JPS6397898A - Clearance adjusting device of axial compressor - Google Patents

Clearance adjusting device of axial compressor

Info

Publication number
JPS6397898A
JPS6397898A JP24352986A JP24352986A JPS6397898A JP S6397898 A JPS6397898 A JP S6397898A JP 24352986 A JP24352986 A JP 24352986A JP 24352986 A JP24352986 A JP 24352986A JP S6397898 A JPS6397898 A JP S6397898A
Authority
JP
Japan
Prior art keywords
casing
gap
rotor
compressor
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24352986A
Other languages
Japanese (ja)
Inventor
Hiroaki Nakano
宏明 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24352986A priority Critical patent/JPS6397898A/en
Publication of JPS6397898A publication Critical patent/JPS6397898A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the efficiency of a compressor by enlarging the opening of a flow regulating valve provided in the midway of an air intake pipe, when the circumferential clearance value between an inner casing and a rotor blade end has been enlarged. CONSTITUTION:A clearance between an inner casing 1a and the end of a rotor blade 4 is detected by clearance measuring devices 22-24 that the clearance is enlarged beyond the set value and the valve opening degrees of flow regulating valves 18-20 are enlarged. Adjusting air is led into air chambers 11-13 through intake pipes 15-17, increasing the heat elongation percentage of a casing 1 and lessening the elongation difference in the axial direction between the casing 1 and a rotor 3. Thereby, the clearance between the casing and the rotor blade end will not enlarge during the operation, thus resulting in the improvement of the efficiency of a compressor.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は軸流圧縮機の間隙調整装置に係り、特に、回転
体と静止体との運転時の軸方向の熱伸び量を制御するこ
とにより静止体と翼先端との間隙を調整するようにした
多段軸流圧縮機の間隙調整装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a gap adjustment device for an axial flow compressor, and in particular, the present invention relates to a gap adjustment device for an axial flow compressor. The present invention relates to a gap adjustment device for a multistage axial flow compressor that adjusts the gap between a stationary body and a blade tip by controlling the amount.

(従来の技術) 一般に多段軸流圧縮機は第5図に示されるように、先細
り状に形成されたケーシング51の内側に両端を軸受5
2.52で支承されたロータ53を回転可能に組込み構
成されている。ケーシング51の内周には複数の静翼5
5が固設され、ロータ53に植設された動翼56は静翼
55間に位置するように配設され、圧縮機人口57から
の吸入空気はDm55および動!56間で徐々に圧縮さ
れ、高温高圧の圧縮空気となって圧縮機出口58から吐
出されるようになっている。圧縮行程でロータ53はス
ラスト荷重を受けるため、圧縮機出口58側にはスラス
ト軸受59が設けられている。
(Prior Art) Generally, as shown in FIG. 5, a multi-stage axial flow compressor has bearings 5 at both ends inside a tapered casing 51.
2.52 is rotatably incorporated therein. A plurality of stationary blades 5 are provided on the inner periphery of the casing 51.
5 is fixedly installed, and the rotor blades 56 implanted in the rotor 53 are arranged so as to be located between the stator blades 55, and the intake air from the compressor 57 is transferred to Dm55 and the rotor blades 56. The compressed air is gradually compressed between 56 and 56, and is discharged from the compressor outlet 58 as high-temperature, high-pressure compressed air. Since the rotor 53 receives a thrust load during the compression stroke, a thrust bearing 59 is provided on the compressor outlet 58 side.

前記動翼56の先端は第6図および第7図に示されるよ
うに、先細り状のケーシング51の形状に沿って吐出側
に向けて傾斜するよう形成されている。構造的に動翼5
6の先端とケーシング51との間には間隙gが形成され
るが、この間隙gが大き過ぎると漏出量が増大し、圧縮
機の効率低下の原因となる。したがって、設計時には可
能な限り間隙gを小さくするよう考慮されている。
As shown in FIGS. 6 and 7, the tips of the rotor blades 56 are formed to be inclined toward the discharge side along the shape of the tapered casing 51. Structurally moving blade 5
A gap g is formed between the tip of the compressor 6 and the casing 51, but if this gap g is too large, the amount of leakage will increase, causing a decrease in the efficiency of the compressor. Therefore, during design, consideration is given to making the gap g as small as possible.

