JPS6397817A - Muffler - Google Patents

Muffler

Info

Publication number
JPS6397817A
JPS6397817A JP24467586A JP24467586A JPS6397817A JP S6397817 A JPS6397817 A JP S6397817A JP 24467586 A JP24467586 A JP 24467586A JP 24467586 A JP24467586 A JP 24467586A JP S6397817 A JPS6397817 A JP S6397817A
Authority
JP
Japan
Prior art keywords
cavity
diameter
inlet pipe
outlet pipe
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24467586A
Other languages
Japanese (ja)
Inventor
Katsuaki Yasui
克明 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24467586A priority Critical patent/JPS6397817A/en
Publication of JPS6397817A publication Critical patent/JPS6397817A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/02Silencing apparatus characterised by method of silencing by using resonance
    • F01N1/026Annular resonance chambers arranged concentrically to an exhaust passage and communicating with it, e.g. via at least one opening in the exhaust passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/24Silencing apparatus characterised by method of silencing by using sound-absorbing materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2490/00Structure, disposition or shape of gas-chambers
    • F01N2490/15Plurality of resonance or dead chambers
    • F01N2490/155Plurality of resonance or dead chambers being disposed one after the other in flow direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)

Abstract

PURPOSE:To provide a high insertion loss at a given frequency, by a method wherein the diameter of a cavity is increased three or more times as large as that of an inlet pipe, the length of the cavity is set to a value being 0.35 times as long as the diameter of the cavity. CONSTITUTION:A muffler is constituted such that an inlet pipe 1, formed in a circle in cross section, a cylindrical cavity 2, and an outlet pipe 3, formed in a circle in cross section, are coaxially interconnected, in order named. In this case, a diameter phi2r2 of a cavity 2 is increased three or more times as large as a diameter phi2r1 of a inlet pipe 1, a length 12 of the cavity 2 is set to a value being 0.35 or less times as long as the diameter phi2r2 of the cavity 2, and a diameter phi2r3 of an outlet pipe 3 is set to a value being 1/3 times as large as the diameter phi2r2 of the cavity 2. In this constitution, a sound wave generated from a sound source 4 is branched into a sound wave reflected in the direction of the inlet pipe 1 in a position II, a sound wave passing in the direction of the outlet pipe 3, and a sound wave incoming to the interior of the cavity 2. A sound wave propagated to the outlet pipe 3 is completely absorbed by a non-reflection end 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は1例えば内燃機関やコンプレッサなどの吸排
気管や通風ダクトなどの騒音を減衰させるための消音器
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a muffler for attenuating noise from intake and exhaust pipes and ventilation ducts of internal combustion engines, compressors, etc., for example.

〔従来の技術〕[Conventional technology]

第9図は例えば音響学会誌第26巻第8号に記載された
従来の消音器を示す正面図である。図(こおいて、(1
)は円形断面を持つ入口管、(2)は円筒形空洞、(3
)は円形断面を持つ出口管であり、これら入口管(1八
円筒形空洞(2)および出口w(3)は順に同軸上IC
接続されている。
FIG. 9 is a front view showing a conventional muffler described in, for example, the Journal of the Acoustical Society of Japan, Vol. 26, No. 8. Figure (here, (1
) is an inlet pipe with a circular cross section, (2) is a cylindrical cavity, (3
) are the outlet tubes with circular cross section, and these inlet tubes (18 cylindrical cavity (2) and outlet w (3) are in turn connected to the coaxial IC
It is connected.

消音器の消音性能は単体だけではきまらず、その前後の
音響系に影響されるため、第10図のような音響系を用
いて動作について説明する。第10図足おいて、(4)
は音源、(5)は無反射端である。
The silencing performance of a silencer is not determined by a single unit, but is influenced by the acoustic systems before and after it, so the operation will be explained using an acoustic system as shown in FIG. Figure 10: (4)
is the sound source, and (5) is the non-reflection end.

