JPS6397232A - Production of high-dispersion binary pt-ru cluster catalyst - Google Patents

Production of high-dispersion binary pt-ru cluster catalyst

Info

Publication number
JPS6397232A
JPS6397232A JP61244949A JP24494986A JPS6397232A JP S6397232 A JPS6397232 A JP S6397232A JP 61244949 A JP61244949 A JP 61244949A JP 24494986 A JP24494986 A JP 24494986A JP S6397232 A JPS6397232 A JP S6397232A
Authority
JP
Japan
Prior art keywords
platinum
catalyst
ruthenium
cluster
binary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61244949A
Other languages
Japanese (ja)
Other versions
JPH088996B2 (en
Inventor
Masahiro Watanabe
政廣 渡辺
Satoru Motoo
本尾 哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP61244949A priority Critical patent/JPH088996B2/en
Publication of JPS6397232A publication Critical patent/JPS6397232A/en
Publication of JPH088996B2 publication Critical patent/JPH088996B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To increase specific surface area by adding water soluble Ru compd. into an aq. soln. contg. the precursor of Pt cluster in the coexistence of H2O2 and forming a binary Pt-Ru cluster catalyst. CONSTITUTION:A precursor of water soluble substance or colloidal Pt cluster is prepared by adding a reducing agent to an aq. soln. of Pt compd. Then a binary Pt-Ru cluster catalyst is obtained by adding water soluble Ru compd. into an aq. soln. contg. this precursor in the coexistence of H2O2. When the production of such high-dispersion binary Pt-Ru cluster catalyst is applied, the diameter of a cluster is smaller in comparison with a conventional method. In other words, the specific surface area is large, control of composition is easy, and the high-performance catalyst can be produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水素、メタノール、エタノール、ホルマリン
、ギ酸等を燃料とする燃料電池用アノード触媒、または
このアノードを用いて亜鉛、銅電解採取等の浴電圧を低
下させる触媒、或いは各種酸化・還元用触媒としての高
比表面・高活性を有する高分散白金・ルテニウム二元ク
ラスター%[の製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention provides an anode catalyst for fuel cells using hydrogen, methanol, ethanol, formalin, formic acid, etc. as fuel, or an anode catalyst for use in zinc, copper electrowinning, etc. using this anode. This invention relates to a method for producing highly dispersed platinum/ruthenium binary clusters having a high specific surface and high activity as a catalyst for lowering bath voltage or as a catalyst for various oxidation and reduction.

(従来の技術) 従来、上記用途の触媒を作るには、 (1)白金及びルテニウムの塩類を含む電解液から金属
網やカーボンペーパーの電極に白金・ルテニウム合金触
媒を電析させる。
(Prior Art) Conventionally, in order to produce a catalyst for the above-mentioned use, (1) a platinum-ruthenium alloy catalyst is electrodeposited from an electrolytic solution containing salts of platinum and ruthenium onto a metal mesh or carbon paper electrode.

(2)白金及びルテニウムの塩類を含む溶液を、金属網
、カーボンペーパー或いはカーボン微粉末にバインダー
を加えた成形物から成る電極に塗布・加熱して白金・ル
テニウム合金を得る。
(2) A platinum-ruthenium alloy is obtained by applying and heating a solution containing salts of platinum and ruthenium onto an electrode made of a metal mesh, carbon paper, or a molded product of fine carbon powder and a binder.

(3)カーボンブランクを分散させた溶液中に、白金及
びルテニウムの塩類を加え、さらに還元剤を加えて液相
でカーボンブラック上に白金・ルテニウム触媒を析出さ
せる。
(3) Platinum and ruthenium salts are added to the solution in which the carbon blank is dispersed, and a reducing agent is further added to deposit a platinum/ruthenium catalyst on the carbon black in a liquid phase.

等の方法がある。There are other methods.

(発明が解決しようとする問題点) ところが、上記のいずれの方法による作製に於いても、
その生成する白金・ルテニウム合金の組成を最am成に
制御することが極めて困難である。
(Problems to be solved by the invention) However, in manufacturing by any of the above methods,
It is extremely difficult to control the composition of the produced platinum-ruthenium alloy to the maximum composition.

白金・ルテニウム合金の組成により活性が10〜20倍
も異なるため組成制御が極めて重要であることが知られ
ている。〔文献(1)液通、鉛末、本屋、電気化学Vo
138(1970) 、929〜932頁、文献(2)
MJatanabe、 S 、Motoo、 J 、E
Iectroanal 、 Chem 、Vol 、 
60(1975) 267〜273頁〕 また上述の方法で作製した金属触媒の比表面積はせいぜ
い10〜30r+(/gである。メタノール等の酸化触
媒能は、触媒比表面積に依存するため、より大きな比表
面積を持つ触媒を作ることが重要であり、且つ要望され
ている。
It is known that composition control is extremely important because the activity varies by 10 to 20 times depending on the composition of the platinum-ruthenium alloy. [Literature (1) Liquid supply, lead powder, bookstore, electrochemistry Vo
138 (1970), pp. 929-932, literature (2)
MJatanabe, S., Motoo, J., E.
Electroanal, Chem, Vol.
60 (1975) pp. 267-273] Furthermore, the specific surface area of the metal catalyst prepared by the above method is at most 10 to 30r+(/g.The oxidation catalytic ability of methanol etc. depends on the specific surface area of the catalyst. It is important and desirable to create catalysts with specific surface areas.