(発明が解決しようとする問題点) しかしながら、軸流圧縮機を運転すると空気を圧縮する
際、高熱が発生し、この熱によりケーシング51および
ロータ53は熱膨張して軸方向へ伸長することになる。
(Problem to be Solved by the Invention) However, when an axial flow compressor is operated, high heat is generated when compressing air, and this heat causes the casing 51 and rotor 53 to thermally expand and extend in the axial direction. Become.

ケーシング51の熱膨張率は一般にロータ53の熱膨張
率に比べると小さく両者の伸び量には差が生じることに
なる。この伸び量の差は第8図から明らかなように軸流
圧縮機の起動時等に顕著に現われる。
The coefficient of thermal expansion of the casing 51 is generally smaller than that of the rotor 53, resulting in a difference in the amount of expansion between the two. As is clear from FIG. 8, this difference in elongation becomes noticeable when the axial flow compressor is started up.

しかして、従来の軸流圧縮機では、設計時に第7図に示
されるように間隙gを可能な限り小さくしたとしても、
上述した伸び量に差が生じると、起動時には第6図に示
されるように大きな間隙gとなり、漏出量が増大し圧縮
機の効率が低下してしまうという問題があった。
However, in the conventional axial flow compressor, even if the gap g is made as small as possible at the time of design as shown in FIG.
If the above-mentioned difference in the amount of elongation occurs, there is a problem that the gap g becomes large as shown in FIG. 6 at the time of startup, the amount of leakage increases, and the efficiency of the compressor decreases.

そこで、本発明の目的は、上述した従来の技術がをする
問題点を解消し、運転時での軸方向の熱伸び量の差によ
って前記の間隙が増大するような現象を防止し、圧縮機
の効率の向上が図れる軸流圧縮機を提供することにある
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the problems of the conventional technology described above, to prevent the phenomenon in which the gap increases due to the difference in the amount of thermal expansion in the axial direction during operation, and to An object of the present invention is to provide an axial flow compressor that can improve efficiency.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記目的を達成するために、本発明は、外側ケーシング
および内側ケーシングで二重に形成され両者間に空気室
を画成するケーシングと、前記内側ケーシングに形成さ
れ前記空気室と圧縮空気通路とを連通ずるスリットと、
前記内側ケーシングと動翼の先端との周方向の間隙値を
検出する間隙測定装置と、前記空気室内に調整空気を導
入するための導入管と、この導入管上に組込まれ前記間
隙測定装置での検出値に応じて弁開度が増減される流f
fi調整弁とを備えたことを特徴とするものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a casing that is double formed of an outer casing and an inner casing and defines an air chamber between them, and a casing that is formed in the inner casing. a slit that communicates the air chamber and the compressed air passage;
a gap measuring device for detecting a gap value in the circumferential direction between the inner casing and the tip of the rotor blade; an introduction pipe for introducing adjusted air into the air chamber; and a gap measuring device installed on the introduction pipe. The flow f whose valve opening degree is increased or decreased according to the detected value of
It is characterized by being equipped with an fi adjustment valve.

(作 用) 上記構成に基づき、本発明の詳細な説明すると、運転中
に内側ケーシングと動翼の先端との周方向の間隙値が設
計時での値を超えて増大した際に間隙測定装置がそれを
検出し、この検出値に基づいて流量調整弁の弁開度が増
大され、ウオーミングされた調整空気が空気室内に導入
される。すると、ケーシングはロータよりも高温になり
、ケーシングとロータの熱伸び;がほぼ等しくなり、ケ
ー シングとロータとの周方向の間隙値は設計時のそれ
に近づく。ケーシングはロータより熱膨張率が小さいか
らである。一方、前記間隙値が設計時のそれよりも減少
した際には間隙測定装置がそれを検出し、この検出値に
基づいて流量調整弁の弁開度が減少され、遂には導入管
を閉塞する。すると、ウオーミングされた調整空気はス
リットを通って圧縮空気通路に流出し、これによって、
ケーシングとロータの温度がほぼ等しくなり、両者の熱
膨張率の差に起因してケーシングとロータの熱伸び瓜に
差が生じ、ケーシングと動翼の先端との周方向の間隙値
は増大する。したがって、前記間隙値は設:1゛時のそ
れに近づくことになる。
(Function) Based on the above configuration, the present invention will be described in detail. When the gap value in the circumferential direction between the inner casing and the tip of the rotor blade increases to exceed the value at the time of design during operation, the gap measuring device detects this, and based on this detected value, the valve opening of the flow rate regulating valve is increased, and warmed regulated air is introduced into the air chamber. As a result, the casing becomes hotter than the rotor, the thermal elongation of the casing and rotor become almost equal, and the gap value in the circumferential direction between the casing and rotor approaches the design value. This is because the casing has a smaller coefficient of thermal expansion than the rotor. On the other hand, when the gap value decreases from the design value, the gap measuring device detects this, and based on this detected value, the valve opening of the flow rate adjustment valve is decreased, and finally the introduction pipe is closed. . The warmed conditioned air then flows out into the compressed air passage through the slit, thereby
The temperatures of the casing and rotor become approximately equal, and due to the difference in coefficient of thermal expansion between the casing and rotor, a difference in thermal expansion occurs between the casing and the rotor, and the gap value in the circumferential direction between the casing and the tip of the rotor blade increases. Therefore, the gap value approaches that at the setting of 1.

