JPS6398121A - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JPS6398121A
JPS6398121A JP24450886A JP24450886A JPS6398121A JP S6398121 A JPS6398121 A JP S6398121A JP 24450886 A JP24450886 A JP 24450886A JP 24450886 A JP24450886 A JP 24450886A JP S6398121 A JPS6398121 A JP S6398121A
Authority
JP
Japan
Prior art keywords
group
susceptor
tei
crystal
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24450886A
Other languages
Japanese (ja)
Inventor
Yasuhito Takahashi
康仁 高橋
Mototsugu Ogura
基次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24450886A priority Critical patent/JPS6398121A/en
Publication of JPS6398121A publication Critical patent/JPS6398121A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a crystal of high quality with good uniformity over a large area without using virulently poisonous phosphine or arsine by evaporating group V single substance element as V material gas in a crystal growing chamber for use. CONSTITUTION:Group V single substance element which becomes a V material 4, such as phosphorus is filled in a carbon crucible 3 or a quartz crucible 6 at the upstream of a susceptor 2 or adjacent to the upstream, the material 4 is evaporated by a heat or a light, and supplied as the material 4. Thus, since arsine (AsH3) or phosphine (PH3) being virulently poisonous is not used as the material gas at all, the safety is improved, and since it is supplied in a P-type, an intermediate reaction with TEI (triethyl indium) is eliminated to obviate the formation of (TEI-Ph3)n polymer which does not contribute to a crystal growth, and the growing velocity can be controlled in a wide range.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は化合物半導体等を基板上に結晶成長する場合に
用いられる気相成長方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a vapor phase growth method used for growing crystals of compound semiconductors and the like on a substrate.

従来の技術 近年、■−■族および■−■族等の化合物および混晶半
導体の気相エピタキシャル成長法特に有機金属気相成長
法(MOVPE 、 Metal OrganicVa
por Phase Epitaxy  法)が、大面
積にわたる均一性、量産性、膜厚や組成の制御性等の点
から注目を集め、各所で研究開発が活発に行なわれてい
る。
2. Description of the Related Art In recent years, vapor phase epitaxial growth methods for compound and mixed crystal semiconductors such as ■-■ group and ■-■ group, particularly metal organic vapor phase epitaxy (MOVPE), have been developed.
The por phase epitaxy method) is attracting attention because of its uniformity over a large area, mass productivity, controllability of film thickness and composition, etc., and research and development are being actively conducted in various places.

従来、この種の気相成長装置は、第3図のような構造に
なっていた。1は石英炉芯管、2はカーボン製サセプタ
である。例えば、InP結晶を気相成長する場合Inの
原料ガスとして有機In化合物例えばトリメチルインジ
ウムTMI((CH3) 3In)あるいはトリエチル
インジウムTEI((C,H5)3In)を用い、Pの
原料として、極めて有毒なホスフィンガスPH3を用い
る。又、G a A s結晶を気相成長する場合、Ga
・の原料ガスとして有機Ga化合物例えばトリメチルガ
リウムTMG ((CH3)5Ga)あるいはトリエチ
ルガリウムTEG((C2H5)3Ga)を用い、As
の原料ガスとして、Pを同様極めて有毒なアルシンガス
A s Hsを用いる。又、InPの結晶成長の場合、
TEIを用いると、PH3とは室温において容易に(T
EI−PH3]ユなるポリマーが形成されるので、PH
3を分解してP2あるいはP4にして供給する必要があ
った。
Conventionally, this type of vapor phase growth apparatus has had a structure as shown in FIG. 1 is a quartz furnace core tube, and 2 is a carbon susceptor. For example, when growing an InP crystal in a vapor phase, organic In compounds such as trimethylindium TMI ((CH3) 3In) or triethylindium TEI ((C, H5) 3In) are used as the In source gas, and extremely toxic phosphine gas PH3 is used. In addition, when growing a GaAs crystal in a vapor phase, Ga
Using an organic Ga compound such as trimethylgallium TMG ((CH3)5Ga) or triethylgallium TEG ((C2H5)3Ga) as the raw material gas for As
As a raw material gas, arsine gas A s Hs, which is extremely toxic like P, is used. In addition, in the case of InP crystal growth,
When TEI is used, PH3 can be easily (T
EI-PH3] Since a polymer is formed, PH
It was necessary to disassemble P3 and supply it as P2 or P4.