音源(4)の位置!で発生した音波は、管内を平面波と
して進行し1位置I1位置璽、また位置Iで反射される
。したがって位falから位置lまでの間には正方向波
と負方向波が同時に存在するが、位置型を通過した音波
は無反射端で完全に吸収されるため1位置型より正方向
では正方向波しか存在できなくなる。
Location of sound source (4)! The sound waves generated at 1 travel in the tube as plane waves and are reflected at position 1 and at position I. Therefore, a positive direction wave and a negative direction wave exist at the same time between position fal and position l, but since the sound wave that has passed through the position type is completely absorbed at the non-reflection end, the positive direction wave is more positive than the 1 position type. Only waves can exist.

このとき、空洞(2)の長さが空洞の直径(こ比べて十
分長ければ、空洞内をζおいても音波は正負方向に進行
する平面波となる。このときの位置1.ffにおける音
圧をPIg P4m媒質の密度をe、音速をC1入口管
(1)の断面積をSl&長さをメ1.空洞(2)の断面
積をS、m長さをg2.出口管(3)の断面積を入口管
と等しくSい長さをe3.音波の角周波数をωとすると
、挿入損失ILは次の式で近似される。
At this time, if the length of the cavity (2) is sufficiently long compared to the diameter of the cavity, the sound wave will become a plane wave that travels in the positive and negative directions even if ζ is inside the cavity.At this time, the sound pressure at position 1.ff PIg P4m The density of the medium is e, the sound velocity is C1 the cross-sectional area of the inlet pipe (1) is Sl & the length is 1. The cross-sectional area of the cavity (2) is S, m the length is g2. When the cross-sectional area is equal to that of the inlet pipe, the length is e3, and the angular frequency of the sound wave is ω, the insertion loss IL is approximated by the following formula.

(dB)  [1) (1)式の右辺第2項、@8項は負であるので、このと
きの挿入損失の最大値I Lma xは次のようになる
ILmax=20Jogl   l  (dB)   
      (2)S。
(dB) [1] Since the second term and @8 term on the right side of equation (1) are negative, the maximum value of insertion loss I Lmax at this time is as follows: ILmax = 20 Jogl l (dB)
(2)S.

ただし、(1)式、(2)式の有効な高域限界周波数F
cは半径方向の最低共鳴周波数であり、空洞直径をDと
すると Fc = 1.22    (Hz)        
 (3)である。Fc以上の周波数では平面波の仮定が
成立しなくなるため、(1)式が成立しなくなる。
However, the effective high-frequency limit frequency F of equations (1) and (2)
c is the lowest resonant frequency in the radial direction, and when the cavity diameter is D, Fc = 1.22 (Hz)
(3). At frequencies above Fc, the assumption of a plane wave no longer holds true, so equation (1) no longer holds true.

実際に実験によって従来の消音器の透過損失ILを求め
、(1)式の結果と共に第11図に示した。ただし、各
定数の値は次に示すとおりである。
The transmission loss IL of the conventional muffler was actually determined through experiments and is shown in FIG. 11 together with the result of equation (1). However, the values of each constant are as shown below.

ら−274,2cm  Jzsw12.0cm  13
m19.6cm5@−18,4cm’  S1=249
Cm” D −17,8cmこのとき となる。
Ra-274,2cm Jzsw12.0cm 13
m19.6cm5@-18,4cm' S1=249
Cm"D -17.8cm at this time.

第11図において、小さい周期の山は入口管の長さ11
の影響によるもので、(1)式の右辺第2項で表わされ
るものである。この山の周期をflとすると−e1■π
               (6)a! となる。大きい周期の山は空洞の長さa2によるもので
、(1)式の右辺第8項で表わされるものである。
In Fig. 11, the peaks of small period are the length of the inlet pipe 11.
This is due to the influence of , and is expressed by the second term on the right side of equation (1). If the period of this mountain is fl, -e1■π
(6) a! becomes. The large period peak is due to the length a2 of the cavity, and is expressed by the eighth term on the right side of equation (1).