(実施例) 以下、本発明による軸流圧縮機の間隙調整装置の一実施
例を第1図を参照して説明する。
(Example) Hereinafter, an example of a gap adjustment device for an axial flow compressor according to the present invention will be described with reference to FIG.

符号1はケーシングを示し、このケーシング1は先細り
状に形成された内側ケーシング1aと、この内側ケーシ
ング1aを取り囲むように配設された円筒状の外側ケー
シング1bとで構成されている。
Reference numeral 1 indicates a casing, and the casing 1 is composed of an inner casing 1a formed in a tapered shape and a cylindrical outer casing 1b disposed so as to surround the inner casing 1a.

前記内側ケーシング1aの内周には従来のものと同様の
構成で複数の静翼2が固設され、静翼2間にはロータ3
に植設された動翼4が配置されている。ロータ3は両端
を軸受5.5で支承され、図示を省略した駆動装置を介
して前記内側ケーシング1a内を回転可能になっており
、ロータ3が回転すると圧縮機人口6から吸入された空
気は静翼2と動翼4との間で徐々に圧縮され、高温高圧
となった圧縮空気は圧縮機出ロアから吐出されるように
なっている。また、圧縮行程でロータ3はスラスト首玉
を受けるため、圧縮機出ロア側にはスラスト軸受8が設
けられている。
A plurality of stator blades 2 are fixedly installed on the inner periphery of the inner casing 1a in a similar configuration to the conventional one, and a rotor 3 is installed between the stator blades 2.
A rotor blade 4 implanted in the rotor blade 4 is arranged. The rotor 3 is supported at both ends by bearings 5.5, and is rotatable within the inner casing 1a via a drive device (not shown). When the rotor 3 rotates, the air sucked from the compressor 6 is The compressed air, which is gradually compressed between the stationary blades 2 and the moving blades 4 and becomes high temperature and high pressure, is discharged from the compressor outlet lower. Further, since the rotor 3 receives a thrust head ball during the compression stroke, a thrust bearing 8 is provided on the compressor output lower side.

しかして、本発明によれば、前記内側ケーシング1aと
前記外側ケーシング1bとで画成された内部に、3つの
環状の空気室11.12.13が形成されている。この
空気室11,12.13には、外側ケーシング1bに取
付けられた導入管15.16.17を通してウオーミン
グあるいはクーリングされた調整空気が導入されるよう
になっている。導入管15.16.17上には開閉自在
な流量調整弁18,19.20が組込まれ、この流量5
!l整弁18,19.20の弁開度は間隙alll装定
22.23.24での検出値に応じて増減されるように
なっている。間隙測定装置22゜23.24は外側ケー
シング1bおよび内側ケーシング1aを貫通し°C差し
込まれ、その測定端部を内側ケーシング1a内であって
、動翼4の先端に対峙する位置に臨ませている。
According to the present invention, three annular air chambers 11, 12, and 13 are formed inside the inner casing 1a and the outer casing 1b. Warmed or cooled conditioned air is introduced into the air chambers 11, 12.13 through inlet pipes 15, 16, 17 attached to the outer casing 1b. Flow rate adjustment valves 18, 19.20 that can be opened and closed are installed on the inlet pipe 15, 16, 17, and the flow rate 5
! The valve opening degrees of the regulating valves 18, 19, 20 are increased or decreased in accordance with the detected values at the gaps 22, 23, 24. The gap measuring device 22゜23.24 is inserted through the outer casing 1b and the inner casing 1a, and its measuring end is placed inside the inner casing 1a at a position facing the tip of the rotor blade 4. There is.

