、巻線窓用溝中に
、アルミ等の金属棒5を落とし込み、アルミ棒諸共55
0℃前後の融点を有する第1の低融点ガラス6で溝を埋
めた後、突き合わせ面を形成するため、研磨、ラッピン
グをする。After film formation, as shown in FIG. 2(B), a metal rod 5 such as aluminum is dropped into the groove for the winding window, and the aluminum rods 55 are
After filling the groove with the first low melting point glass 6 having a melting point of around 0° C., polishing and lapping are performed to form abutting surfaces.
次に、第2図(C)に示すように、多数の平行な溝7.
,7..・・・を刻みトラック幅加工をする。第2図(
C)では、溝加工の途中の状態を示す。溝71 +
2 +・・・をすべで刻んだ後、必要ならは、溝加工に
より生じたハリ等を取るため、突き合わせ面を軽くラッ
ピングした後、S+ 02 、CrO2等の非磁性ギャ
ップ材を設語に応じたとえば0.2μm程スパッタリン
グし突き合わせ前のブロック加工を終える。もう一方の
コア半休に対応する、巻線窓用溝の無いブロックについ
ても、突き合わせ面に対応する面に、合金磁性材を10
μm以上、好ま1ツくは20μm稈成膜し、トラック幅
加工の溝を切っておく。Next, as shown in FIG. 2(C), a large number of parallel grooves 7.
,7. .. Machining the track width by cutting... Figure 2 (
C) shows the state in the middle of groove machining. Groove 71 +
2 After carving +..., if necessary, lightly wrap the mating surfaces to remove any stiffness caused by groove machining, and then apply non-magnetic gap material such as S+ 02 or CrO2 according to the designation. For example, sputtering is performed to a thickness of about 0.2 μm to complete the block processing before butting. Regarding the block without the winding window groove corresponding to the other half of the core, an alloy magnetic material of 10% was applied to the surface corresponding to the butting surface.
The film is formed to a thickness of 1 μm or more, preferably 20 μm, and a groove for track width processing is cut in advance.
これら2つのブロックを突き合わせ、トラック幅出しの
溝等を利用して第1の低融点ガラス6と同じか、やや低
い500℃〜550℃の融点を有する第2の低融点ガラ
ス81 = 2 +・・・で溶着して得られるブロッ
クを第2図(D)に示す。These two blocks are butted together, and a second low melting point glass 81 having a melting point of 500°C to 550°C, which is the same as or slightly lower than that of the first low melting point glass 6, is prepared by using the track width groove etc. The block obtained by welding is shown in FIG. 2(D).
第2図(D)においC13は磁気ギャップ、8、.82
.・・・は第2の低融点ガラスである。In FIG. 2(D), C13 is a magnetic gap, 8, . 82
.. ... is the second low melting point glass.
このブロックから、鎖線で示した位置で切出し、ヘッド
デツプが得られるが、このヘッドチップに関し、ギャッ
プ3の中心を通り、ギャップ面に垂直に交わる断面、即
ち、第2図(D)の中心線(一点鎖線)で示した断面の
構成を第2図(E)に示す。第2図(E)において、フ
ェライトコア1の巻線窓用の溝の面S、と、つき合わせ
面に対向する面S。との交線を点Pで示す。This block is cut out at the position indicated by the chain line to obtain a head depth. Regarding this head chip, a cross section passing through the center of the gap 3 and perpendicular to the gap plane, that is, the center line (D) in FIG. FIG. 2(E) shows the configuration of the cross section indicated by the dashed dotted line). In FIG. 2(E), the surface S of the groove for the winding window of the ferrite core 1 and the surface S facing the abutting surface. Point P indicates the line of intersection with
本実施例のヘッドでは、初期状態に於ける摺動面Σ、の
位置が、鎖線で示す如く、点Pと同じかより下方に位置
する様に加工する。第2図(E)点Pとギャップ近傍の
拡大図は第1図(C)に示している。The head of this embodiment is machined so that the position of the sliding surface Σ in the initial state is at the same level as the point P or below the point P, as shown by the chain line. An enlarged view of point P in FIG. 2(E) and the vicinity of the gap is shown in FIG. 1(C).