この山の周期をf2とすると 一62■π               (9)頭 となる、第11図において、はぼ限界周波数の2860
Hz以下では実験結果は計算結果とよく合致しているこ
とがわかる。
If the period of this mountain is f2, it is 162■π (9).
It can be seen that the experimental results agree well with the calculated results below Hz.

一般の1段型消音器には、各種の断面形状を持ったもの
、入口管(1)と出口管(3)の中心軸がずれたもの、
ずんぐりした形のものなど、さまざまな形の空洞が用い
られているが、一般的に、上記のように空洞長が十分長
い、軸対称の空洞に比べてきれいな平面波による共鳴が
起りに<<、しiがっで高い挿入損失が得にくいことが
確かめられている。
General one-stage silencers include those with various cross-sectional shapes, those with the center axes of the inlet pipe (1) and outlet pipe (3) shifted,
Various shapes of cavities are used, such as those with a stubby shape, but in general, as mentioned above, the cavity length is sufficiently long, and compared to an axially symmetric cavity, resonance due to a plane wave occurs more clearly. It has been confirmed that it is difficult to obtain high insertion loss when using

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の消音器は以上のように構成されているので、空洞
内の音波はX軸方向に進行する平面波となり、そのとき
の透過損失ILは(1)式のように表わされる。したが
って挿入損失ILは、(2)式に示すI Lma x以
上にはなり得ないという問題点があった。
Since the conventional muffler is configured as described above, the sound wave inside the cavity becomes a plane wave traveling in the X-axis direction, and the transmission loss IL at this time is expressed as in equation (1). Therefore, there is a problem in that the insertion loss IL cannot exceed ILmax shown in equation (2).

この発明は、上記のような問題点を解消するためになさ
れたもので、所定周波数において高い挿入損失の得られ
る消音器を得ることを目的とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to obtain a muffler that can obtain a high insertion loss at a predetermined frequency.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る消音器は1円形断面を持つ入口管と円筒
形空洞と円形断面を持つ出口管とを順に同軸上に接続す
るものにおいて、J:記空洞は直径がと記入口管の直径
の8倍以上で長さが土泥空洞の直径の0.85倍以下で
あり、上記出口管は直径が上記空洞の直径の1/8以下
である。
The silencer according to the present invention is one in which an inlet pipe with a circular cross section, a cylindrical cavity, and an outlet pipe with a circular cross section are sequentially connected coaxially to each other, and J: the cavity has a diameter equal to the diameter of the inlet pipe. The length is 8 times or more and the length is 0.85 times or less than the diameter of the mud cavity, and the diameter of the outlet pipe is 1/8 or less of the diameter of the cavity.

〔作用〕[Effect]

この発明における消音器は、空洞径に対して空洞長が短
いため、空洞内の音場が軸方向へ進行する平面波で構成
されず、半径方向に進行する軸対称の円筒波で構成され
る。したがって、空洞全体が音響的にはサイドブランチ
のように働く。このため、挿入損失ILの周波数に対す
るグラフは特定の周波数でピークを持つものとなり、特
定の周波数では非常に高い挿入損失が得られる。
In the silencer according to the present invention, since the cavity length is short relative to the cavity diameter, the sound field within the cavity is not composed of a plane wave traveling in the axial direction, but is composed of an axially symmetrical cylindrical wave traveling in the radial direction. Therefore, the entire cavity acts acoustically like a side branch. Therefore, the graph of insertion loss IL with respect to frequency has a peak at a specific frequency, and a very high insertion loss can be obtained at a specific frequency.

〔実施例〕 以下、この発明の一実施例を図をもとに説明する。第1
図はこの発明の一実施例を示す正面図。
[Example] An example of the present invention will be described below with reference to the drawings. 1st
The figure is a front view showing an embodiment of the present invention.