また、内側ケーシング1aには、各空気室11゜12.
13と圧縮空気通路25とを連通ずる環状のスリット2
7.28.29が形成されている。
The inner casing 1a also has air chambers 11°, 12.
13 and the compressed air passage 25 are connected to each other.
7.28.29 are formed.

次に本発明の作動について第1図乃至第3図を参照して
説明する。
Next, the operation of the present invention will be explained with reference to FIGS. 1 to 3.

軸流圧縮機が起動されると、圧縮空気の温度は急激に一
ヒ昇し、この熱によって前記ケーシング1およびロータ
3は軸方向への熱膨張を受ける。
When the axial compressor is started, the temperature of the compressed air rises rapidly, and the casing 1 and rotor 3 undergo thermal expansion in the axial direction due to this heat.

熱膨張が開始すると、ロータ3の熱伸び瓜はケーシング
1のそれよりも大きく、ロータ3は前記スラスト軸受8
を基点として圧縮機人口6側に向かって伸長する。ロー
タ3が伸長すれば、内側ケーシング1aと動翼4との状
態は第3図に示される状態から第2図に示される状態に
相対移動し、内側ケーシング1aと動14の先端との間
隙gは相対移動量が増大するにつれて増大する。
When the thermal expansion starts, the thermal expansion of the rotor 3 is larger than that of the casing 1, and the rotor 3 is attached to the thrust bearing 8.
It extends toward the compressor population 6 side from the base point. When the rotor 3 expands, the state of the inner casing 1a and the moving blade 4 moves relatively from the state shown in FIG. 3 to the state shown in FIG. 2, and the gap g between the inner casing 1a and the tip of the moving blade 14 increases as the amount of relative movement increases.

しかして、本発明によれば、間隙gがある設定値を超え
て増大したことを前記間隙MJ定装置22゜23.24
が検出し、この検出値に基づいて流量調整弁18,19
.20の弁開度が増大される。
According to the present invention, the gap MJ constant device 22°23.24 can be used to detect that the gap g has increased beyond a certain set value.
is detected, and based on this detected value, the flow rate regulating valves 18, 19
.. 20 valve openings are increased.

このとき、導入管15.16.17を通して導入される
調整空気はウオーミングされている高温空気である。
At this time, the conditioned air introduced through the inlet pipes 15, 16, 17 is warmed high temperature air.

ウオーミング空気は空気室11.12.13内に入り、
この熱により、ケーシング1の熱伸び二が増大し、ケー
シング1とロータ3の軸方向の伸びの差が縮まり、第3
図に示される状態に近づく。
The warming air enters the air chamber 11.12.13,
This heat increases the thermal elongation 2 of the casing 1, reduces the difference in axial elongation between the casing 1 and the rotor 3, and
The state shown in the figure is approached.

したがって、前記間隙gを設計時のそれに近づけること
ができる。
Therefore, the gap g can be made close to the designed gap.

一方、間隙gがある設定値を超えて小さくなった際には
間隙測定装置22,23.24がそれを検出し、この検
出値に基づいて流量調整弁18゜19.20の弁開度は
減少され、遂には導入管15.16.17を閉塞する。
On the other hand, when the gap g becomes smaller than a certain set value, the gap measuring devices 22, 23, 24 detect this, and based on this detected value, the valve opening of the flow rate regulating valve 18° 19.20 is determined. is reduced and finally closes the inlet tube 15, 16, 17.

すると、空気室11.12.13内のウオーミング空気
はスリット27.28.29を通して圧縮空気通路26
へ流出し、空気室11.12.13内の温度は圧縮空気
通路25側の温度とほぼ等しくなる。これにより、ケー
シング1は収縮し間隙gを設計時のそれに近づけること
ができる。
The warming air in the air chamber 11.12.13 then flows through the slits 27.28.29 into the compressed air passage 26.
The temperature inside the air chamber 11, 12, 13 becomes approximately equal to the temperature on the compressed air passage 25 side. As a result, the casing 1 shrinks and the gap g can be brought closer to the designed gap.

第4図は本発明における他の実施例を示す図であり、前
記導入管15,16.17の上流側端部を軸流圧縮機の
高圧側段落内に開口させている。
FIG. 4 shows another embodiment of the present invention, in which the upstream ends of the introduction pipes 15, 16, and 17 are opened into the high-pressure stage of the axial flow compressor.