(発明の目的) 本発明は上記問題点を解決すべくなされたものであり、
比表面積が大きく、組成の制御が容易で、高性能触媒を
作ることのできる高分散白金・ルテニウム二元クラスタ
ー触媒の製造方法を提供することを目的とするものであ
る。
(Object of the invention) The present invention has been made to solve the above problems,
The object of the present invention is to provide a method for producing a highly dispersed platinum/ruthenium binary cluster catalyst that has a large specific surface area, can easily control the composition, and can produce a high-performance catalyst.

(問題点を解決するための手段) 上記問題点を解決するための本発明の高分散白金・ルテ
ニウム二元クラスター触媒の製造方法は、白金化合物の
水溶液に還元剤を加えて水溶性物質又はコロイド状白金
クラスターの前駆物質を作り、次にこの前駆物質を含む
水溶液中に過酸化水素の共存下で水溶性ルテニウム化合
物を加え、白金・ルテニウムの二元クラスターを作るこ
とを特徴とするものである。
(Means for Solving the Problems) In order to solve the above problems, the method for producing a highly dispersed platinum/ruthenium binary cluster catalyst of the present invention involves adding a reducing agent to an aqueous solution of a platinum compound to obtain a water-soluble substance or colloid. The method is characterized by creating a precursor of a platinum cluster, and then adding a water-soluble ruthenium compound to an aqueous solution containing this precursor in the coexistence of hydrogen peroxide to create a binary cluster of platinum and ruthenium. .

(実施例) 本発明の一実施例について説明する。塩化白金酸1gを
200mβの蒸留水に溶解し、この白金化合物の水溶液
に、N a HS 03 (60%粉末)4gを含む水
溶液を攪拌し乍ら添加した。次に全液量を蒸留水で約7
00 mlとした後、炭酸ソーダ0.6モル水溶液約1
3mffを加え、PH5に溶液を調整した。この操作で
無色透明の水溶性クラスター前駆物質が生じた。この前
駆物質の分子式はHIP t(S 03)20 Hと推
定される。
(Example) An example of the present invention will be described. 1 g of chloroplatinic acid was dissolved in 200 mβ of distilled water, and an aqueous solution containing 4 g of Na HS 03 (60% powder) was added to this aqueous solution of the platinum compound while stirring. Next, add distilled water to the total volume of about 7
After making up to 00 ml, add about 1 ml of 0.6 mol aqueous solution of soda carbonate.
3mff was added to adjust the solution to pH5. This operation produced a colorless and transparent water-soluble cluster precursor. The molecular formula of this precursor is estimated to be HIP t(S 03) 20 H.

次いでこの前駆物質を含む水溶液に、過酸化水素(35
wt%)を50m1滴下した。溶液は淡黄色に変色する
。苛性ソーダ水溶液を添加してこの溶液のP Hを約5
に保つ。次に任意の白金対ルテニウム比になるように三
塩化ルテニウム水溶液5QmAを滴下した。この時激し
く反応して白金・ルテニウム二元クラスターのコロイド
状溶液が生じた。
Next, hydrogen peroxide (35
wt%) was added dropwise in an amount of 50ml. The solution turns pale yellow in color. Add a caustic soda aqueous solution to bring the pH of this solution to about 5.
Keep it. Next, 5 QmA of an aqueous solution of ruthenium trichloride was added dropwise to achieve an arbitrary platinum to ruthenium ratio. At this time, a violent reaction occurred and a colloidal solution of platinum/ruthenium binary clusters was generated.

この間の反応は、 HIP t (S O,1)zo H+ 3 H2O。The reaction during this time was HIP t (S O, 1) zo H+ 3 H2O.

→2 H2S Oa+ P t Oz + 3 H2O
であり、同時に滴下した三塩化ルテニウム水溶液の触媒
作用で、次の反応が起った。
→2 H2S Oa+ P t Oz + 3 H2O
The following reaction occurred due to the catalytic action of the ruthenium trichloride aqueous solution that was added dropwise at the same time.

Ru Cl 3 + 3/2 H20z→Ru o2+
 3 HCff +1/202上記反応で白金とルテニ
ウムが原子的尺度で混合した微少クラスターが生じた。
Ru Cl 3 + 3/2 H20z→Ru o2+
3 HCff +1/202 The above reaction produced microclusters in which platinum and ruthenium were mixed on an atomic scale.

このルテニウム溶液添加時に、前駆物質溶液中に水素ガ
スを気泡として導入した処、白金とルテニウムの固溶合
金が生じた。水素ガスの導入はPtO2およびRuO□
を金属ptおよび金属Ruに還元した。尚、水素ガス導
入を行わずに使用時に還元しても良い。
When adding this ruthenium solution, hydrogen gas was introduced as bubbles into the precursor solution, and a solid solution alloy of platinum and ruthenium was formed. Hydrogen gas is introduced into PtO2 and RuO□
was reduced to metal pt and metal Ru. Note that the hydrogen gas may be reduced during use without introducing hydrogen gas.