第2図は第1図の消音器の設置例を示す説明図で、ある
。図における各数値は次の通りである。
FIG. 2 is an explanatory diagram showing an installation example of the silencer shown in FIG. 1. The numerical values in the figure are as follows.

glm 274.2cm  h−2,Ocm  6m1
9.6cmSum  18.4cm”  5zm 24
9cm”r、1111 2.42cm   rz=  
8.9cmすなわち、空洞(2)の直径2r、は17.
8cm 、入口管(1)および出口管(3)の直径2r
1は4.84cm 、空洞(2)の直径は入口管(1)
および出口管(3)の直径の8倍以上に設定されている
。また、空洞(2)の長さe2は2.0cmであり、空
洞(2)の直径2r217.8Cm”の0.85倍以下
である。
glm 274.2cm h-2, Ocm 6m1
9.6cmSum 18.4cm” 5zm 24
9cm”r, 1111 2.42cm rz=
8.9 cm, that is, the diameter 2r of the cavity (2) is 17.9 cm.
8cm, diameter of inlet pipe (1) and outlet pipe (3) 2r
1 is 4.84 cm, the diameter of the cavity (2) is the inlet pipe (1)
and is set at least eight times the diameter of the outlet pipe (3). Further, the length e2 of the cavity (2) is 2.0 cm, which is 0.85 times or less of the diameter 2r217.8 Cm'' of the cavity (2).

このように構成された消音器において、音源(4)の位
illで発生した音波は、管内を平面波として進行し1
位置lで入口管(ロ)方向へ反射される音波。
In the silencer configured in this way, the sound waves generated at the position of the sound source (4) travel in the pipe as plane waves and become 1
Sound waves reflected toward the inlet pipe (b) at position l.

出口管(3)方向へ通過する音波、空洞(2)内へ入射
する音波に分枝される。空洞(2)内に入射された音波
は、空洞長が短いために円筒波として半径方向へ進行し
、空洞の外壁で反射されて内側へ戻され。
The sound waves are branched into sound waves passing toward the exit pipe (3) and sound waves entering the cavity (2). The sound waves incident into the cavity (2) travel in the radial direction as cylindrical waves due to the short length of the cavity, and are reflected by the outer wall of the cavity and returned to the inside.

入口管(1)1出口管(3)内の音波と干渉する。出口
管(3)に達した音波は無反射端(5)で完全に吸収さ
れるため1位置lより正方向では正方向波しか存在でき
なくなる。
The inlet pipe (1) interferes with the sound waves in the outlet pipe (3). Since the sound waves that have reached the exit pipe (3) are completely absorbed at the non-reflection end (5), only positive waves can exist in the positive direction from the 1st position l.

このとき、空洞(2)は、空洞内の入口管、出口管の管
壁面の延長の円筒面(r+wr、 )を境界としたサイ
ドブランチとして働く。この境界から見た空洞の入口音
響インピーダンスをZcとすると、 ZcはBe5se
l  関数Jy(z) h Neumann関数Ny 
(z)を用いて次のように表わされる。ただしjは虚数
単位(j”=−1)である。
At this time, the cavity (2) functions as a side branch whose boundary is the cylindrical surface (r+wr, ) of the extension of the wall surfaces of the inlet pipe and the outlet pipe within the cavity. If the entrance acoustic impedance of the cavity seen from this boundary is Zc, then Zc is Be5se
l Function Jy(z) h Neumann function Ny
(z) is expressed as follows. However, j is an imaginary unit (j''=-1).

と pc     pc Zos11□−時 S1    πrI′ であるから、空洞の入口音響インピーダンスZcをα◆ となる。周波数Fは であるから、α4式にそれぞれの定数の値を代入しZc
 / Zoの周波数Fに対するグラフを書くと第8図の
ようになる。第3図において、Zc / Zo■0とな
る周波数は共鳴周波数であり、共鳴周波数付近では高い
挿入損失が得られる。
and pc pc Zos11□-time S1 πrI', so the entrance acoustic impedance Zc of the cavity becomes α◆. Since the frequency F is, substitute the values of each constant into the α4 formula and get Zc
/ If you draw a graph of Zo versus frequency F, it will look like Figure 8. In FIG. 3, the frequency at which Zc/Zo 0 is the resonant frequency, and a high insertion loss can be obtained near the resonant frequency.