又、原料として固体を用いる方法としてG a A s
の場合、Gaを固体としてA s Cl 3を用いたり
、InPの場合、IrrとPCl3を用いる方法がある
が、AsあるいはPを固体で用いることはなかった。
Also, as a method using solid as a raw material, G a A s
In the case of Ga as a solid, A s Cl 3 is used, and in the case of InP, Irr and PCl 3 are used, but As or P has not been used as a solid.

発明が解決しようとする問題点 上記の如く、■族原料ガスに猛毒であるアルシンA s
 HsやホスフィンPH3を用いるため、結晶成長装置
も十分に機密を保つ必要があるだけでなく、装置周辺部
も安全性を確保しなければならず装置自体も非常に高価
なものとなる。さらに、TEIとPH3が反応し、結晶
成長には全く寄与しない(:TEI−PH3:)ユなる
ポリマー形成をさけるために、■族原料と■族原料ガス
を各々の導入管で結晶成長室内に導入したシ、PH3を
前もってクラッキングしてP2あるいはP4の形で結晶
成長室内に導入する方法が提案されているが、これらは
全て、装置が複雑になる方向に進んでいる。
Problems to be Solved by the Invention As mentioned above, arsine A s, which is highly poisonous to Group III raw material gases,
Since Hs and phosphine PH3 are used, the crystal growth apparatus not only needs to be kept sufficiently confidential, but also the surrounding area of the apparatus must be kept safe, making the apparatus itself very expensive. Furthermore, in order to avoid the formation of a polymer in which TEI and PH3 react and do not contribute at all to crystal growth (:TEI-PH3:), the group III raw material and the group III raw material gas are introduced into the crystal growth chamber through respective introduction pipes. Methods have been proposed in which the introduced PH3 is cracked in advance and introduced into the crystal growth chamber in the form of P2 or P4, but all these methods tend to make the equipment more complex.

問題点を解決するための手段 本発明は、上記問題点を解決するだめの手段として、サ
セプタの上流側あるいは上流側に隣接してカーボン製ル
ツボあるいは石英製ルツボ内にV族原料となる■族元素
単体を入れ、熱あるいは光により■族原料を蒸発させて
、V族原料として供給するものである。
Means for Solving the Problems The present invention provides, as a means to solve the above problems, a group V material, which is a group V raw material, in a carbon crucible or a quartz crucible on the upstream side of a susceptor or adjacent to the upstream side. A single element is introduced, and the group (I) raw material is evaporated by heat or light to be supplied as a group V raw material.

作  用 この技術的手段により作用は次のようになる。For production The effect of this technical means is as follows.

■族原料ガスとして猛毒であるアルシン(AsHa)や
ホスフィン(PH3)を全く使用しないので、安全性が
向上した。又、Pの形で供給するのでTEIとの中間反
応も全くなくなり結晶成長に寄与しない(TEI−PH
3〕ユポリマーの形成がなくなり、成長速度が広い範囲
にわたって制御できるようになった。
Safety is improved because arsine (AsHa) and phosphine (PH3), which are extremely toxic, are not used at all as the Group (2) raw material gas. In addition, since it is supplied in the form of P, there is no intermediate reaction with TEI, and it does not contribute to crystal growth (TEI-PH
3] The formation of eupolymer has been eliminated, and the growth rate can now be controlled over a wide range.

実施例 本発明に用いる気相成長装置の具体的な一例を第1図に
示す。1は石英炉芯管、2はカーボン裂サセプタ、3は
カーボン製ルツボ、4はV族原料例えばリンである。こ
の実施例では、カーホン製ルツボ3はサセプタの上流に
隣接しておかれており、高周波誘導加熱装置を用いると
カーボン製ルツボとサセプタを同時に加熱することがで
きる。
EXAMPLE A specific example of a vapor phase growth apparatus used in the present invention is shown in FIG. 1 is a quartz furnace core tube, 2 is a carbon fissure susceptor, 3 is a carbon crucible, and 4 is a group V raw material, such as phosphorus. In this embodiment, the carbon crucible 3 is placed upstream and adjacent to the susceptor, and the carbon crucible and the susceptor can be heated simultaneously by using a high frequency induction heating device.

