JPS6397613A - Production of condensed polycyclic aromatic resin - Google Patents

Production of condensed polycyclic aromatic resin

Info

Publication number
JPS6397613A
JPS6397613A JP24459686A JP24459686A JPS6397613A JP S6397613 A JPS6397613 A JP S6397613A JP 24459686 A JP24459686 A JP 24459686A JP 24459686 A JP24459686 A JP 24459686A JP S6397613 A JPS6397613 A JP S6397613A
Authority
JP
Japan
Prior art keywords
polycyclic aromatic
formaldehyde
resin
reaction
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24459686A
Other languages
Japanese (ja)
Inventor
Yoshitoshi Kumagai
熊谷 善敏
Tetsuo Takano
哲雄 高野
Sugiro Otani
大谷 杉郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24459686A priority Critical patent/JPS6397613A/en
Publication of JPS6397613A publication Critical patent/JPS6397613A/en
Pending legal-status Critical Current

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)

Abstract

PURPOSE:To obtain a resin of excellent heat resistance in good yield, by using a polar organic compound as a solvent in producing a condensed polycyclic aromatic resin by addition-polycondensing a polycyclic aromatic hydrocarbon with formaldehyde in the presence of an acid catalyst. CONSTITUTION:A polycyclic aromatic hydrocarbon (A) (e.g., naphthalene or an anthracene fraction of crude (tar), formaldehyde or a formaldehyde-generating substance (B) (e.g., methylal), and an acid catalyst (C) (e.g., p-toluenesulfonic acid) are dissolved in a solvent comprising a polar organic compound (e.g., nitrobenzene or nitromethane). Component A is addition-polycondensed with component B by slowly heating this solution to obtain the purpose condensed polycyclic aromatic resin. The obtained resin can be suitably used in electrical insulation materials and laminates which require heat resistance, and applications such as molding, filling, coating, etc., in various industrial fields.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多環芳香族炭化水素を含有するタール留分を
原料とし、反応により、耐熱性に優れた縮合多環芳香族
樹脂を製造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses a tar fraction containing polycyclic aromatic hydrocarbons as a raw material to produce a condensed polycyclic aromatic resin with excellent heat resistance through reaction. Regarding how to.

〔発明の背景〕[Background of the invention]

耐熱性樹脂は、周知のように電気絶縁性材料、積層品、
成形材料あるいは複合材の基材として広く利用されてい
る。芳香族炭化水素を原料とする耐熱性樹脂の代表例に
フェノール樹脂があり、その優れた特性を活かした各種
用途が開発されている。しかしながら、樹脂原料の面か
らはフェノール樹脂は、フェノールなど芳香環に水酸恭
を導入した特別な化合物を利用したもので、芳香族炭化
水素の直接的利用とは言いがたい。
As is well known, heat-resistant resins are electrically insulating materials, laminated products,
It is widely used as a molding material or a base material for composite materials. Phenol resin is a typical example of heat-resistant resin made from aromatic hydrocarbons, and various applications are being developed that take advantage of its excellent properties. However, in terms of resin raw materials, phenolic resins utilize special compounds such as phenol that have hydroxyl added to their aromatic rings, and cannot be said to be the direct use of aromatic hydrocarbons.

他方、芳香族炭化水素をそのままの形で利用する例とし
ては、メタキシレンとホルムアルデヒドから得られるキ
シレン樹脂あるいはその類縁の樹脂が知られている。
On the other hand, xylene resins obtained from meta-xylene and formaldehyde or resins related thereto are known as examples of using aromatic hydrocarbons as they are.

