JPS6397498A - Artificial gravity spacecraft - Google Patents

Artificial gravity spacecraft

Info

Publication number
JPS6397498A
JPS6397498A JP61240451A JP24045186A JPS6397498A JP S6397498 A JPS6397498 A JP S6397498A JP 61240451 A JP61240451 A JP 61240451A JP 24045186 A JP24045186 A JP 24045186A JP S6397498 A JPS6397498 A JP S6397498A
Authority
JP
Japan
Prior art keywords
spacecraft
blanket
module
artificial gravity
gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61240451A
Other languages
Japanese (ja)
Inventor
和夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61240451A priority Critical patent/JPS6397498A/en
Publication of JPS6397498A publication Critical patent/JPS6397498A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/12Artificial satellites; Systems of such satellites; Interplanetary vehicles manned

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Prostheses (AREA)
  • Graft Or Block Polymers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、有人宇宙船などの大形宇宙構造物の構造に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of large space structures such as manned spacecraft.

〔従来の技術〕[Conventional technology]

第3図、第4図及び第5図は各々例えば特開昭61−5
7497号公報に示された従来の人工重力宇宙船を水中
正面図、狽11面図および第3図V−■線での断面図で
あり1図において、(1)は回転軸、(2)は重心を通
る直線が宇宙船外周部と接する一方の接点、(3)は宇
宙船外周部と接子るもう一方の接点。
Figures 3, 4 and 5 are, for example, JP-A-61-5
The conventional artificial gravity spacecraft shown in Publication No. 7497 is shown as an underwater front view, a top view, and a sectional view taken along the line V-■ in Figure 1. In Figure 1, (1) is the rotation axis, (2) is one point of contact where a straight line passing through the center of gravity touches the outer circumference of the spacecraft, and (3) is the other point of contact where the line passing through the center of gravity touches the outer circumference of the spacecraft.

(4)は宇宙船居住室の天井、 f51i−i宇宙船居
住室の床。
(4) is the ceiling of the spacecraft living room, and the floor of the f51i-i spacecraft living room.

(6)は宇宙船居住室、(7)は宇宙船の重心、(8)
は宇宙船の回転の方向、(9)αQは回転用ロケツ)、
(litu回転体宇宙船である。
(6) is the spacecraft accommodation room, (7) is the center of gravity of the spacecraft, (8)
is the direction of rotation of the spacecraft, (9) αQ is the rotating rocket),
(Litu is a rotating spacecraft.

次に動作について説明する。宇宙空間において。Next, the operation will be explained. In outer space.

対称位置に逆向きについたスラスタを同時に噴射中ると
リング状の宇宙船は面外の回転軸筒わシに回転をし始め
、スラスタの噴射力を切るとその時点で等速回転する。
When the thrusters, which are symmetrically placed and facing in opposite directions, are firing at the same time, the ring-shaped spacecraft begins to rotate out-of-plane on its rotating axis, and when the thrusters' thrust force is cut off, it rotates at a constant speed.

この角速度をω、宇宙船居住室と回転中心の距離をrと
すると、居住室にはa=rω2なる加速度が得られる。
If this angular velocity is ω, and the distance between the spacecraft living room and the center of rotation is r, then an acceleration of a=rω2 is obtained in the living room.

rω2を地上における重力加速度gとほぼ等しくとって
おけば重力に関しては地上での環境を模擬できる。
If rω2 is set approximately equal to the gravitational acceleration g on the ground, the environment on the ground can be simulated with respect to gravity.

〔発明が溶失しようとする問題点〕[Problems where the invention is about to disappear]

従来の人工重力宇宙船は以上のように構成されていだの
で、有効に使用できる部分は、遠心力による加速度が地
上の加速度にほぼ等しmlJlタングのみに限られ、特
にリングで囲まれた領域は有効に活用できなり0また。
Conventional artificial gravity spacecraft are configured as described above, so the parts that can be effectively used are limited to the mlJl tongue, where the acceleration due to centrifugal force is almost equal to the acceleration on the ground, and especially the area surrounded by the ring. can't be used effectively.