カーボン製ルツボ3はサセプタと一体化したものでもよ
い。本実施例による装置を用いて基板2゜上にInPの
成長を行なった。■族原料ガスとしてTMIあるいはT
EIを用いた。キャリアガスはPd拡散膜を通った高純
度水素ガスで流量は3.217m1nである。基板2o
はInPで、基板温度は600〜660℃である。TM
Iを用いるときは、バプラ容器の温度を17℃に保ち、
水素を60cc /ynin流す。又、TEIを用いる
時は、バプラ容器の温度を36℃に保ち、水素を100
cc/=流してバブリングする。サセプタの温度を60
0℃に保った時、サセプタの上流に隣接したカーボン製
ルツボ3の温度は550℃になる。TMIもTEIも同
モル数で供給した場合、成長速度にはほとんど差異がみ
られなかった。父、77Kにおけるフォトルミネッセン
スの半値巾は9  以下であシ、極めて良好な結晶膜が
基板2o上に得られていることが判明した。
The carbon crucible 3 may be integrated with the susceptor. InP was grown on a 2° substrate using the apparatus according to this example. ■ TMI or T as a group raw material gas
EI was used. The carrier gas is a high-purity hydrogen gas that has passed through a Pd diffusion film and has a flow rate of 3.217 m1n. Board 2o
is InP, and the substrate temperature is 600 to 660°C. TM
When using I, keep the temperature of the Bapra container at 17°C,
Flow hydrogen at 60cc/ynin. Also, when using TEI, the temperature of the bubbler container is kept at 36℃, and the hydrogen is heated to 100℃.
cc/=flow and bubble. Set the temperature of the susceptor to 60
When maintained at 0°C, the temperature of the carbon crucible 3 adjacent to the upstream side of the susceptor becomes 550°C. When both TMI and TEI were supplied in the same molar number, there was almost no difference in the growth rate. It was found that the half width of photoluminescence at 77K was 9 or less, and that an extremely good crystalline film was obtained on the substrate 2o.

第2の実施例について、第2図を用いて述べる。A second embodiment will be described using FIG.

P(リン)は、石英ガラス製ルツボ8内に入れて、光6
例えば赤外線又はレーザ光あるいはマイクロ波を用いて
、リンフの表面温度を昇げて蒸発させる。この場合サセ
プタ2とリンフとは独立しており光5又はマイクロ波の
パワーによって、リンの   ゛供給量を制御できる。
P (phosphorus) is placed in a quartz glass crucible 8 and exposed to light 6.
For example, infrared rays, laser light, or microwaves are used to raise the surface temperature of the phosphor and evaporate it. In this case, the susceptor 2 and the phosphor are independent, and the amount of phosphorus supplied can be controlled by the power of the light 5 or microwave.

炉芯管内に導入する水素は、炉芯管入口に設けられた加
熱ヒータ9によシ予め加熱して供給すると、リンの表面
温度の下降を防ぐことができ、安定にリンを供給できる
。8は冷却水、10は高周波コイルである。
If the hydrogen introduced into the furnace core tube is heated in advance by the heater 9 provided at the entrance of the furnace core tube, a drop in the surface temperature of phosphorus can be prevented and phosphorus can be stably supplied. 8 is cooling water, and 10 is a high frequency coil.

この場合も第1の実施例と同様にTMIあるいはTEI
を導入することにより極めて良好なInP結晶薄膜が容
易にかつ大面積基板20(2インチウェハー)にわたっ
て成長することができる。又、TMIもTEIも同モル
数供給した場合、成長速度にはほとんど差異がみられな
かった。したがって、一般に言われているTEIとPH
3の中間反応による成長速度の低下は全く考慮しなくて
もよく、装置そのものも簡単な構造ですむ。
In this case as well, TMI or TEI
By introducing this, an extremely good InP crystal thin film can be easily grown over a large area substrate 20 (2 inch wafer). Furthermore, when the same mole number of TMI and TEI was supplied, there was almost no difference in the growth rate. Therefore, the generally said TEI and PH
There is no need to take into account the reduction in growth rate due to the intermediate reaction in step 3, and the device itself can be of simple structure.