しかしながら、ナフタレンあるいはアントラセンのよう
な多環芳香族炭化水素をホルムアルデヒドのみと反応さ
せて高分子ものを得ることは、通常困難であり、満足な
性能の樹脂を得るには、特別な工夫が必要である。この
ため、例えば、特公昭35−8346号公報に記載され
ているように、ホルムアルデヒドとの一次縮合物にさら
に多量のフェノール類を添加させる等の手段により、縮
合反応性と樹脂特性の改良が図られている。
However, it is usually difficult to obtain polymers by reacting polycyclic aromatic hydrocarbons such as naphthalene or anthracene with formaldehyde alone, and special measures are required to obtain resins with satisfactory performance. be. For this reason, for example, as described in Japanese Patent Publication No. 35-8346, it is possible to improve the condensation reactivity and resin properties by adding a larger amount of phenols to the primary condensate with formaldehyde. It is being

しかし、この種の方法であっても、平均分子量が低かっ
たり、熱安定性が悪いなどの問題がある。
However, even this type of method has problems such as low average molecular weight and poor thermal stability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、このような前景にも−とづき上記先行技
術の欠点を克服するため検討を重ねた結果、縮合反応の
実施に際しである種の溶媒を用いることにより、フェノ
ール類の添加がなくとも多環芳香族炭化水素とホルムア
ルデヒドから耐熱性に優れた高分子物が得られることを
見出し、本発明に到達した。
Based on this foreground, the present inventors have made repeated studies to overcome the drawbacks of the prior art described above, and have found that the addition of phenols can be prevented by using a certain type of solvent when carrying out the condensation reaction. The inventors have discovered that a polymer with excellent heat resistance can be obtained from at least a polycyclic aromatic hydrocarbon and formaldehyde, and have arrived at the present invention.

本発明は、タール留分中の2ないし6環の中性多環芳香
族炭化水素(以下、多環芳香族炭化水素と総称する)と
、ホルムアルデヒドまたはホルムアルデヒドを発生する
物質(以下、ホルムアルデヒドと総称する)とから、耐
熱性に優れた多環芳香族樹脂を製造するための改良され
た方法を提供するものである。
The present invention deals with neutral polycyclic aromatic hydrocarbons with 2 to 6 rings (hereinafter collectively referred to as polycyclic aromatic hydrocarbons) in a tar fraction, and formaldehyde or a substance that generates formaldehyde (hereinafter collectively referred to as formaldehyde). The present invention provides an improved method for producing a polycyclic aromatic resin having excellent heat resistance.

すなわち、本発明は、上記の目的を達成すべくなされた
もので、多環芳香族炭化水素とホルムアルデヒドを、酸
触媒の存在下に付加縮合させて、多環芳香族樹脂を得る
に際し、極性の有機溶媒を用いるものである。
That is, the present invention has been made to achieve the above object, and when polycyclic aromatic hydrocarbon and formaldehyde are subjected to addition condensation in the presence of an acid catalyst to obtain a polycyclic aromatic resin, polar This method uses an organic solvent.

〔作 用〕[For production]

本発明方法に従えば、多環芳香族炭化水素を含有するタ
ール留分をそのまま用い、耐熱性に極めて優れた樹脂を
経済的に製造することができる。
According to the method of the present invention, a resin with extremely excellent heat resistance can be economically produced using a tar fraction containing polycyclic aromatic hydrocarbons as is.

さらに、本発明方法によれば以下の利点がある。Furthermore, the method of the present invention has the following advantages.

■ 温和な反応条件の下で短時間で目的物が得られる ■ 可溶性の樹脂を均一溶液として得ることができる。■ Target product can be obtained in a short time under mild reaction conditions ■ Soluble resin can be obtained as a homogeneous solution.

〔発明の具体的構成〕[Specific structure of the invention]

以下に本発明の詳細な説明する。 The present invention will be explained in detail below.

本発明方法では、多環芳香族炭化水素あるいは2ないし
6環の中性の多環芳香族炭化水素を含有するタール留分
(以下、多環芳香族炭化水素と総称する)を原料として
用いる。
In the method of the present invention, a tar fraction containing polycyclic aromatic hydrocarbons or neutral polycyclic aromatic hydrocarbons with 2 to 6 rings (hereinafter collectively referred to as polycyclic aromatic hydrocarbons) is used as a raw material.

ここで、多環芳香族炭化水素とは、その主成分が2ない
し6個のベンゼン環を含む芳香族炭化水素である。これ
らの多環芳香族炭化水素の具体例は、ナフタレン、メチ
ルナフタレン、ジメチルナフタレン、アセナフテン、フ
ルオレン、ビフェニル、アントラセン、フェナントレン
、ピレン、クリセン、ナフタセン、トリフェニレン、ペ
リレン、コロン等である。
Here, the polycyclic aromatic hydrocarbon is an aromatic hydrocarbon whose main component contains 2 to 6 benzene rings. Specific examples of these polycyclic aromatic hydrocarbons are naphthalene, methylnaphthalene, dimethylnaphthalene, acenaphthene, fluorene, biphenyl, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, colon, and the like.