既に簡単に触れたように、第1図(C)において、巻線
窓のあるコア半休の摺動面が、巻線窓用溝の斜面S1と
ギャップ面に平行な面S0との交点Pより上方にあり、
ギャップ深さ範囲内に、ギャップ面に平行な面が残存す
ると、コンタ−効果が現われ、点Pを通る面Σ1と同じ
か、下方に位置すればコツター効果は抑制される。面S
0が残存すると、フェライト中の磁束が、面S。に垂直
に近く交わるので、二つの6n気的性貿の異なる材料の
ギャップと平行な境界面Soが擬似ギャップ的なはたら
きをするものと推測される。As mentioned briefly above, in Fig. 1 (C), the sliding surface of the half-open core with the winding window is located at the intersection point P of the slope S1 of the winding window groove and the plane S0 parallel to the gap surface. Located above;
If a plane parallel to the gap plane remains within the gap depth range, a contour effect will appear, and if it is located at the same level as or below the plane Σ1 passing through point P, the contour effect will be suppressed. Side S
If 0 remains, the magnetic flux in the ferrite is on the surface S. It is presumed that the boundary surface So parallel to the gap between the two different materials acts like a pseudo-gap.
第1図(C)において、面Sl上に付着した合金磁性膜
2の厚さをT、[2とギャップ面とのなす角をθ、摺動
面Σ、が頂度点Pを通るとして、面Σ、からギャップ深
さ方向の端点Oまでの距離、即ち、ギャップ深さをD、
ギャップから点Pまでの距離、即ち、摺動面上に現われ
た合金磁性膜の幅τ下をWとしたとき、W、D、 θ
とTとの間には、
T = W c o sθ+Dsinθ −−−−−−
(1)という関係が成立する。今ビデオ信号の記録再生
用のヘッドを対象とした時、ギャップ深さD;25μm
とし、斜面S1とギャップ面のなす角度をθ=45°、
θ=60°の夫々の場合について、ざらに摺動面上にお
Cプる膜面の幅をW=0.5.10μmと変化させてみ
て、斜面S1上の必要膜厚Tを(1)式から求めると、
第1図(B)のようになる。In FIG. 1(C), it is assumed that the thickness of the alloy magnetic film 2 deposited on the surface Sl is T, the angle between [2 and the gap surface is θ, and the sliding surface Σ passes through the apex point P. The distance from the surface Σ to the end point O in the gap depth direction, that is, the gap depth, is D,
When W is the distance from the gap to point P, that is, the width τ of the alloy magnetic film appearing on the sliding surface, W, D, θ
and T, T = W cos θ + D sin θ −−−−−−
The relationship (1) holds true. When targeting a head for recording and reproducing video signals, the gap depth D is 25 μm.
and the angle between the slope S1 and the gap surface is θ=45°,
For each case of θ = 60°, the width of the film surface C on the sliding surface is roughly changed to W = 0.5.10 μm, and the required film thickness T on the slope S1 is (1 ) is calculated from the formula,
The result will be as shown in Figure 1 (B).
各種形状のヘッドを試作した結果、出刃は、膜厚Tか厚
い程高くなり、コンタ−効果は、膜幅Wが広い程少なく
なる事がわかったがW;10μm程度で、コンタ−効果
によるリップルは、殆んど1dB以下となった。尚、膜
厚Tが厚いと、内部応力がそれだけ増大し、加工時にヘ
ッドの各部に、クラックや膜ハガレが生じ、歩留りを低
下させる為、膜厚は薄い方が望ましい。従って、第1図
(B)よりW=10μm以下の時は、θ=45°の方が
好ましい。尚、ヘッド幅が大きいヘッドの場合、デプス
Dは10μmで十分なので、W=10μmとしても膜厚
は15μm程で良い。As a result of making prototype heads of various shapes, it was found that the sharpness of the cutting edge increases as the film thickness T increases, and that the contour effect decreases as the film width W increases. was almost 1 dB or less. It should be noted that if the film thickness T is thick, the internal stress will increase accordingly, which will cause cracks and film peeling in various parts of the head during processing, reducing the yield, so it is desirable that the film thickness be thinner. Therefore, from FIG. 1(B), when W=10 μm or less, θ=45° is preferable. Note that in the case of a head with a large head width, a depth D of 10 μm is sufficient, so even if W=10 μm, the film thickness may be about 15 μm.