第2図の位III、ffでの音圧をPl、P、とすると
Let the sound pressures at digits III and ff in Fig. 2 be Pl and P.

挿入損失ILは次の式で表わされる。Insertion loss IL is expressed by the following formula.

)! + sln”  /4) ”    (dB)    
  Mに のとき、共鳴周波数ではILは無限大となる。
)! +sln”/4)” (dB)
When M, IL becomes infinite at the resonant frequency.

また、00式の有効な最高限界周波数Fcは、軸方向の
最低共鳴周波数であり。
Further, the effective maximum limit frequency Fc of the 00 type is the minimum resonant frequency in the axial direction.

Fc−−8600Hz         ’17)gz である。Fc以との周波数では円筒波の仮定が成立しな
くなるため、開式が成立しなくなる。
Fc--8600Hz'17)gz. At frequencies higher than Fc, the assumption of a cylindrical wave no longer holds true, so the open equation no longer holds true.

実際に実験(こよってこの実施例における消音器の挿入
損失ILを求め、α0式の結果と共に第4図に示した。
The insertion loss IL of the silencer in this example was actually determined through experiments and is shown in FIG. 4 together with the results of the α0 equation.

第4図において、小さい周期の山は、従来の実施例の場
合と同様に入口管の長さe、の影響による周期62.7
)1zの山である。
In FIG. 4, the peaks with a small period have a period of 62.7 due to the influence of the length e of the inlet pipe, as in the case of the conventional embodiment.
) 1z mountain.

第4図より、はぼ全周波数域において実験結果は計算結
果によく一致しており、従来例に対して空洞の容積が1
/6と小さいにもかかわらず、共鳴周波数F−1080
Hz 、 8850Hz付近では非常に大きな挿入損失
が得られることがわかる。
From Figure 4, the experimental results agree well with the calculated results in almost the entire frequency range, and the volume of the cavity is 1 compared to the conventional example.
Despite being as small as /6, the resonance frequency is F-1080.
Hz, it can be seen that a very large insertion loss can be obtained near 8850 Hz.

なお、上記実施例では空洞長さe:を2Cmとしたが、
空洞径を変えず、空洞長さe2を4cmh 6cmとし
た空洞を用いて、それぞれと記実施例と同様な方法で透
過損失を求める実験を行なった。その結果を円筒波を仮
定した計算結果と重ねて第5図。
In addition, in the above example, the cavity length e: was set to 2Cm, but
Experiments were conducted to determine the transmission loss in the same manner as in the examples described above, using a cavity in which the cavity diameter was not changed and the cavity length e2 was 4 cm by 6 cm. Figure 5 shows the results superimposed on the calculation results assuming a cylindrical wave.

第6図に示す。この場合の限界周波数Fcはそれぞれ4
800Hz  、8860Hzである。
It is shown in FIG. In this case, the limit frequency Fc is 4
800Hz and 8860Hz.

これらの結果より、空洞長さI12が空洞直径の0.3
5倍以下、すなわち、J:記実施例では12≦6co1
であれば限界周波数以下では挿入損失の周波数特性は円
筒波仮定のものに近(なり、特定周波数で高い挿入損失
を得ることができる。このように。
From these results, the cavity length I12 is 0.3 of the cavity diameter.
5 times or less, that is, J: 12≦6co1 in the above example
If this is the case, below the critical frequency, the frequency characteristics of the insertion loss will be close to those assumed by a cylindrical wave, and a high insertion loss can be obtained at a specific frequency.In this way.

空洞長を長くすると挿入損失は全体的に大きくなる。ま
た、共鳴周波数は高周波側にずれる。
Increasing the cavity length increases the overall insertion loss. Moreover, the resonance frequency shifts to the high frequency side.