また、上記の多環芳香族炭化水素を2種以上含む混合物
、例えば、カルポル油、ナフタレン油、洗浄油、アント
ラセン油、エチレンボトム油、ソルベントナフサ、コー
ルタール、コールピッチ、軟ピツチ、中ピツチあるいは
石油ピッチ、常圧残残さ油等も安価な原料として利用で
きる。これらは、多環芳香族炭化水素以外に、一部単環
の芳香族炭化水素を含んでいてもよい。タール留分では
、粗タール中に含まれるアントラセン油留分を用いるの
が適当である。必要あれば、予め酸処理、晶析、濾過、
蒸留、昇華等の通常の手段により精製を施してから、当
該反応に供することも有効である。
In addition, mixtures containing two or more of the above polycyclic aromatic hydrocarbons, such as carpol oil, naphthalene oil, cleaning oil, anthracene oil, ethylene bottom oil, solvent naphtha, coal tar, coal pitch, soft pitch, medium pitch, or Petroleum pitch, atmospheric residual oil, etc. can also be used as inexpensive raw materials. These may partially contain monocyclic aromatic hydrocarbons in addition to polycyclic aromatic hydrocarbons. As the tar fraction, it is appropriate to use an anthracene oil fraction contained in crude tar. If necessary, acid treatment, crystallization, filtration,
It is also effective to purify the product by conventional means such as distillation or sublimation before subjecting it to the reaction.

本発明方法で用いるホルムアルデヒドおよびホルムアル
デヒドを発生させる物質(以下、ホルムアルデヒドと総
称する)とは、本発明の反応条件下で反応系中にホルム
アルデヒドを発生させるような物資であり、具体的には
、トリオキサン、パラホルムアルデヒド、ヘキサメチレ
ンテトラミン、メチラールおよびその他のホルマール類
を意味°する。また、ホルムアルデヒドの水溶液(ホル
マリン)がそのまま原料として使用できる。
Formaldehyde and substances that generate formaldehyde (hereinafter collectively referred to as formaldehyde) used in the method of the present invention are substances that generate formaldehyde in the reaction system under the reaction conditions of the present invention, and specifically, trioxane. , paraformaldehyde, hexamethylenetetramine, methylal and other formals. In addition, an aqueous solution of formaldehyde (formalin) can be used as it is as a raw material.

本発明に使用される極性の有機溶媒の種類には特に制限
はないが、好ましい溶媒の例としては次のようなものが
挙げられる。ジメチルホルムアミド、ジエチルホルムア
ミドのようなジ低級アルキルホルムアミド;ジメチルス
ルホキシド、ジエチルスルホキシドのようなジ低級アル
キルスルホキシド;ジメチルアセトアミド、ジエチルア
セトアミドのようなジ低級アルキルアセトアミド、アセ
トニトリル、プロピオニトリルのような低級アルキルシ
アニド;ベンゾニトリル、トリニトリルのような芳香族
シアニド;ニトロメタン、ニトロエタンニトロベンゼン
のような脂肪族もしくは芳香族ニトロ化合物i#酸、モ
ノクロル酢酸のようなカルボン酸、無水酢酸のような酸
無水物;モノクロルベンセン、ジクロルベンゼンのよウ
ナ芳香族塩素化物;塩化メチレン、クロロホルム、四塩
化炭素のようなメタン塩化物;ジクロルエタン、ジブロ
ムエタン、ジクロルプロパン、トリクロルエタン、テト
ラクロルエタンのような低級アルキルハロゲン化物;ジ
エチルエーテル、ジフェニルエーテル、ジオキサン、テ
トラヒドロフランのような脂肪族もしくは芳香族エーテ
ル類;アセトン、メチルエチルケトン、メチルイソブチ
ルケトンのようなケトン類;二硫化炭素のような有機イ
オウ化合物またはこれらの混合物である。
Although there are no particular limitations on the type of polar organic solvent used in the present invention, examples of preferred solvents include the following. Di-lower alkyl formamides such as dimethylformamide and diethyl formamide; di-lower alkyl sulfoxides such as dimethyl sulfoxide and diethyl sulfoxide; di-lower alkyl acetamides such as dimethyl acetamide and diethylacetamide; lower alkyl shea such as acetonitrile and propionitrile; Aromatic cyanides such as benzonitrile, trinitrile; Aliphatic or aromatic nitro compounds such as nitromethane, nitroethane and nitrobenzene i# acids, carboxylic acids such as monochloroacetic acid, acid anhydrides such as acetic anhydride; monochloro Aromatic chlorides such as benzene and dichlorobenzene; methane chlorides such as methylene chloride, chloroform, and carbon tetrachloride; lower alkyl halides such as dichloroethane, dibromoethane, dichloropropane, trichloroethane, and tetrachloroethane; Aliphatic or aromatic ethers such as diethyl ether, diphenyl ether, dioxane, tetrahydrofuran; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; organic sulfur compounds such as carbon disulfide, or mixtures thereof.