実際には摺動面が面S0と面S1の交線(点P)を頂度
通るように加工するの困難で、ギャップ深さ方向に数μ
mの誤差が出る。この時、初期摺動面がΣ、より下方、
ギャップ深さDが小さくなる方向へずれる場合は問題無
い。一方、摺切面が、上方に8たけずれΣ2に位置した
場合、ずれ量δが2〜3μm以下であれは、即ち面S0
の残存二が深さにして、2〜3μm以下ならは、コンタ
−効果によるリップルは2dB以下となりビデオ信号の
記録再生に対しては悪影響を及ぼさないことがわかった
。従って、実用上は、面S0がギャップ深さ方向に数μ
m残存する程度の加工誤差は許容されるべきである。In reality, it is difficult to machine the sliding surface so that it passes through the intersection line (point P) of surfaces S0 and S1 at the top, and it is difficult to process the sliding surface by several microns in the direction of the gap depth.
There will be an error of m. At this time, the initial sliding surface is Σ, lower than
There is no problem if the gap depth D shifts in the direction of decreasing. On the other hand, when the sliding surface is located at an upward deviation of 8 degrees Σ2, if the deviation amount δ is 2 to 3 μm or less, that is, the surface S0
It has been found that if the remaining depth is 2 to 3 .mu.m or less, the ripple due to the contour effect will be 2 dB or less and will not have an adverse effect on the recording and reproduction of video signals. Therefore, in practice, the surface S0 is several μ in the gap depth direction.
A residual machining error of m should be allowed.
以上詳しく説明した工程に従って得られたヘッドチップ
の外観の斜視図が、第1図(A)に示したものである。A perspective view of the external appearance of the head chip obtained according to the steps described in detail above is shown in FIG. 1(A).
摺動面加工を施した後ヘツドチップをアルカリ液に浸漬
すると、アルミ棒が溶け、巻線窓9が形成される。When the head chip is immersed in an alkaline solution after the sliding surface has been processed, the aluminum rod is melted and the winding window 9 is formed.
次に本発明の他の実施例としての磁気ヘッドの電磁変換
部近傍を第3図(A)〜第3図(F)に示す。Next, the vicinity of the electromagnetic transducer section of a magnetic head as another embodiment of the present invention is shown in FIGS. 3(A) to 3(F).
第3図(A)のヘッドは、たとえば第2図(B)のフェ
ライトブロックにおいて、突き合わせ面に残存する厚さ
tの合金膜をさらに研磨・ラッピングして下地のフェラ
イト面が現われるようにし、そのブロックに第2図(D
)の巻線窓用溝の無い方のブロックを突き合わせ溶着し
、以下光の実施例と同様の工程を経て得られる。The head of FIG. 3(A) is produced by, for example, using the ferrite block of FIG. 2(B) by further polishing and lapping the alloy film of thickness t remaining on the abutting surfaces to expose the underlying ferrite surface. Figure 2 (D
) are butt-welded together, and the same steps as in the optical example are performed.
この場合、第1図(C)において、合金磁性膜とフェラ
イトとの境界面S1は単一面で斜め上方に伸び、ギャッ
プ面と点Rで交わりており、摺動面Σ1上に現われる合
金磁性膜の幅PQ=Wと、θ、D、Tとの間には前出(
1)式と同様の関係式が成立する。In this case, in FIG. 1(C), the interface S1 between the alloy magnetic film and the ferrite is a single plane that extends obliquely upward and intersects the gap plane at point R, and the alloy magnetic film appears on the sliding surface Σ1. The difference between the width PQ=W and θ, D, and T is as mentioned above (
A relational expression similar to expression 1) holds true.
第3図(B)のヘッドは、巻線窓のあるコア半休に、第
3図(A)と同じものを用い、突き合わせる相手のコア
半休については、下部コア側に合金磁性膜の無いものを
用いている。またコア下部にはギャップ材は被着しない
構造としである。このような41°4造を有する磁気ヘ
ッドにあっては、合金fill性膜が、つぎ合わせ面で
頂度対向し、巻線窓を連続してとりまく構造にし、磁気
抵抗が最も少なくなるよう配慮されている。The head in Figure 3 (B) uses the same one as in Figure 3 (A) for the core half hole with the winding window, and the core half hole to be matched does not have an alloy magnetic film on the lower core side. is used. Also, the structure is such that no gap material is adhered to the lower part of the core. In a magnetic head having such a 41°4 structure, the alloy fill films are arranged so that the tops thereof face each other on the joining surfaces and continuously surround the winding window, so that the magnetic resistance is minimized. has been done.