同様の空洞において、空洞長a2を8cm、 locm
とした場合の比較例の透過損失を求める実験を行なった
。その結果を平面波板定の計算結果と重ねて第7因、第
8図に示す。これらの図より、空洞長さe2が空洞直径
の0.86倍より大きい場合、すなわち、上記比較例で
は8228cmであれば挿入損失の周波数特性は平面波
板定のものに近くなり、特定周波数における挿入損失の
ピークは現れない。
In a similar cavity, the cavity length a2 is 8 cm, locm
An experiment was conducted to determine the transmission loss of a comparative example when The results are shown in Figure 8 for the seventh factor, superimposed on the calculation results for the plane wave plate constant. From these figures, if the cavity length e2 is larger than 0.86 times the cavity diameter, that is, 8228 cm in the above comparative example, the frequency characteristics of the insertion loss will be close to those of a plane wave plate constant, and the insertion loss at a specific frequency will be No peak loss appears.

また、空洞(2)の直径と入口管(1]および出口管(
3)の直径についても覆々実験検討した結果、空洞(2
)の直径が入口管(1)および出口管(3)の直径の8
倍以上である場合に、良好な消音効果が得られることを
確認した。
Also, the diameter of the cavity (2), the inlet pipe (1) and the outlet pipe (
As a result of extensive experimental studies regarding the diameter of the cavity (2)
) is 8 times the diameter of the inlet pipe (1) and outlet pipe (3).
It was confirmed that a good silencing effect can be obtained when the amount is more than twice that.

また、上記実施例では吸音材を用いなかったが。Further, in the above embodiment, no sound absorbing material was used.

空洞(2)内に吸音材を備えても良い。A sound absorbing material may be provided within the cavity (2).

〔発明の効果〕〔Effect of the invention〕

以とのように、この発明によれば、円形断面を持つ入口
管と円筒形空洞と円形断面を持つ出口管とを順に同軸上
に接続するものにおいて、と記空洞は直径がと記入口管
の直径の8倍以上で長さが上記空洞の直径の0.35倍
以下であり、h配出口管は直径が上記空洞の直径の1/
8以下であるので、挿入損失が改善され、より消音効果
の優れた消音器が得られる。
As described above, according to the present invention, an inlet pipe having a circular cross section, a cylindrical cavity, and an outlet pipe having a circular cross section are sequentially connected coaxially, and the cavity has a diameter of h is at least 8 times the diameter of the cavity, and its length is 0.35 times or less the diameter of the cavity, and h the outlet pipe has a diameter of 1/1 of the diameter of the cavity.
Since it is 8 or less, the insertion loss is improved, and a muffler with a more excellent muffling effect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による消音器を示す正面図
、第2図は第1図の消音器の設置状態を示す説明図、第
8図は第1図の消音器における空洞の入ロ音普インピー
ダンス計算結果を示す特性図、第4図は第1図に示すこ
の発明の一実施例における挿入損失ILの実験結果およ
び計算結果を示す特性図、第5図〜第8図はそれぞれこ
の発明の他の実施例および比較例暑こおける挿入損失I
Lの実験結果および計算結果を示す特性図、第9図は従
来の消音器を示す正面図、第10図は第9図の消音器の
設置状態を示す説明図、第11図は第9図に示す従来の
消音器における透過損失ILの実験結果および計算結果
を示す特性図である。 図において、(1)は入口管、(2)は円筒形空洞、(
3)は出口管、(4)は音源、(5)は無反射端である
。 なお、各図中同一符号は同一または相当部分を示すもの
とする。
FIG. 1 is a front view showing a silencer according to an embodiment of the present invention, FIG. 2 is an explanatory diagram showing the installed state of the silencer of FIG. 1, and FIG. FIG. 4 is a characteristic diagram showing the results of calculation of impedance; FIG. 4 is a characteristic diagram showing experimental results and calculation results of insertion loss IL in an embodiment of the present invention shown in FIG. 1; FIGS. Other Examples and Comparative Examples of the Invention Insertion Loss I in Hot Heat
A characteristic diagram showing the experimental results and calculation results of L, Fig. 9 is a front view showing a conventional silencer, Fig. 10 is an explanatory diagram showing the installed state of the silencer in Fig. 9, and Fig. 11 is Fig. FIG. 3 is a characteristic diagram showing experimental results and calculation results of transmission loss IL in the conventional silencer shown in FIG. In the figure, (1) is the inlet pipe, (2) is the cylindrical cavity, (
3) is the outlet pipe, (4) is the sound source, and (5) is the non-reflection end. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)円形断面を持つ入口管と円筒形空洞と円形断面を
持つ出口管とを順に同軸上に接続するものにおいて、上
記空洞は直径が上記入口管の直径の3倍以上で長さが上
記空洞の直径の0.35倍以下であり、上記出口管は直
径が上記空洞の直径の1/3以下であることを特徴とす
る消音器。
(1) An inlet pipe with a circular cross section, a cylindrical cavity, and an outlet pipe with a circular cross section are sequentially connected coaxially, and the cavity has a diameter of three times or more the diameter of the inlet pipe and a length of the same diameter. A silencer characterized in that the diameter of the outlet pipe is 0.35 times or less than the diameter of the cavity, and the diameter of the outlet pipe is 1/3 or less of the diameter of the cavity.
(2)空洞内に吸音材を備えたことを特徴とする特許請
求の範囲第1項記載の消音器。
(2) The muffler according to claim 1, characterized in that a sound absorbing material is provided in the cavity.
JP24467586A 1986-10-14 1986-10-14 Muffler Pending JPS6397817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24467586A JPS6397817A (en) 1986-10-14 1986-10-14 Muffler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24467586A JPS6397817A (en) 1986-10-14 1986-10-14 Muffler