これらのうち、芳香族ニトロ化合物が特に好ましく、そ
の具体例として、ニトロベンゼンがある。
Among these, aromatic nitro compounds are particularly preferred, and a specific example thereof is nitrobenzene.

本発明方法における縮合反応は酸触媒の存在下に行う。The condensation reaction in the method of the invention is carried out in the presence of an acid catalyst.

本発明で用いられる酸触媒の範囲には、ブレンステッド
酸、ルイス酸のいずれにも含まれる。無機鉱酸、有機酸
または液状の酸のほかに固形化酸、ゼオライト、イオン
交換樹脂等も用いられる。好ましい酸の具体例は、硫酸
、塩酸、リン酸、フッ化水素酸のような無機鉱酸、塩化
アルミニウム、塩化亜鉛、三フッ化ホウ素、塩化第二鉄
のようなルイス酸、トリクロロ酢酸、ベンゼンスルホン
酸、p−)ルエンスルホン酸、トリフルオロメタンスル
ホン酸、ギ酸、シュウ酸のような有機酸である。
The range of acid catalysts used in the present invention includes both Bronsted acids and Lewis acids. In addition to inorganic mineral acids, organic acids, or liquid acids, solidified acids, zeolites, ion exchange resins, etc. are also used. Specific examples of preferred acids include inorganic mineral acids such as sulfuric acid, hydrochloric acid, phosphoric acid, and hydrofluoric acid, Lewis acids such as aluminum chloride, zinc chloride, boron trifluoride, and ferric chloride, trichloroacetic acid, and benzene. Organic acids such as sulfonic acid, p-)luenesulfonic acid, trifluoromethanesulfonic acid, formic acid, and oxalic acid.

当該縮合反応に対する原料の多環芳香族炭化水素とホル
ムアルデヒドの仕込み比は、100%のホルムアルデヒ
ドに換算すると、一般には重量比で1/10ないし10
00/ 1 、好ましくは1/2ないし200/1、さ
らに好ましくは115ないし50/1の範囲である。上
記の範囲以下では、ホルムアルデヒド量が不足し、得ら
れる縮合物(いわゆるBステージのプレポリマー以下、
プレポリマーと称する)の架橋度が不十分である。また
、上記の範囲以上では、ホルムアルデヒドが無駄である
ばかりでなく、最終生成物の性状が劣り好ましくない。
The charging ratio of polycyclic aromatic hydrocarbon and formaldehyde as raw materials for the condensation reaction is generally 1/10 to 10 by weight when converted to 100% formaldehyde.
00/1, preferably 1/2 to 200/1, more preferably 115 to 50/1. Below the above range, the amount of formaldehyde will be insufficient and the resulting condensate (below the so-called B-stage prepolymer,
(referred to as prepolymer) has an insufficient degree of crosslinking. Further, if the amount exceeds the above range, formaldehyde is not only wasted, but also the properties of the final product are inferior, which is not preferable.