第3図(C)のヘッドは、巻線窓用溝の三つの壁面Sl
、S2.S3の内、ギャップ面と鋭角で交わる斜面SL
にのみ合金磁性膜を成膜したものである。また、他の実
施例もそうであるが、斜面Sl上の膜厚は、ギャップ近
傍で必要な膜厚が確保できれは、溝の深さ方向に薄くな
っていってもよい。フェライトに被着する合金磁性膜の
面積や厚さが少ない程、内部応力が小さくなり、加工歩
留りが向上する。The head in FIG. 3(C) has three walls Sl of the winding window groove.
, S2. Slope SL intersects with the gap plane at an acute angle in S3
An alloy magnetic film is formed only on the surface. Further, as in other embodiments, the film thickness on the slope Sl may become thinner in the depth direction of the groove, as long as the necessary film thickness can be secured in the vicinity of the gap. The smaller the area and thickness of the alloy magnetic film deposited on the ferrite, the smaller the internal stress and the higher the processing yield.
第3図(D)のヘッドは、フェライトブロックに、巻線
窓用溝を刻む前に、前記溝と平行に斜面Sl’ を有す
る溝を刻み、その表面に合金磁性膜を成膜し、た後、巻
線窓用溝を刻んで得られる。In the head shown in FIG. 3(D), before cutting the winding window groove in the ferrite block, a groove having a slope Sl' is cut parallel to the groove, and an alloy magnetic film is formed on the surface of the groove. After that, a groove for the winding window is carved.
このヘッドに於いては2種類の磁性材の境界面積が更に
少なくなり、加工歩留りが向上する。In this head, the boundary area between the two types of magnetic materials is further reduced, and the processing yield is improved.
第3図(E)のヘットは、巻線溝の単一斜面を途中で折
れ曲げその表面に合金磁性膜を成膜して得られる。尚こ
の場合にもギャップ深さ内に於いては図示の如く合金6
n性膜の被着面は単一平面としている。The head shown in FIG. 3(E) is obtained by bending a single slope of the winding groove in the middle and forming an alloy magnetic film on the surface thereof. In this case as well, within the gap depth, alloy 6
The surface to which the n-type film is adhered is a single plane.
第3図(F)のヘッドは、突き合わせする2つのコア半
休の両方に巻線窓用溝を形成し、その変形斜面S、″に
合金磁性膜を形成して得られる。The head shown in FIG. 3(F) is obtained by forming winding window grooves on both of the two core halves that are brought into contact with each other, and forming an alloy magnetic film on the deformed slope S,''.
このヘットによれは、全体の磁路長を短縮し、ヘッドの
電磁変換効率を向上させである。合金磁性膜2とフェラ
イト1との境界面31″が曲面となっているが、ギャッ
プ深さ範囲内の曲面上、各位置における接平面とギャッ
プ面とのなす角はすべて鋭角となっている。また曲面の
曲率は、図と反対符号のものでもよい。The purpose of this head deflection is to shorten the overall magnetic path length and improve the electromagnetic conversion efficiency of the head. Although the boundary surface 31'' between the alloy magnetic film 2 and the ferrite 1 is a curved surface, the angles formed between the tangential plane and the gap surface at each position on the curved surface within the gap depth range are all acute angles. Further, the curvature of the curved surface may have a sign opposite to that shown in the figure.
以上は、ヘッドのギャップ中心を通り、トラック方向に
平行な断面内での構造に関する種々の変形列を示したが
、そのほか例えば第2図(C)におけるトラック幅出し
の溝形状や、そのようにして得られるコア先会11.1
部側面に合金膜を成膜するなど、数多くの組合わせや変
形例が得られる。The above has shown various deformations of the structure within the cross section passing through the gap center of the head and parallel to the track direction. Core destination obtained by 11.1
Many combinations and modifications can be obtained, such as forming an alloy film on the side surface of the part.
また、いわゆる突き合わせ工程を経ずにヘッドが作られ
るような磁気ヘッドにおいても、巻線窓を有する側のコ
ア半休に於いて同様に作動ギャップの深さの範囲内にて
、合金磁性膜の膜厚を大略一定の割合で変化せしめる構
成とすることにより同様の効果が得られる。In addition, even in a magnetic head in which the head is manufactured without going through the so-called butting process, a film of alloy magnetic film is similarly applied within the depth of the working gap in the core half on the side with the winding window. A similar effect can be obtained by changing the thickness at a substantially constant rate.