このように構成すれば、高温の圧縮空気の一部を利用し
て上述した間隙gの調整をすることができ、構造をコン
パクトなものにすることができる。
With this configuration, the above-mentioned gap g can be adjusted using a portion of the high-temperature compressed air, and the structure can be made compact.

以」二説明した実施例では、空気室11,12゜13を
3つ形成したものについて説明したが、本発明によれば
、空気室を1つにすることも可能であり、如何に分割し
て形成するかも任意に選定することができる。
In the embodiment described above, three air chambers 11, 12 and 13 were formed, but according to the present invention, it is also possible to have one air chamber, and it is possible to divide the air chamber into one. It is also possible to arbitrarily select whether to form the

〔発明の効果〕〔Effect of the invention〕

以上のように構成したから、本発明によれば、運転中に
ケーシングと動翼の先端との間隙が増大することはなく
、軸流圧縮機の効率の向上を図ることができる。
With the above configuration, according to the present invention, the gap between the casing and the tip of the rotor blade does not increase during operation, and the efficiency of the axial flow compressor can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による軸流圧縮機の間隙調整装置の一実
施例を示す縦断面図、第2図および第3図はその動翼の
先端部を拡大して示す縦断面図、第4図は本発明による
他の実施例を示す縦断面図、第5図は従来の軸流圧縮機
の縦断面図、第6図および第7図はその動翼の先端部を
拡大して示す縦断面図、第8図は起動時におけるロータ
およびケーシングの伸びを示す線図である。 1・・・ケーシング、1a・・・内側ケーシング、1b
・・・外側ケーシング、2・・・静翼、3・・・ロータ
、4・・・動翼、11,12.13・・・空気室、15
. 16゜17・・・導入管、18.19.20・・・
流量調整弁、25・・・圧縮機通路、27,28.29
・・・スリット、g・・・間隙。 出願人代理人  佐  藤  −雄 芭1図  1 尾2 図       色3 図 ち4 図 乙6 図     乙7 図 島 8 図
FIG. 1 is a longitudinal sectional view showing an embodiment of the gap adjustment device for an axial flow compressor according to the present invention, FIGS. 2 and 3 are longitudinal sectional views showing an enlarged tip of the rotor blade, and FIG. The figure is a longitudinal sectional view showing another embodiment according to the present invention, FIG. 5 is a longitudinal sectional view of a conventional axial flow compressor, and FIGS. 6 and 7 are longitudinal sectional views showing enlarged tips of the rotor blades. The plan view and FIG. 8 are diagrams showing the elongation of the rotor and casing at the time of startup. 1... Casing, 1a... Inner casing, 1b
...Outer casing, 2... Stator blade, 3... Rotor, 4... Moving blade, 11, 12.13... Air chamber, 15
.. 16゜17...Introduction pipe, 18.19.20...
Flow rate adjustment valve, 25... Compressor passage, 27, 28.29
...slit, g...gap. Applicant's agent Sato - Yuba 1 Figure 1 Tail 2 Figure Color 3 Figure 4 Figure Otsu 6 Figure Otsu 7 Figure Island 8 Figure

Claims (1)

【特許請求の範囲】 1、外側ケーシングおよび内側ケーシングで二重に形成
され両者間に空気室を画成するケーシングと、前記内側
ケーシングに形成され前記空気室と圧縮空気通路とを連
通するスリットと、前記内側ケーシングと動翼の先端と
の周方向の間隙値を検出する間隙測定装置と、前記空気
室内に調整空気を導入するための導入管と、この導入管
上に組込まれ前記間隙測定装置での検出値に応じて弁開
度が増減される流量調整弁とを備えたことを特徴とする
軸流圧縮機の間隙調整装置。 2、前記導入管の上流側端部を軸流圧縮機の高圧側段落
内に開口させたことを特徴とする特許請求の範囲第1項
記載の軸流圧縮機の間隙調整装置。
[Scope of Claims] 1. A casing that is double formed of an outer casing and an inner casing and defines an air chamber between them, and a slit that is formed in the inner casing and communicates the air chamber with a compressed air passage. , a gap measuring device for detecting a gap value in the circumferential direction between the inner casing and the tip of the rotor blade, an introduction pipe for introducing adjusted air into the air chamber, and the gap measuring device incorporated on the introduction pipe. A gap adjustment device for an axial flow compressor, comprising a flow rate adjustment valve whose opening degree is increased or decreased in accordance with a detected value. 2. The gap adjustment device for an axial flow compressor according to claim 1, wherein the upstream end of the introduction pipe is opened into a high pressure side stage of the axial flow compressor.
JP24352986A 1986-10-14 1986-10-14 Clearance adjusting device of axial compressor Pending JPS6397898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24352986A JPS6397898A (en) 1986-10-14 1986-10-14 Clearance adjusting device of axial compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24352986A JPS6397898A (en) 1986-10-14 1986-10-14 Clearance adjusting device of axial compressor