溶媒の使用量の好ましい範囲は、原料の多環芳香族炭化
水素に対して重量比で1/2ないし10/1、好ましく
は1/1ないし5/1の範囲である。
The preferred range of the amount of the solvent to be used is 1/2 to 10/1, preferably 1/1 to 5/1 in weight ratio to the raw material polycyclic aromatic hydrocarbon.

上記の範囲以下では、原料および/または生成物の溶解
が不満足となり、本発明の目的を達成することができな
い。また、上記の範囲以上では設備規模の増大、ユーテ
ィリティー所要量の増大を招き不経済である。
If the amount is below the above range, the raw materials and/or products will not be dissolved satisfactorily, making it impossible to achieve the object of the present invention. Further, if the temperature exceeds the above range, the scale of the equipment and the amount of utilities required will increase, which is uneconomical.

酸触媒の添加量も酸の種類に依存するが、適当な範囲は
多環芳香族炭化水素に対して、重量比で1/100ない
し1/1の範囲である。
The amount of the acid catalyst added also depends on the type of acid, but a suitable range is from 1/100 to 1/1 by weight of the polycyclic aromatic hydrocarbon.

上記の範囲以下では、反応速度が著しく小さくなる。ま
た上記の範囲以上では、触媒が無駄であるばかりではな
く廃酸処理等の後処理工程の負荷が大きくなり好ましく
ない。
Below the above range, the reaction rate becomes extremely low. Moreover, if it exceeds the above range, not only is the catalyst wasteful, but also the burden of post-treatment steps such as waste acid treatment increases, which is not preferable.

本発明における縮重合反応の具体的な実施方法は以下の
通りである。原料の多環芳香族炭化水素とホルムアルデ
ヒドを適当な比で混合し、一旦有機溶媒に溶解させたの
ち室温下で所定量の酸触媒を添加する。加熱温度は、で
きるだけ均一な組成のプレポリマーを得るためには、反
応初期には、20ないし90℃に制御し、次いで徐々に
昇温することが望ましい、最終温度は、80ないし18
0℃、好ましくは100ないし160℃の範囲にたもつ
。180℃以上ではゲル化が起こり好ましくない。
A specific method for carrying out the polycondensation reaction in the present invention is as follows. The raw material polycyclic aromatic hydrocarbon and formaldehyde are mixed in an appropriate ratio and once dissolved in an organic solvent, a predetermined amount of acid catalyst is added at room temperature. In order to obtain a prepolymer with a uniform composition as much as possible, it is desirable to control the heating temperature at 20 to 90°C at the beginning of the reaction and then gradually increase the temperature.The final temperature is 80 to 18°C.
The temperature is maintained at 0°C, preferably in the range of 100 to 160°C. At 180° C. or higher, gelation occurs, which is not preferable.

反応時間は、原料の種類、反応溶媒の種類その他の条件
により必ずしも一定しないが、0.5ないし20時間、
好ましくは1ないし10時間の範囲である。この時間は
、また、所望のプレポリマーの性状にもとすき自由に選
択することができる。
The reaction time is not necessarily constant depending on the type of raw materials, the type of reaction solvent, and other conditions, but may range from 0.5 to 20 hours,
Preferably it is in the range of 1 to 10 hours. This time can also be freely selected depending on the desired properties of the prepolymer.

攪拌下、所定の時間、加熱し反応を行なったのち生成し
たプレポリマーは、所望の性状に合わせて濃縮、沈殿、
遠心分離、濾過等、通常の手段により分離取得する。
After heating and reacting with stirring for a predetermined period of time, the prepolymer produced is concentrated, precipitated, and processed to obtain the desired properties.
Separate and obtain by conventional means such as centrifugation and filtration.

多環芳香族炭化水素、極性の有機溶媒の仕込みは、反応
に阻害のない限り、いずれの手順も可能である。本発明
の縮重合反応は、特に還流下で反応を進行させ、所定の
縮合段階に至った時点で、減圧あるいは窒素等の不活性
ガスの吹き込み、あるいは共沸蒸留等の操作により、水
、塩酸等の縮合副生成物を系外に排出しながら実施する
ことが好ましい。
Any procedure can be used for charging the polycyclic aromatic hydrocarbon and the polar organic solvent as long as the reaction is not inhibited. In the condensation polymerization reaction of the present invention, the reaction is allowed to proceed particularly under reflux, and when a predetermined condensation stage is reached, water, hydrochloric acid, etc. It is preferable to conduct the reaction while discharging condensation by-products such as the like from the system.