宇宙船全体を大規模なリング状の一体構造にしなければ
ならず、建設方法からいっても困難な問題があった。
The entire spacecraft had to be built into a large, ring-shaped monolithic structure, which was a difficult problem in terms of construction method.

この発明は上記のよう々問題点を解消するためになされ
たもので、比較的小規模な居住モジュールとブランケッ
ト構造を組み合わせて人工重力を持つ宇宙船を得ること
を目的とする。
This invention was made to solve the above-mentioned problems, and its purpose is to obtain a spacecraft with artificial gravity by combining a relatively small-scale habitation module and a blanket structure.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る人工重力宇宙船は、居住モジュールを分
割し、それぞれを太陽電池セルをはシつけた多角形状の
膜構造ブランケットの頂点部分に結合I、各モモジュー
ル回転用のスラスタを配設したものである。
In the artificial gravity spacecraft according to the present invention, the habitation module is divided, each is connected to the apex part of a polygonal membrane structure blanket on which solar cells are attached, and a thruster for rotation of each module is provided. It is something.

〔作用〕[Effect]

この発明による人工重力宇宙船は、スラスタの噴射によ
る面内回転で得られた遠心力で居住モジュールに人工重
力を発生させるとともに、膜構造に張力を発生させて安
定化させ、支持構造として有効に使用される。
The artificial gravity spacecraft according to this invention generates artificial gravity in the habitation module using centrifugal force obtained by in-plane rotation by thruster injection, and also generates tension in the membrane structure to stabilize it, making it effective as a support structure. used.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、αっけ多角形状をなす膜構造のブランケッ
ト、(I3はこのブランケット上に貼シつけられた多針
の太陽電池セル、 +141は上記ブランケットの各頂
点部に配置された有人または無人居住モジュール、αS
はこのモジュールに取りつケbれ、宇宙船全体を面内に
回転させるスラスタ、 (ISは上記ブランケットの周
辺に沿って降)合うモジュール間を結合する補強テザー
、αηは宇宙船の回転方向を示す。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, a blanket with a film structure in the shape of an α-squared polygon, (I3 is a multi-needle solar cell stuck on this blanket, +141 is a manned or uninhabited residence placed at each vertex of the blanket) module, αS
is attached to this module and rotates the entire spacecraft in the plane, a reinforcing tether connects the mating modules (IS falls along the periphery of the blanket), and αη is the direction of rotation of the spacecraft. show.

宇宙用マニピュレータまたは有人船外活動により、折り
たたまれて軌道上に輸送されている太陽電池セルαりを
貼シ付けたブランケットaりを平面状に展開し、同じく
軌道上に輸送されているモジュールα乃を結合し、モジ
ュール結合点間をブランケット周辺に沿って補強テザー
0口で結合すると、第1図および第2図に示す状態が実
現する。ここで。
Using a space manipulator or a manned extravehicular activity, the blanket A to which the solar cells α, which have been folded and transported into orbit, is affixed is unfolded into a flat shape, and the module α, which is also transported into orbit, is expanded into a flat shape. When the module connecting points are connected along the periphery of the blanket with zero reinforcing tethers, the state shown in FIGS. 1 and 2 is realized. here.

モジュール0着に取付けられたスラスタaり(例えば太
陽電池セルで発電これる豊富な電力を考えればイオンエ
ンジンが望ましい)を噴射してモジュール(I41を時
計または反暗計方向に一様に回転させ。
The thruster a (for example, an ion engine is preferable considering the abundant power that can be generated by solar cells) attached to the module 0 is injected to rotate the module (I41) uniformly clockwise or counterclockwise. .