Publications (1)

Publication Number Publication Date
JPS6397817A true JPS6397817A (en) 1988-04-28

Family

ID=17122274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24467586A Pending JPS6397817A (en) 1986-10-14 1986-10-14 Muffler

Country Status (1)

Country Link
JP (1) JPS6397817A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016006372A (en) * 2014-05-30 2016-01-14 株式会社荏原製作所 Muffler
WO2022202975A1 (en) * 2021-03-25 2022-09-29 富士フイルム株式会社 Acoustic impedance change structure and ventilation-type silencer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016006372A (en) * 2014-05-30 2016-01-14 株式会社荏原製作所 Muffler
WO2022202975A1 (en) * 2021-03-25 2022-09-29 富士フイルム株式会社 Acoustic impedance change structure and ventilation-type silencer

Similar Documents

Publication Publication Date Title
Selamet et al. The effect of length on the acoustic attenuation performance of concentric expansion chambers: an analytical, computational and experimental investigation
US4109751A (en) Noise silencer
Selamet et al. Acoustic attenuation performance of circular expansion chambers with extended inlet/outlet
US4501341A (en) Low frequency muffler
US6752240B1 (en) Sound attenuator for a supercharged marine propulsion device
US3776364A (en) Noise reduction apparatus and method
JP5229391B2 (en) Exhaust device for internal combustion engine
US5801344A (en) Sound attenuator with throat tuner
US20070205044A1 (en) Silencer
US6609489B1 (en) Apparatus and method for reducing engine noise
US3700069A (en) Wave interference silencer
JPS58158312A (en) Premuffler
US6364055B1 (en) Acoustically non-resonant pipe
Eriksson Effect of inlet/outlet locations on higher order modes in silencers
JPS6397817A (en) Muffler
KR100835709B1 (en) Exhaust silencer for engine exhaust system
CN114151168A (en) Silencer and engineering vehicle
Dokumaci Sound transmission in mufflers with multiple perforated co-axial pipes
CN206785455U (en) A kind of automotive muffler
Selamet et al. The effect of length on the acoustic attenuation performance of concentric expansion chambers: an analytical, computational, and experimental investigation
JPS6221702Y2 (en)
JPS58148215A (en) Muffler of automobile engine
CN216691216U (en) Expanded quarter-wave tube silencing device, engine and passenger car
JPH0432208B2 (en)
JPS6040813Y2 (en) Silencer