この理由は、溶媒中に水分があると、高分子量の樹脂が
生成し難いためであり、逆に脱水しながら反応を行うと
、反応が円滑に進むからである。
The reason for this is that if there is water in the solvent, it is difficult to produce a high molecular weight resin, and on the other hand, if the reaction is carried out while being dehydrated, the reaction proceeds smoothly.

特に、水と共沸物を形成する溶媒、たとえば、芳香族炭
化水素、脂肪族もしくは芳香族ニトロ化合物、芳香族塩
化物、芳香族エーテル、アルキルハロゲン化物を使用し
、反応で生成する水を連続的に除去しながら、当該縮合
を実施することは、反応速度の向上、プレポリマーの高
分子量化に有効な手段である。
In particular, solvents that form azeotropes with water, such as aromatic hydrocarbons, aliphatic or aromatic nitro compounds, aromatic chlorides, aromatic ethers, alkyl halides, are used, and the water produced in the reaction is continuously removed. Carrying out the condensation while removing the polymer is an effective means for improving the reaction rate and increasing the molecular weight of the prepolymer.

また、反応形式そのものは、回分式、連続式のいずれの
方式ででも実施可能である。
Moreover, the reaction format itself can be carried out either batchwise or continuously.

本発明方法によって製造される可溶化された縮合多環芳
香族樹脂は、耐熱性樹脂および各種工業分野の注形、充
填、被覆等の用途に使用される。
The solubilized condensed polycyclic aromatic resin produced by the method of the present invention is used as a heat-resistant resin and for applications such as casting, filling, and coating in various industrial fields.

〔実施例〕〔Example〕

次に、実施例により本発明をさらに具体的に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

ここで部は、特に指示しないかぎり重量基準である。Parts herein are by weight unless otherwise specified.

(実施例1) かくはん機、温度計、水冷式の側管、窒素導入管を備え
た四つロフラスコにフェナントレン25部、パラホルム
アルデヒド5.3部、p−)ルエンスルホン110部、
ニトロベンゼン100部を仕込み、120℃まで昇温し
、3時間加熱かくはんを行った後、反応液を放冷する。
(Example 1) 25 parts of phenanthrene, 5.3 parts of paraformaldehyde, 110 parts of p-)luenesulfone,
100 parts of nitrobenzene was charged, the temperature was raised to 120°C, the mixture was heated and stirred for 3 hours, and then the reaction solution was allowed to cool.

この反応液を1000部のメタノールに注ぎこみ、樹脂
を沈殿させる。さらに、ろ過洗浄後、減圧乾燥、粉砕を
行って樹脂を得た。
This reaction solution is poured into 1000 parts of methanol to precipitate the resin. Furthermore, after filtering and washing, drying under reduced pressure and pulverization were performed to obtain a resin.

この樹脂の物理化学的性質は以下の通りあった。The physicochemical properties of this resin were as follows.

軟化点       117℃ 流動点       131℃ 数平均分子量   1194 熱重量変化を図1にしめした。Softening point 117℃ Pour point 131℃ Number average molecular weight 1194 The thermogravimetric changes are shown in Figure 1.

なおプレポリマーの分析は以下の方法で行なった。The prepolymer was analyzed by the following method.

(1)  軟化点、流動点:フロー・テスター法によっ
た。
(1) Softening point, pour point: Based on the flow tester method.

負荷圧力   10 kg/c+a−Gクズ11寸法 
 l曹曹φ×2N 昇温速度   6℃/5hin (2)  熱室I減少:熱天秤法によった。
Load pressure 10 kg/c + a-G waste 11 dimensions
1 Sodium soda φ×2N Temperature increase rate 6° C./5 h (2) Heat chamber I reduction: Based on thermobalance method.

試料1    1 Q w (微粉) 昇温速度   10℃/s+1n (3)数平均分子量:蒸気圧浸透圧法によった。Sample 1 1 Q w (fine powder) Temperature increase rate 10℃/s+1n (3) Number average molecular weight: Based on vapor pressure osmotic pressure method.

ピリジン溶媒(105℃) (比較例1) 実施例1と同じ装置に、フェナントレン25部、パラホ
ルムアルデヒド5.3部、p−トルエンスルホン酸1.
1部を加え、無溶媒でかくはんしながら反応温度を12
0℃まで上げ30分、加熱か(はんを行う。30分後、
120℃を維持したまま11011Hまで放冷した後に
クロロホルム100部を加え生成物を溶解し、メタノー
ル1000部にかくはんしながら注ぎこみ樹脂を沈殿さ
せ、以後実施例1と同じ方法で粉状の樹脂を得た。
Pyridine solvent (105°C) (Comparative Example 1) In the same apparatus as in Example 1, 25 parts of phenanthrene, 5.3 parts of paraformaldehyde, and 1.0 parts of p-toluenesulfonic acid were added.
Add 1 part and raise the reaction temperature to 12°C while stirring without solvent.
Heat it up to 0℃ for 30 minutes. After 30 minutes,
After cooling to 11011H while maintaining 120°C, 100 parts of chloroform was added to dissolve the product, and poured into 1000 parts of methanol with stirring to precipitate the resin. Thereafter, the powdered resin was prepared in the same manner as in Example 1. Obtained.

この樹脂の物せいは以下の通りであった。The properties of this resin were as follows.

軟化点     81℃ 流動点     87℃ 数平均分子量  526 熱重量変化を図1に示した。Softening point 81℃ Pour point 87℃ Number average molecular weight 526 The thermogravimetric changes are shown in Figure 1.

(比較例2) かくはん機、温度計、還流冷却器、窒素導入管を備えた
四つロフラスコにフェナントレン25部、パラホルムア
ルデヒド5.3部、p−トルエンスルホン110部、酢
酸100部を仕込み、110℃でかくはんしながら3時
間反応を行った。以後、実施例1と同じ方法で粉状樹脂
を得た。
(Comparative Example 2) 25 parts of phenanthrene, 5.3 parts of paraformaldehyde, 110 parts of p-toluenesulfone, and 100 parts of acetic acid were charged into a four-bottle flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen introduction tube. The reaction was carried out for 3 hours while stirring at °C. Thereafter, a powdered resin was obtained in the same manner as in Example 1.

軟化点     72℃ 流動点     86℃ 数平均分子1  676 〔発明の効果〕 以上のように、本発明方法、すなわち、有機溶媒中で不
可縮合を行なう方法により、多環芳香族炭化水素とホル
ムアルデヒドを原料として、耐熱性に優れた樹脂が効率
よ<!I!!造できることは明らかである。
Softening point: 72°C Pour point: 86°C Number average molecule: 1 676 [Effects of the invention] As described above, by the method of the present invention, that is, the method of performing non-condensation in an organic solvent, polycyclic aromatic hydrocarbons and formaldehyde are used as raw materials. As such, resins with excellent heat resistance are more efficient. I! ! It is clear that it can be built.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例および比較例での樹脂の窒素気流下に
おける熱重至変化図である。 特許出願人   住友金属工業株式会社大  谷  杉
°  部 代理人 弁理士  永  井  義  次第1図 J敷& (C”)
FIG. 1 is a diagram showing changes in thermal gravity of resins in Examples and Comparative Examples under nitrogen flow. Patent applicant Sumitomo Metal Industries, Ltd. Sugi Otani Department Representative Patent attorney Yoshi Nagai Figure 1 J & (C”)

Claims (1)