Publications (1)

Publication Number Publication Date
JPS6397898A true JPS6397898A (en) 1988-04-28

Family

ID=17105257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24352986A Pending JPS6397898A (en) 1986-10-14 1986-10-14 Clearance adjusting device of axial compressor

Country Status (1)

Country Link
JP (1) JPS6397898A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077868A (en) * 2005-09-14 2007-03-29 Mitsubishi Heavy Ind Ltd Structure for managing blade tip gap for gas turbine
JP2013204545A (en) * 2012-03-29 2013-10-07 Mitsubishi Heavy Ind Ltd Compressor and gas turbine
JP2014125926A (en) * 2012-12-26 2014-07-07 Hitachi Ltd Axial flow compressor and operation method of the same
JP2014202194A (en) * 2013-04-10 2014-10-27 株式会社日立製作所 Axial flow compressor, gas turbine facility and operational method for axial flow compressor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077868A (en) * 2005-09-14 2007-03-29 Mitsubishi Heavy Ind Ltd Structure for managing blade tip gap for gas turbine
JP4648139B2 (en) * 2005-09-14 2011-03-09 三菱重工業株式会社 Gas turbine blade tip clearance management structure
US8313283B2 (en) 2005-09-14 2012-11-20 Mitsubishi Heavy Industries, Ltd. Vane tip clearance management structure for gas turbine
JP2013204545A (en) * 2012-03-29 2013-10-07 Mitsubishi Heavy Ind Ltd Compressor and gas turbine
JP2014125926A (en) * 2012-12-26 2014-07-07 Hitachi Ltd Axial flow compressor and operation method of the same
US9657585B2 (en) 2012-12-26 2017-05-23 Mitsubishi Hitachi Power Systems, Ltd. Axial compressor and operation method of the same
EP2749739A3 (en) * 2012-12-26 2018-03-28 Mitsubishi Hitachi Power Systems, Ltd. Axial compressor and operation method of the same
JP2014202194A (en) * 2013-04-10 2014-10-27 株式会社日立製作所 Axial flow compressor, gas turbine facility and operational method for axial flow compressor

Similar Documents

Publication Publication Date Title
US4967552A (en) Method and apparatus for controlling temperatures of turbine casing and turbine rotor
US4242042A (en) Temperature control of engine case for clearance control
CN1680683B (en) Variable geometry turbine
RU2394998C2 (en) Device to control feed of air circulating inside gas turbine engine revolving shaft
US4363599A (en) Clearance control
JP2700797B2 (en) Gas turbine equipment
US5857337A (en) Turbocharger
US5779436A (en) Turbine blade clearance control system
JPH07208106A (en) Turbine
US11002284B2 (en) Impeller shroud with thermal actuator for clearance control in a centrifugal compressor
JPS5925847B2 (en) gas turbine engine turbine
JP2001526347A (en) Turbine thermally operated passive valve to improve tip clearance control
JPH1061587A (en) Centrifugal compressor
JPH0366519B2 (en)
JPH0472051B2 (en)
JPH05195812A (en) Method and device for improving engine cooling
EP1007829A1 (en) Gas-dynamic pressure wave machine
JP3526433B2 (en) Steam injection type gas turbine device
JPS60543B2 (en) Control system of multistage axial flow compressor of gas turbine engine
JPH04224375A (en) Thermally adjustable rotatory labyrinth seal
US4648241A (en) Active clearance control
CN1942656B (en) Gas turbine with a compressor housing which is protected against cooling down and method for operating a gas turbine
JPS6397898A (en) Clearance adjusting device of axial compressor
US2916198A (en) Turbo-compressor apparatus
US20150167488A1 (en) Adjustable clearance control system for airfoil tip in gas turbine engine