上述の如き本発明の各実施例の磁気ヘッドに於いては、
少なくとも一方のコアハーフに於ける磁性合金膜の膜厚
が作動ギャップの深さの範囲内にて磁気ヘッドの媒体摺
動面からの深さに応じて大略一定の割合で変化する一構
造としているので、磁性合金膜の被着面は作動ギャップ
深さの範囲内で殆んど車−の平面であるため加工が簡単
で、かつコンタ−効果に伴う電磁変換特性の劣化を抑え
ることができる。In the magnetic head of each embodiment of the present invention as described above,
The structure is such that the thickness of the magnetic alloy film in at least one core half changes at a roughly constant rate within the range of the depth of the working gap depending on the depth from the medium sliding surface of the magnetic head. Since the surface to which the magnetic alloy film is applied is almost a flat surface within the working gap depth range, processing is easy and deterioration of electromagnetic conversion characteristics due to the contour effect can be suppressed.
また、本発明の好適なる実施態様として、各実施例にあ
る様に磁性合金膜の被着面と磁気ギャップとの間隔が媒
体摺動面に近づくに従い小さくなる様、即ち媒体摺動面
に近づくに従い磁性合金膜の膜厚が小さくなる様構成す
ることにより、磁束の流れは更にスムーズとなりより効
率良くコンタ−効果に伴う電磁変換特性への悪影響を抑
制できるものである。In addition, as a preferred embodiment of the present invention, as in each embodiment, the distance between the surface to which the magnetic alloy film is adhered and the magnetic gap becomes smaller as it approaches the medium sliding surface, that is, as it approaches the medium sliding surface. Accordingly, by configuring the magnetic alloy film so that the film thickness is reduced, the flow of magnetic flux becomes smoother, and the negative influence on the electromagnetic conversion characteristics caused by the contour effect can be suppressed more efficiently.
更に、第1図(A)、第3図(A)、(B)。Furthermore, FIG. 1(A), FIG. 3(A), and (B).
<C>に示した溝に巻線用溝の斜面をそのまま利用して
磁性合金膜の被着面とすることにより更に製造工程の簡
略化が実現できる。The manufacturing process can be further simplified by using the slope of the winding groove as it is in the groove shown in <C> as the surface to which the magnetic alloy film is adhered.
磁気ギャップと平行な方向については磁性合金膜の膜厚
が変化しない構造とすることによりトラック幅が合金膜
の膜厚とは無関係に選べるので、トラック幅の広いヘッ
ドも安価に供給できるという効果がある。By creating a structure in which the thickness of the magnetic alloy film does not change in the direction parallel to the magnetic gap, the track width can be selected independently of the thickness of the alloy film, which has the effect of allowing heads with wide track widths to be supplied at low cost. be.
(発明の効果)
以上説明した様に本発明によれは、製造工程上有利な構
造を備えつつ電磁変換特性の劣化の少ない磁気ヘッドが
得られるものである。(Effects of the Invention) As described above, according to the present invention, a magnetic head can be obtained which has a structure that is advantageous in terms of the manufacturing process and which exhibits little deterioration in electromagnetic conversion characteristics.
第1図(A)、(B)、(C)は本発明の一実施例とし
ての6n気ヘツドの構造について説明するための図、
第2図(A)、(B)、(C)、(D)。
(E)は第1図に示す磁気ヘッドの製造工程を説明する
ための図、
第3図(A)〜(F)は夫々本発明の他の実施例の磁気
ヘッドの電磁変換部に於ける断面図、
第4図(A)、(B)は従来のMIGヘッドの要部構造
を示す図、
第5図は第4図に示すヘッドの電磁変換特性を示す図で
ある。
図中、1は高透磁率磁性材ブロック、2は高飽和磁束密
度磁性合金膜、3は磁気ギャップ、9は壱S、泉窓であ
る。Figures 1 (A), (B), and (C) are diagrams for explaining the structure of a 6n air head as an embodiment of the present invention; Figures 2 (A), (B), and (C); (D). (E) is a diagram for explaining the manufacturing process of the magnetic head shown in FIG. 1, and FIGS. 3 (A) to (F) are diagrams for explaining the manufacturing process of the magnetic head shown in FIG. 1, respectively. 4(A) and 4(B) are diagrams showing the main structure of a conventional MIG head, and FIG. 5 is a diagram showing electromagnetic conversion characteristics of the head shown in FIG. 4. In the figure, 1 is a high magnetic permeability magnetic material block, 2 is a high saturation magnetic flux density magnetic alloy film, 3 is a magnetic gap, and 9 is 1S, a spring window.