回転角速度が所定の値に達した時点でスラスタαりの推
力を切れば、モジュール0着は回転中心から径方向に向
って遠心力を受ける。この遠心力はモジュールIに固着
した座標系から見ると常に一方向に働く物体力すなわち
人工重力となる。また、このモジュールαりに働く遠心
力およびブランケット自身に働く遠心力によりブランケ
ットαりには面内に張力が発生し、みかけの面外剛性が
生じて1本来面外に剛性を持たない膜構造が構造として
安定化される。このことによシ、4つのモジュールIを
一体構造として、その姿勢制御などを行なうことが可能
となる。張力を受けるブランケットαりの機械強度が不
足していれば、補強テザーaeを用いてモジュール間を
結合してやればモジュールIの遠心力の一部がテザーに
加わるようになり、ブランケットaりに加わる荷重を緩
和中ることができる。
When the thrust of thruster α is cut off when the rotational angular velocity reaches a predetermined value, module 0 receives centrifugal force from the center of rotation in the radial direction. When viewed from the coordinate system fixed to module I, this centrifugal force becomes an object force that always acts in one direction, that is, artificial gravity. In addition, due to the centrifugal force acting on this module α and the centrifugal force acting on the blanket itself, in-plane tension is generated in the blanket α, resulting in an apparent out-of-plane stiffness, resulting in a membrane structure that does not originally have out-of-plane rigidity. is stabilized as a structure. This makes it possible to control the attitude of the four modules I by making them into an integrated structure. If the mechanical strength of the blanket α to receive the tension is insufficient, by connecting the modules using a reinforcing tether a, a part of the centrifugal force of the module I will be applied to the tether, and the load applied to the blanket a will be reduced. You can relax while you're at it.

テザーとブランケットに加わる荷重の割合は、ブランケ
ットとテザーの初期寸法、ブランケットの面内剛性、お
よびテザーの軸方向剛性などを変えることによシ自在に
コントロールできる。
The ratio of the loads applied to the tether and the blanket can be freely controlled by changing the initial dimensions of the blanket and tether, the in-plane stiffness of the blanket, and the axial stiffness of the tether.

なお、上記実施例では四角形の膜構造のブランケットを
用いたが、他の多角形にしても同様の効果を奏する。ま
た、スラスタとしてイオンエンジンを設けたものを示し
たが、化学エンジンあるいは他のスラスタでもよい。
In the above embodiment, a blanket having a rectangular membrane structure was used, but the same effect can be obtained by using other polygonal shapes. Further, although an ion engine has been shown as a thruster, a chemical engine or other thruster may be used.

〔発明の効果〕 以上のように、この発明によれば複数個の比較的小規模
なモジュールを周辺に配置し、太陽電池セルを多数貼夛
付けた大形の多角形膜構造ブランケットで結合した構造
としたので、宇宙空間での建造が容易であシ、また構造
の大部分を占めるブランケット部を発電に有効に利用で
きる効果がある。
[Effects of the Invention] As described above, according to the present invention, a plurality of relatively small-scale modules are arranged around each other and connected by a large polygonal membrane structure blanket to which a large number of solar cells are attached. Because of this structure, it is easy to construct it in space, and the blanket section, which occupies most of the structure, can be effectively used for power generation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は各々この発明の一実施例による人工
重力宇宙船を示す一部切欠き正面図及びロ)1面図、並
びに第3図、第4図、及び第5図は各々従来の人工重力
宇宙船を示す正面図、側面図及び第3図v−v線での断
面図である。0zはブランケット、0は大腸電池セル、
  a41はモジュール、0りはスラスタ、αυは補強
ブザー。 なお9図中、同一符号は同一、又は相当部分を示す。
FIGS. 1 and 2 are a partially cutaway front view and b) front view showing an artificial gravity spacecraft according to an embodiment of the present invention, and FIGS. 3, 4, and 5 are respectively FIG. 3 is a front view, a side view, and a sectional view taken along the line v-v in FIG. 3, showing a conventional artificial gravity spacecraft. 0z is a blanket, 0 is a colon battery cell,
a41 is a module, 0ri is a thruster, and αυ is a reinforcement buzzer. In addition, in FIG. 9, the same reference numerals indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)表面上に複数個の太陽電池セルを貼りつけた多角
形の膜状ブランケット、このブランケットの各頂点に各
々配置された複数個の居住モジュール、並びにこれら居
住モジュールに各々配置され、上記ブランケット及び上
記居住モジュールを膜面上で回転させるスラスタを備え
た人工重力宇宙船。
(1) A polygonal membrane blanket with a plurality of solar cells pasted on its surface, a plurality of habitation modules placed at each vertex of this blanket, and a plurality of habitation modules placed in each of these habitation modules, each of which is placed on the blanket. and an artificial gravity spacecraft equipped with a thruster that rotates the habitation module on a membrane surface.
(2)居住モジュール間を多角形の膜状ブランケットの
周辺に沿つて補強材で結合したことを特徴とする特許請
求の範囲第1項記載の人工重力宇宙船。
(2) The artificial gravity spacecraft according to claim 1, characterized in that the accommodation modules are connected by a reinforcing material along the periphery of a polygonal membrane blanket.
JP61240451A 1986-10-09 1986-10-09 Artificial gravity spacecraft Pending JPS6397498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61240451A JPS6397498A (en) 1986-10-09 1986-10-09 Artificial gravity spacecraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61240451A JPS6397498A (en) 1986-10-09 1986-10-09 Artificial gravity spacecraft