以上の実施例では、InPの成長について述べたが、第
1の実施例におけるカーボン製ルツボ3あるいは第2の
実施例における石英ガラス製ルツボ6内にリンのかわp
にヒ素(As)を入れることによりG a A sある
いはA I G a A sの成長が容易にできる。さ
らにSeやSを用いるとZn5eやZnS等の■−■族
化合物半導体等に応用できることは言うまでもない。
In the above embodiments, the growth of InP has been described.
By adding arsenic (As) to the material, GaAs or AIGaAs can be easily grown. Furthermore, it goes without saying that if Se or S is used, it can be applied to ■-■ group compound semiconductors such as Zn5e and ZnS.

発明の効果 本発明の気相成長方法は、サセプタの上流側あるいは上
流側に隣接してカーボン製ルツボあるいは石英ガラス製
ルツボ内に■族原料となる■族元素単体を入れ、V族原
料を蒸発させて■族原料として供給するものであり、リ
ンやヒ素を、極めて猛毒のホスフィンやアルシンを用い
ることなく供給することができ、安全性が飛躍的に向上
した。
Effects of the Invention In the vapor phase growth method of the present invention, a single element of a group III element, which is a group III raw material, is placed in a carbon crucible or a quartz glass crucible on the upstream side of a susceptor or adjacent to the upstream side, and a group V raw material is evaporated. It can be supplied as a Group Ⅰ raw material, and phosphorus and arsenic can be supplied without using extremely poisonous phosphine or arsine, dramatically improving safety.

又、InP系の結晶成長において、(TE I −PH
3)ユなる結晶成長に全く寄与しないポリマー形成を避
けることができ、TEIあるいはTMIの成長に寄与す
る成長効率が飛曜的に向上し、無、駄がなくなった。し
たがって、高品質の結晶が大面積にわたって均一性よく
得られるので、この結晶より作られるデバイスのコスト
も大幅に削減することが可能となり、非常に実用的効果
は犬である。
In addition, in InP-based crystal growth, (TE I -PH
3) It is possible to avoid the formation of polymers that do not contribute to the growth of crystals, and the growth efficiency that contributes to the growth of TEI or TMI is dramatically improved, eliminating waste. Therefore, since a high quality crystal can be obtained with good uniformity over a large area, it is possible to significantly reduce the cost of devices made from this crystal, which has a very practical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例における気相成長装置の
模式図、第2図は第2の実施例における気相成長装置の
模式図、第3図は従来の気相成長装置の模式図である。 1・・・・・・石英炉芯管、2・・・・・・カーボン製
サセプタ、3・・・・・・カーボン製ルツボ、4,7・
・・・・・リン、6・・・・・・光、6・・・・・・石
英ガラス製ルツボ。 /−石さミ弐戸唆こヤ≧        6−“ジEδ
に力°ラノげ粗りルツボ2−−−カーボンiアヒブタ 
 3・−・Xン主p囚く3−−一カーボン製ル゛ツボ 
 9−加熱ヒータ47−リン      10−高円浪
ンルい1.、5−A      zo−逼板第2図 /−m−石英や心音 2−一一カーボン四カーヒブタ 第3図
FIG. 1 is a schematic diagram of a vapor phase growth apparatus according to a first embodiment of the present invention, FIG. 2 is a schematic diagram of a vapor phase growth apparatus according to a second embodiment, and FIG. 3 is a schematic diagram of a conventional vapor phase growth apparatus. It is a schematic diagram. 1...Quartz furnace core tube, 2...Carbon susceptor, 3...Carbon crucible, 4,7.
...phosphorus, 6 ... light, 6 ... quartz glass crucible. /-Ishisami Nito Insikoya≧ 6-“JEδ
に力°Ranoge coarse crucible 2---Carbon i Ahibuta
3.-.
9-Heater 47-Rin 10-Takaen Ronrui1. , 5-A zo-plate Fig. 2/-m-quartz and heart sound 2-11 carbon four carhibuta Fig. 3

Claims (3)

【特許請求の範囲】[Claims] (1)III族の原料ガスとしてIII族元素を含む有機金属
化合物を用いて、結晶成長室内に載置されたサセプタ上
の基板に半導体薄膜を形成するに際し、V族の原料ガス
としてV族元素単体を前記結晶成長室内で蒸発させて用
いる気相成長方法。
(1) When forming a semiconductor thin film on a substrate on a susceptor placed in a crystal growth chamber using an organometallic compound containing a group III element as a group III source gas, a group V element is used as a group V source gas. A vapor phase growth method in which a single substance is evaporated in the crystal growth chamber.
(2)V族元素はサセプタに隣接して上流側に設置され
たカーボン製もしくは石英ガラス製のルツボ内に置かれ
、高周波誘導もしくはサセプタからの熱放射の熱を利用
して蒸発させるようにした特許請求の範囲第1項に記載
の気相成長方法。
(2) Group V elements were placed in a carbon or quartz glass crucible installed adjacent to and upstream of the susceptor, and evaporated using high-frequency induction or heat radiated from the susceptor. A vapor phase growth method according to claim 1.
(3)V族元素は、サセプタの上流側に設置されたカー
ボン製もしくは石英ガラス製のルツボ内に置かれ、光も
しくはマイクロ波を用いて熱することにより蒸発させる
ようにした特許請求の範囲第1項に記載の気相成長方法
(3) The group V element is placed in a carbon or quartz glass crucible installed upstream of the susceptor, and is evaporated by heating with light or microwaves. The vapor phase growth method according to item 1.
JP24450886A 1986-10-15 1986-10-15 Vapor growth method Pending JPS6398121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24450886A JPS6398121A (en) 1986-10-15 1986-10-15 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24450886A JPS6398121A (en) 1986-10-15 1986-10-15 Vapor growth method

Publications (1)

Publication Number Publication Date
JPS6398121A true JPS6398121A (en) 1988-04-28

Family

ID=17119718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24450886A Pending JPS6398121A (en) 1986-10-15 1986-10-15 Vapor growth method

Country Status (1)

Country Link
JP (1) JPS6398121A (en)

Similar Documents

Publication Publication Date Title
JPH0350834B2 (en)
Tsang Chemical beam epitaxy of InGaAs
JP3882226B2 (en) Method for growing Mg-doped nitride III-V compound semiconductor crystal
JPS6398121A (en) Vapor growth method
US4920068A (en) Metalorganic vapor phase epitaxial growth of group II-VI semiconductor materials
JPH09171966A (en) N-type doping to compound semiconductor, chemical beam deposition using the same, metal organic molecular beam epitaxial growth, gas source moleculer beam epitaxial growth, and metal organic vapor phase deposition
JP2736655B2 (en) Compound semiconductor crystal growth method
JP3104677B2 (en) Group III nitride crystal growth equipment
JPS63227007A (en) Vapor growth method
JPS62214616A (en) Organo metallic vapor phase epitaxy equipment
JP3406504B2 (en) Semiconductor manufacturing method
CA1250511A (en) Technique for the growth of epitaxial compound semiconductor films
JPH01224295A (en) Gas source molecular beam crystal growing apparatus
JPH01206618A (en) Organic metal vapor growth method
JP2700210B2 (en) Vapor phase epitaxial growth of compound semiconductors
JPS6377112A (en) Vapor growth method
JPS6081092A (en) Vapor growth method for thin film of compound semiconductor
JPS63100736A (en) Manufacture of impurity doped znse compound semiconductor
JPH0697656B2 (en) Vapor phase epitaxial growth method
JPS61205696A (en) Vapor-phase crystal growth system for group iii-v compounds
JPS62291021A (en) Vapor growth device
JPS61155291A (en) Vapor growth process
JPS62119919A (en) Device for crystal growth of compound semiconductor
JPS625634A (en) Vapor growth method for compound semiconductor
JPS63204733A (en) Manufacture of compound semiconductor film