Claims (3)
てなるコアハーフ同志を磁気ギャップ材を介して突合せ
てなる磁気ヘッドであって、少なくとも一方のコアハー
フに於ける前記磁性膜の膜厚が作動ギャップの深さの範
囲内にて、前記磁気ヘッドの媒体摺接面からの深さに応
じて大略一定の割合で連続的に変化することを特徴とす
る磁気ヘッド。(1) A magnetic head in which core halves each having a high saturation magnetic flux density film coated on a high magnetic permeability magnetic material are butted together via a magnetic gap material, wherein the magnetic film in at least one of the core halves is 2. A magnetic head, wherein the film thickness of the magnetic head changes continuously at a substantially constant rate within the depth range of an operating gap, depending on the depth from a surface of the magnetic head in sliding contact with a medium.
面に於ける磁気ギャップと平行な方向については膜厚が
変化しないことを特徴とする特許請求の範囲第(1)項
記載の磁気ヘッド。(2) The thickness of the magnetic film in the portion where the film thickness changes does not change in the direction parallel to the magnetic gap at the surface where the medium slides. magnetic head.
る部分の磁性膜の被着面は、前記高透磁率磁性材に形成
された巻線用溝の底面の一部であることを特徴とする特
許請求の範囲第(1)項記載の磁気ヘッド。(3) In the one core half, the surface to which the magnetic film is applied in the part where the film thickness changes is a part of the bottom surface of the winding groove formed in the high permeability magnetic material. A magnetic head according to claim (1).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61246044A JP2632814B2 (en) | 1986-10-15 | 1986-10-15 | Magnetic head |
US07/108,809 US5173825A (en) | 1986-10-15 | 1987-10-14 | Magnetic head using magnetic oxide part and magnetic metal film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61246044A JP2632814B2 (en) | 1986-10-15 | 1986-10-15 | Magnetic head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6398805A true JPS6398805A (en) | 1988-04-30 |
JP2632814B2 JP2632814B2 (en) | 1997-07-23 |
Family
ID=17142627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61246044A Expired - Fee Related JP2632814B2 (en) | 1986-10-15 | 1986-10-15 | Magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2632814B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6174112A (en) * | 1984-09-19 | 1986-04-16 | Hitachi Maxell Ltd | Magnetic head |
-
1986
- 1986-10-15 JP JP61246044A patent/JP2632814B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6174112A (en) * | 1984-09-19 | 1986-04-16 | Hitachi Maxell Ltd | Magnetic head |
Also Published As
Publication number | Publication date |
---|---|
JP2632814B2 (en) | 1997-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61129716A (en) | Magnetic head | |
JPH03269809A (en) | Production of magnetic head | |
JPS6398805A (en) | Magnetic head | |
JPH01290110A (en) | Core for magnetic head | |
KR100385126B1 (en) | Magnetic head | |
JP2556478B2 (en) | Magnetic head | |
JPH04318304A (en) | Magnetic head and production thereof | |
KR930006583B1 (en) | Production of magnetic head | |
JPS63282910A (en) | Magnetic head | |
JP2556479B2 (en) | Magnetic head | |
JPH02247816A (en) | Production of core slider for stationary magnetic disk device | |
JPH0283807A (en) | Production of magnetic head | |
JPS60202502A (en) | Magnetic head | |
JPS62139110A (en) | Manufacture of magnetic head | |
JP2954784B2 (en) | Magnetic head and method of manufacturing the same | |
JPH0561681B2 (en) | ||
JPH07235011A (en) | Magnetic head and its production | |
JPS63282908A (en) | Magnetic head | |
JPS63282909A (en) | Magnetic head | |
JPS63281206A (en) | Magnetic head | |
JPS63288404A (en) | Production of magnetic head | |
JPH0540910A (en) | Manufacture of narrow track magnetic head | |
JPS62157306A (en) | Magnetic head | |
JPS62125509A (en) | Magnetic head | |
JPH08255310A (en) | Magnetic head and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |