JPS639743B2 - - Google Patents

Info

Publication number
JPS639743B2
JPS639743B2 JP57118774A JP11877482A JPS639743B2 JP S639743 B2 JPS639743 B2 JP S639743B2 JP 57118774 A JP57118774 A JP 57118774A JP 11877482 A JP11877482 A JP 11877482A JP S639743 B2 JPS639743 B2 JP S639743B2
Authority
JP
Japan
Prior art keywords
silicon
gas
thin film
torr
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57118774A
Other languages
Japanese (ja)
Other versions
JPS599910A (en
Inventor
Toshio Kamisaka
Kazu Yamanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP57118774A priority Critical patent/JPS599910A/en
Publication of JPS599910A publication Critical patent/JPS599910A/en
Publication of JPS639743B2 publication Critical patent/JPS639743B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はケイ素薄膜とくに非晶質シリコンから
なる薄膜半導体の製造方法に関するものである。
太陽電池等に用いられる半導体として非晶質シリ
コンが注目されているが、従来の方法で作成され
たものは多量に水素を含んでいるため、耐熱性や
強い光による耐久性等に問題があり、最近では水
素の代りにフツ素を含む非晶質シリコンが、Si−
Fの結合エネルギーがSi−Hのそれよりも大きく
耐熱性にすぐれていること等の理由で注目され始
めている。 このフツ素を含む非晶質シリコン薄膜の製造法
として、アルゴンガス雰囲気中でSiF4ガスをスパ
ツタリングにより蒸着させたり、SiF4ガスを高周
波イオンプレーテイングにより蒸着させたり、
SiF2ガスをグロー放電により蒸着させたりする方
法が提案されている。しかしながらこれらの方法
で作られた薄膜は優れた耐熱性を示すが、数トー
ルから10-2トール程度の比較的真空度の低い雰囲
気中で蒸着がなされているため、不純物の取り込
みによる膜質の低下や、プラズマ制御の困難性に
起因する物質上のバラツキや不均一性が生じ、そ
のため、太陽電池材料として重要な特性の一つで
ある光導電率が十分なものが得られるという欠点
があつた。 本発明は上記の如き従来法の欠点にかんがみ、
耐熱性と共に光導電性にもすぐれ、とくに太陽電
池用半導体として有用な非晶質シリコンからなる
薄膜半導体を製造することの出来る方法を提供す
ることを目的としてなされたものであり、その要
旨は、10-5トール以下の高真空に排気された真空
容器内に、5×10-4トールから1×10-5トールの
範囲の分圧を有する様にSiF4ガスを導入し、該導
入ガスと、ケイ素を加熱蒸発させることにより生
成したケイ素原子とに加速電子を衝突させて電離
若しくは解離させ、かくして生成したガスイオン
及びケイ素単原子イオンに電界効果により高エネ
ルギーを付与して基材上に射突させて非晶質シリ
コンからなる薄膜を形成することを特徴とする薄
膜半導体の製造方法に存する。 以下図面を参照しながら本発明薄膜半導体の製
造方法について説明する。 第1図は本発明方法を実施するための装置の一
例を示す説明図であり、真空槽1内の真空室2は
排気口3に連結される排気系装置(油回転ポン
プ、油拡散ポンプ等で構成されているが、図示さ
れていない)によつて1×10-7トールまでの高真
空に排気されることが可能になされており、そし
て真空室2には電子ビーム蒸発源4(電源回路等
は図示されていない)、邪魔板5、ループ状のガ
ス導入管6、電子発生装置7、基材ホルダー8、
及びそれに取り付けられた基材9が設置されてお
り、更に真空槽1の外方には、装置を動作させる
ための電源10〜12とその回路、ループ状ガス
導入管6にバルブ14によつて流量調節可能に接
続されたSiF4ガスが充填されたボンベ13が設置
されている。 しかして、基材9としては例えばポリ塩化ビニ
ル、ポリフツ化ビニル、酢酸セルロース、ポリエ
チレンテレフタレート、ポリブチレンテレフタレ
ート、ポリエチレン、ポリプロピレン、ポリカー
ボネート、ポリイミド、ポリエーテルサルフオ
ン、ポリバラバン酸等の高分子材料、ガラス、磁
器、陶器等のセラミツク材料或いはアルミニウ
ム、ステンレススチール等の金属材料などのフイ
ルム状物又は薄板状物等が用いられてよく、又、
本発明方法にもとづいて薄膜半導体が設けられる
該基材の用途によつて、該基材に予めなんらかの
処理が施されていてもよい。例えば該基材から光
起電力素子を得ようとする場合には、該素子の電
極を金属材料の蒸着等によつて予め設けておき、
この上に本発明方法によつて薄膜半導体を形成す
ることが可能である。 次に第1図に示される装置を用いて薄膜半導体
を製造するには、第1図に示す様に基材9を基材
ホルダー8に取付け、電子ビーム蒸発源4のルツ
ボ41にケイ素を供給し、次いで排気口3から排
気系装置によつて排気を行なつて真空室によつて
排気を行なつて真空室2を1×10-5トール好まし
くは1×10-7トールよりも高度の高真空となし、
真空度が安定したところでループ状ガス導入管6
よりバルブ14を調節しながらSiF4ガスを分圧が
5×10-4トールから1×10-5トールの範囲になる
様に導入する。次いで電子ビーム蒸発源4を動作
させてルツボ41内のケイ素を蒸気化させ、該ケ
イ素の原子状粒子と導入されたSiF4ガスを電子発
生装置7からの高速電子により衝突電離若しくは
解離せしめてイオン化させる。 なお、電子発生装置7はフイラメント71、メ
ツシユ状電極72及びガード電極73から構成さ
れており、本実施例では電源11により一400V
の直流電位を与えられたフイラメント71に、電
源10により30Aの交流電流を通電し加熱せしめ
熱電子を発生させると共にメツシユ状電極72を
接地することにより上記熱電子を電界加速させて
高速電子を発生する様になされている。 前記によりイオン化されたSiF4イオン及びケイ
素の単原子イオンに対し、基材ホルダー8に電源
12により負の直流高電圧を印加することで高エ
ネルギーを付与し、基材9表面に入射せしめる。
かくして基材9上に薄膜半導体である非晶質シリ
コンからなる薄膜が形成されるのである。 しかして本発明における高エネルギーとして
は、運動エネルギーが常温に於て10eVから8KeV
までの範囲のものが好適であり、この様な高エネ
ルギーが付与されたケイ素イオン及びSiF4イオン
が基材9表面に入射されることにより、半導体と
しての性能を有し、フツ素を含有する非晶質のシ
リコン薄膜が形成されるのである。 又、本発明方法においてはケイ素を単独で加熱
蒸発させること以外に、該ケイ素にさらに他の物
質を加えることも可能であり、例えばケイ素中に
ホウ素、アルミニウム、ガリウム等の周期律表
族の元素を混入しておくとp型半導体が、又、リ
ン、ヒ素、アンチモン、ビスマス等の周期律表