【特許請求の範囲】 1)多環芳香族炭化水素と、ホルムアルデヒドまたはホ
ルムアルデヒドを発生させる物質とを酸触媒の存在下に
付加縮合させて、縮合多環芳香族樹脂を得る方法におい
て、極性の有機化合物を溶媒として用いることを特徴と
する、縮合多環芳香族樹脂の製造法。 2)多環芳香族炭化水素が、アントラセン油中の2ない
し6環の多環芳香族炭化水素もしくはその混合物である
ことを特徴とする特許請求の範囲第1項に記載の方法。 3)極性の有機化合物が、ニトロ低級アルカンまたは芳
香族ニトロ化合物であることを特徴とする特許請求の範
囲第1項または第2項に記載の方法。
[Claims] 1) A method for obtaining a condensed polycyclic aromatic resin by carrying out addition condensation of a polycyclic aromatic hydrocarbon and formaldehyde or a substance that generates formaldehyde in the presence of an acid catalyst. A method for producing a condensed polycyclic aromatic resin, characterized by using a compound as a solvent. 2) The method according to claim 1, wherein the polycyclic aromatic hydrocarbon is a 2- to 6-ring polycyclic aromatic hydrocarbon in anthracene oil or a mixture thereof. 3) The method according to claim 1 or 2, wherein the polar organic compound is a nitro lower alkane or an aromatic nitro compound.
JP24459686A 1986-10-15 1986-10-15 Production of condensed polycyclic aromatic resin Pending JPS6397613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24459686A JPS6397613A (en) 1986-10-15 1986-10-15 Production of condensed polycyclic aromatic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24459686A JPS6397613A (en) 1986-10-15 1986-10-15 Production of condensed polycyclic aromatic resin

Publications (1)

Publication Number Publication Date
JPS6397613A true JPS6397613A (en) 1988-04-28

Family

ID=17121072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24459686A Pending JPS6397613A (en) 1986-10-15 1986-10-15 Production of condensed polycyclic aromatic resin

Country Status (1)

Country Link
JP (1) JPS6397613A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009511732A (en) * 2006-07-05 2009-03-19 ヨンセイ ユニバーシティ インダストリー‐アカデミック コーポレイション ファウンデーション Photoactive aromatic polymer and process for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009511732A (en) * 2006-07-05 2009-03-19 ヨンセイ ユニバーシティ インダストリー‐アカデミック コーポレイション ファウンデーション Photoactive aromatic polymer and process for producing the same

Similar Documents

Publication Publication Date Title
Giesa et al. Synthesis and thermal properties of aryl‐substituted rod‐like polyimides
JPH02245010A (en) Preparation of novolak and use of said novolak
JPH0710902B2 (en) Curable resin composition
JPS6397613A (en) Production of condensed polycyclic aromatic resin
CN107759787A (en) A kind of preparation method of polyimide material
JPS6397615A (en) Production of modified polycyclic aromatic condensate and its resin
CN108329251B (en) Preparation method of diether biphthalimide
JPS6397614A (en) Production of modified polycyclic aromatic resin
CN110407713B (en) Binary rosin-based benzocyclobutene monomer and preparation method and application thereof
Sasaki et al. Syntheses and properties of cured epoxy resins containing the perfluorobutenyloxy group. I. Epoxy resin cured with perfluorobutenyloxyphthalic anhydride
Tian et al. Investigation of structure/property relationships of polytriazoles
CN114349954B (en) Phthalonitrile-terminated polyaryl ether nitrile containing methylene/methylene, crosslinked cured modified polyaryl ether nitrile and preparation method thereof
KR0168714B1 (en) Fiber-reinforced resin plate and process for producing the same
JPS6397625A (en) Production of solubilized condensed polycyclic aromatic resin
Harris et al. Synthesis and characterization of reactive end-capped poiymide oligomers
JPS6397624A (en) Production of condensed polycyclic aromatic resin
CN116075424A (en) Polybenzoxazole, polyamide solution, insulating material for high-frequency electronic parts, high-frequency device, insulating material for high-frequency electronic parts production, process for producing polyamide, process for producing polybenzoxazole, process for producing insulating material for high-frequency electronic parts, and diamine or salt thereof
CN109776518A (en) A kind of new A Type B benzoxazine monomer and preparation method thereof
JP7113665B2 (en) Composition and method for producing the same
Fujitsu et al. Hollow spheres of aromatic polyamide prepared by reaction‐induced phase separation
US4202960A (en) Thermosetting aromatic resins and thermostable polymers derived therefrom
JPH01321843A (en) Resin bond brush
JP2926733B2 (en) Thermosetting resin and method for producing the same
Rusanov et al. Thermally stable polymers based on bis-acenaphthyls
Fukami et al. Preparation and properties of epoxy resins containing quinazolone rings