Publications (1)

Publication Number Publication Date
JPS6397498A true JPS6397498A (en) 1988-04-28

Family

ID=17059693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61240451A Pending JPS6397498A (en) 1986-10-09 1986-10-09 Artificial gravity spacecraft

Country Status (1)

Country Link
JP (1) JPS6397498A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010537880A (en) * 2007-08-28 2010-12-09 レイセオン カンパニー Spacecraft with payload-centric configuration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010537880A (en) * 2007-08-28 2010-12-09 レイセオン カンパニー Spacecraft with payload-centric configuration

Similar Documents

Publication Publication Date Title
JP6998799B2 (en) Service satellites for providing orbital services with variable thruster control
US4318522A (en) Gimbal mechanism
US6435457B1 (en) Thruster systems for spacecraft station changing, station keeping and momentum dumping
US20150108280A1 (en) Mechanism for stabilizing and creating a variable gravitational field in a toroidal space station
EP0716365A2 (en) Satellite gravity gradient compensation using on-orbit solar array reorientation
JPH1071999A (en) Active attitude control system for spacecraft
US11273933B2 (en) Spacecraft attitude control strategy for reducing disturbance torques
US6076773A (en) Spin-stabilized spacecraft and methods
JPH0375400B2 (en)
EP1679259B1 (en) Method of injecting plurality of spacecrafts into different orbits individually
US6241194B1 (en) Momentum position control
JPS6397498A (en) Artificial gravity spacecraft
Modi On the semi-passive attitude control and propulsion of space vehicles using solar radiation pressure
EP1492705B1 (en) Satellite energy and attitude control system
US6152402A (en) Dual spin zero momentum satellite system
Shigeto et al. Development and Evaluation of the 1/30U Small-Sized 3 Axis Attitude Control Module, and its Application for the JEM Internal Ball Camera Robot
US20240150046A1 (en) Momentum wheels and reaction wheels for objects in space
Chernyakina et al. Comparative analysis by different types of the solar-sailing spacecraft leaving the Earth's action sphere.
JPH0141560B2 (en)
JPS62244798A (en) Orbit correction and unloading method of geostationary satellite
Quadrelli et al. Dynamics and controls of a conceptual Jovian Moon Tour Spacecraft
Meissinger A small, primary solar-electric propulsion demonstration satellite
RU2087388C1 (en) Space vehicle with system of timely delivery of information to earth
JPH11152097A (en) Artificial satellite
JPS5933760Y2 (en) solar paddle