族の元素を混入しておくとn型半導体が夫々得ら
れる。 本発明薄膜半導体の製造方法は上述の通りの方
法であり、とくに高真空条件下でケイ素蒸発粒子
をイオン化し、該イオン化粒子を電界加速して基
材面に射突させて薄膜を形成させる方法におい
て、SiF4ガスを存在せしめる方法であるから、生
成する非晶質シリコン薄膜はフツ素を含むために
耐熱性にすぐれると共に、高真空条件下での蒸着
によつて光導電率においてもすぐれたものとなる
のである。 以下本発明を実施例にもとづいて説明する。 実施例 1 第1図に示される装置を用い高純度ケイ素上塊
(99.9999%以上)をルツボ41に入れ、基材9と
してガラス板(米国コーニング社製7059ガラス)
を用い、該基材9を基材ホルダー8に取付け、基
材9を350℃に保つて、下記の条件で基材9表面
に厚さ1.5μmの蒸着層を形成させた。 SiF4ガス導入前の圧力:1×10-7トール、 SiF4ガス分圧:5×10-5トール、 電子発生装置7における熱電子加速条件:400V、 電子発生装置7におけるイオン化電流:300mA、 基材ホルダー8に印加したイオン加速電圧:−
1.0K.W.、 かくして得られたシリコン薄膜を電力線回折に
より解折した結果、非晶質であることが確認され
た。そして、該薄膜の特性を調べた所、次表の通
りであり、非常にすぐれた特性を示し、又、該薄
膜を乾燥窒素中で600℃に30分間保つた後も特性
の変化は見られず、耐熱性にすぐれたものであつ
た。
The present invention relates to a method for manufacturing a silicon thin film, particularly a thin film semiconductor made of amorphous silicon.
Amorphous silicon is attracting attention as a semiconductor used in solar cells, etc., but silicon made using conventional methods contains a large amount of hydrogen, so there are problems with heat resistance and durability against strong light. Recently, amorphous silicon containing fluorine instead of hydrogen has been used as Si-
F is starting to attract attention because its bond energy is greater than that of Si-H and its heat resistance is excellent. As a manufacturing method for this amorphous silicon thin film containing fluorine, SiF 4 gas is deposited by sputtering in an argon gas atmosphere, SiF 4 gas is deposited by high frequency ion plating,
A method has been proposed in which SiF 2 gas is deposited by glow discharge. However, although the thin films produced by these methods exhibit excellent heat resistance, because they are deposited in an atmosphere with a relatively low degree of vacuum, ranging from a few torr to 10 -2 torr, the quality of the film may deteriorate due to the incorporation of impurities. In addition, variations and non-uniformity in the material occur due to the difficulty of plasma control, and as a result, it has the disadvantage that it is difficult to obtain a material with sufficient photoconductivity, which is one of the important properties for a solar cell material. . The present invention takes into consideration the drawbacks of the conventional method as described above, and
The purpose of this work was to provide a method for producing a thin film semiconductor made of amorphous silicon, which has excellent heat resistance and photoconductivity and is particularly useful as a semiconductor for solar cells. SiF 4 gas is introduced into a vacuum container evacuated to a high vacuum of 10 -5 Torr or less so as to have a partial pressure in the range of 5 × 10 -4 Torr to 1 × 10 -5 Torr, and the introduced gas and , silicon atoms generated by heating and evaporating silicon are collided with accelerated electrons to ionize or dissociate them, and high energy is imparted to the gas ions and silicon monatomic ions generated in this way by an electric field effect, and they are irradiated onto the substrate. The present invention resides in a method for manufacturing a thin film semiconductor, characterized in that a thin film made of amorphous silicon is formed. The method for manufacturing a thin film semiconductor of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram showing an example of a device for carrying out the method of the present invention, in which a vacuum chamber 2 in a vacuum chamber 1 is connected to an exhaust port 3 with an exhaust system device (oil rotary pump, oil diffusion pump, etc.). The vacuum chamber 2 is equipped with an electron beam evaporation source 4 (power supply (circuits etc. are not shown), baffle plate 5, loop-shaped gas introduction pipe 6, electron generator 7, substrate holder 8,
and a base material 9 attached thereto, and furthermore, outside the vacuum chamber 1, power supplies 10 to 12 and their circuits for operating the device, and a valve 14 connected to the loop gas introduction pipe 6 are installed. A cylinder 13 filled with SiF 4 gas and connected so as to be able to adjust its flow rate is installed. The base material 9 may be, for example, a polymeric material such as polyvinyl chloride, polyvinyl fluoride, cellulose acetate, polyethylene terephthalate, polybutylene terephthalate, polyethylene, polypropylene, polycarbonate, polyimide, polyether sulfone, polybalabanic acid, glass, Film-like or thin plate-like materials such as ceramic materials such as porcelain and earthenware, or metal materials such as aluminum and stainless steel may be used, and
Depending on the use of the base material on which the thin film semiconductor is provided based on the method of the present invention, the base material may be previously subjected to some kind of treatment. For example, when attempting to obtain a photovoltaic element from the base material, electrodes of the element are provided in advance by vapor deposition of a metal material, etc.
A thin film semiconductor can be formed thereon by the method of the present invention. Next, in order to manufacture a thin film semiconductor using the apparatus shown in FIG. 1, the substrate 9 is attached to the substrate holder 8 as shown in FIG. 1, and silicon is supplied to the crucible 41 of the electron beam evaporation source 4. Then, the exhaust port 3 is evacuated by the exhaust system, and the vacuum chamber is evacuated to a temperature of 1×10 -5 Torr, preferably higher than 1×10 -7 Torr. High vacuum and no,
Once the degree of vacuum has stabilized, open the loop gas introduction pipe 6.
While adjusting the valve 14, SiF 4 gas is introduced so that the partial pressure is in the range of 5×10 −4 Torr to 1×10 −5 Torr. Next, the electron beam evaporation source 4 is operated to vaporize the silicon in the crucible 41, and the atomic particles of silicon and the introduced SiF 4 gas are ionized by impact ionization or dissociation by high-speed electrons from the electron generator 7. let The electron generator 7 is composed of a filament 71, a mesh electrode 72, and a guard electrode 73, and in this embodiment, it is powered by a power source 11 at -400V.
The filament 71, which has been given a DC potential of , is heated by passing an alternating current of 30 A from the power source 10 to generate thermoelectrons, and by grounding the mesh electrode 72, the thermoelectrons are accelerated by an electric field to generate high-speed electrons. It is done as follows. A negative DC high voltage is applied to the base material holder 8 by the power supply 12 to impart high energy to the ionized SiF 4 ions and silicon monatomic ions, and the ions are caused to enter the surface of the base material 9 .
In this way, a thin film made of amorphous silicon, which is a thin film semiconductor, is formed on the base material 9. However, the high energy in the present invention includes kinetic energy ranging from 10eV to 8KeV at room temperature.
By injecting such high energy silicon ions and SiF 4 ions into the surface of the base material 9, it has the performance as a semiconductor and contains fluorine. An amorphous silicon thin film is formed. In addition, in the method of the present invention, in addition to heating and evaporating silicon alone, it is also possible to add other substances to the silicon. For example, it is possible to add other substances to silicon, such as boron, aluminum, gallium, etc. A p-type semiconductor can be obtained by mixing , and an n-type semiconductor can be obtained by mixing elements of the periodic table group such as phosphorus, arsenic, antimony, and bismuth. The method for manufacturing the thin film semiconductor of the present invention is as described above, and in particular, a method of ionizing silicon evaporated particles under high vacuum conditions, accelerating the ionized particles with an electric field, and making them impinge on the surface of a substrate to form a thin film. Since this is a method in which SiF 4 gas is present, the resulting amorphous silicon thin film contains fluorine and has excellent heat resistance, as well as excellent photoconductivity due to vapor deposition under high vacuum conditions. It becomes something. The present invention will be explained below based on examples. Example 1 Using the apparatus shown in FIG. 1, a high-purity silicon mass (99.9999% or more) was placed in a crucible 41, and a glass plate (7059 glass manufactured by Corning, USA) was used as the base material 9.
The substrate 9 was attached to the substrate holder 8 using a vacuum cleaner, the substrate 9 was kept at 350° C., and a 1.5 μm thick vapor deposited layer was formed on the surface of the substrate 9 under the following conditions. Pressure before introducing SiF 4 gas: 1 × 10 -7 Torr, SiF 4 gas partial pressure: 5 × 10 -5 Torr, thermionic acceleration conditions in electron generator 7: 400 V, ionization current in electron generator 7: 300 mA, Ion acceleration voltage applied to substrate holder 8: -
1.0 KW, and as a result of analyzing the thus obtained silicon thin film by power line diffraction, it was confirmed that it was amorphous. The properties of the thin film were investigated, as shown in the table below, and showed very excellent properties, and no change in properties was observed even after the thin film was kept at 600°C for 30 minutes in dry nitrogen. First, it had excellent heat resistance.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するための装置の一
例を示す説明図である。 1……真空容器、2……真空室、3……排気
口、4……電子ビーム蒸発源、41……ルツボ、
6……ループ状ガス導入管、7……電子発生装
置、8……基材ホルダー、9……基材、10,1
1,12……電源、13……SiF4ガスボンベ、1
4……バルブ。
FIG. 1 is an explanatory diagram showing an example of an apparatus for carrying out the method of the present invention. 1... Vacuum container, 2... Vacuum chamber, 3... Exhaust port, 4... Electron beam evaporation source, 41... Crucible,
6...Loop-shaped gas introduction pipe, 7...Electron generator, 8...Substrate holder, 9...Base material, 10,1
1, 12...Power supply, 13...SiF 4 gas cylinder, 1
4...Valve.

Claims (1)

【特許請求の範囲】 1 10-5トール以下の高真空に排気された真空容
器内に、5×10-4トールから1×10-5トールの範
囲の分圧を有する様にSiF4ガスを導入し、該導入
ガスと、ケイ素を加熱蒸発させることにより生成
したケイ素単原子とに加速電子を衝突させて電離
若しくは解離させ、かくして生成したガスイオン
及びケイ素単原子イオンに電界効果により高エネ
ルギーを付与して基材上に射突させて非晶質シリ
コンからなる薄膜を形成することを特徴とする薄
膜半導体の製造方法。 2 ガスイオン及びケイ素単原子イオンに付与さ
れる高エネルギーが10eVないし8KeVの範囲であ
る第1項記載の製造方法。
[Claims] 1 SiF 4 gas is poured into a vacuum container evacuated to a high vacuum of 110 -5 Torr or less so as to have a partial pressure in the range of 5 x 10 -4 Torr to 1 x 10 -5 Torr. The introduced gas and silicon monoatomic atoms produced by heating and evaporating silicon are ionized or dissociated by colliding with accelerated electrons, and high energy is imparted to the gas ions and silicon monoatomic ions produced in this way by an electric field effect. 1. A method for producing a thin film semiconductor, which comprises applying and projecting onto a base material to form a thin film made of amorphous silicon. 2. The manufacturing method according to item 1, wherein the high energy imparted to the gas ions and silicon monatomic ions is in the range of 10 eV to 8 KeV.
JP57118774A 1982-07-08 1982-07-08 Manufacture of thin-film semiconductor Granted JPS599910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57118774A JPS599910A (en) 1982-07-08 1982-07-08 Manufacture of thin-film semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57118774A JPS599910A (en) 1982-07-08 1982-07-08 Manufacture of thin-film semiconductor

Publications (2)

Publication Number Publication Date
JPS599910A JPS599910A (en) 1984-01-19
JPS639743B2 true JPS639743B2 (en) 1988-03-01

Family

ID=14744737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57118774A Granted JPS599910A (en) 1982-07-08 1982-07-08 Manufacture of thin-film semiconductor

Country Status (1)

Country Link
JP (1) JPS599910A (en)

Also Published As

Publication number Publication date
JPS599910A (en) 1984-01-19

Similar Documents

Publication Publication Date Title
JPH0143449B2 (en)
JPH11504751A (en) Boron nitride cold cathode
US5952061A (en) Fabrication and method of producing silicon films
EP0029747A1 (en) An apparatus for vacuum deposition and a method for forming a thin film by the use thereof
JP3503787B2 (en) Thin film formation method
JPS639743B2 (en)
JP3007579B2 (en) Manufacturing method of silicon thin film
JPH0131289B2 (en)
JPH0113213B2 (en)
JP3102540B2 (en) Method for forming low hydrogen content amorphous silicon semiconductor thin film
JPS6150372B2 (en)
JPH06291063A (en) Surface treatment device
JPH04285154A (en) Formation of carbon thin film
KR900008155B1 (en) Method and apparatus for forming a thin fim
JPS6157694B2 (en)
JP2001332497A (en) Silicon film and method manufacturing the same
JPS6157695B2 (en)
JPS6146046B2 (en)
JP3174313B2 (en) Thin film forming equipment
JPS6158967B2 (en)
JP2971541B2 (en) Thin film forming equipment
JPH05195210A (en) Integrated circuit, its production and thin film forming method therefor
JPS5996718A (en) Manufacture of thin film semiconductor
JPS5837247B2 (en) Manufacturing method of amorphous silicon
JP2834475B2 (en) Semiconductor thin film forming equipment