また白金前駆物質と三塩化ルテニウムの混合液に過酸化
水素を滴下しても白金とルテニウムが原始的尺度で混合
した微少クラスターが得られる。
Furthermore, even when hydrogen peroxide is dropped into a mixture of a platinum precursor and ruthenium trichloride, microclusters in which platinum and ruthenium are mixed on a primitive scale can be obtained.

次にこのコロイド溶液と、2.68gのカーポンプラン
ク(Vu 1 canXC−72R)を200m6に分
散したものを超音波ホモジナイザー攪拌下で混合した。
Next, this colloidal solution and 2.68 g of Carpon blank (Vu 1 canXC-72R) dispersed in 200 m6 were mixed under stirring with an ultrasonic homogenizer.

約30分攪拌後、濾過、洗浄、乾燥等の工程を経てクラ
スター担持触媒を得た。貴金属の回収率は98%以上で
あった。
After stirring for about 30 minutes, a cluster-supported catalyst was obtained through steps such as filtration, washing, and drying. The recovery rate of precious metals was over 98%.

次に本発明の他の実施例について説明する。塩化白金酸
1gを300m1の蒸留水に溶解し、これに過酸化水素
(30wt%)5.3mnを添加し、50℃で10分間
攪拌した。次にこれにN a 2 S z O4水溶液
(60g /β)を53mβを攪拌し乍ら滴下した。
Next, other embodiments of the present invention will be described. 1 g of chloroplatinic acid was dissolved in 300 ml of distilled water, 5.3 mn of hydrogen peroxide (30 wt%) was added thereto, and the mixture was stirred at 50°C for 10 minutes. Next, 53 mβ of an aqueous Na 2 S z O 4 solution (60 g/β) was added dropwise to this while stirring.

この段階で褐色の高分散白金コロイドが生じた。At this stage, a brown highly dispersed platinum colloid was formed.

これが白金・ルテニウム対白金比の前駆物質である。N
 a 23204水溶液を滴下30分後、50℃で水素
ガスを固液に導入し乍らルテニウム対白金比が1:1に
なるように塩化ルテニウムを含む水溶液100m 11
を超音波攪拌下で滴下し、その後これに100m ft
のカーボンブランク3g分散液を混合し、二元クラスタ
ー触媒を担持した。そして濾過、洗浄、乾燥して二元ク
ラスタル担持触媒を得た。貴金属の回収率は97%であ
った。
This is the precursor for the platinum/ruthenium to platinum ratio. N
a After 30 minutes of dropping the 23204 aqueous solution, add 100 m of an aqueous solution containing ruthenium chloride so that the ruthenium to platinum ratio is 1:1 while introducing hydrogen gas into the solid liquid at 50°C.11
was added dropwise under ultrasonic stirring, and then 100 m ft
A dispersion of 3 g of carbon blank was mixed to support a binary cluster catalyst. Then, it was filtered, washed, and dried to obtain a binary cluster-supported catalyst. The recovery rate of precious metals was 97%.

かようにして得られた上記各実施例の生成りラスターの
粒径は、電子顕微鏡観察によると3.0〜4.0ナノメ
ーター、即ち比表面積で約70〜100%/gで、従来
法に比べ触媒比表面積が2〜3倍大きくできることが判
った。
According to electron microscopy, the grain size of the resulting rasters of each of the above Examples thus obtained was 3.0 to 4.0 nanometers, that is, about 70 to 100% of the specific surface area/g, compared to the conventional method. It was found that the specific surface area of the catalyst could be increased by 2 to 3 times compared to the conventional method.

単味白金は面心立法格子構造をとり、単味ルテニウムは
六方晶構造をとるが、第1の実施例の組成比を種々変え
て得た試料の電子線回折では、白金に対するルテニウム
の比を70%まで増しても、面心立法格子構造にのみ同
定される回折しか認められなかった。即ち、白金格子の
一部をルテニウムが占める固溶合金となっていることが
確認された。第2の実施例では、白金クラスター表面に
ルテニウムが吸着して最適な表面組成を形成しているこ
とが判った。
Simple platinum has a face-centered cubic lattice structure, and simple ruthenium has a hexagonal crystal structure. However, in electron diffraction of samples obtained with various composition ratios in the first example, the ratio of ruthenium to platinum was Even when it was increased to 70%, only diffraction identified only in the face-centered cubic lattice structure was observed. That is, it was confirmed that the alloy was a solid solution alloy in which ruthenium occupied a part of the platinum lattice. In the second example, it was found that ruthenium was adsorbed onto the platinum cluster surface to form an optimal surface composition.

第1図は第1の実施例で作製した触媒をメタノール酸化
用触媒として用いた時、図中に示した条件下で得られた
0、4V (対水素極)に於ける電流と組成の関係を示
す。白金対ルテニウム比が1:1の組成で極大値200
m A / caが得られた。この極大組成は、組成の
明確な単純合金で明らかにされていた極大組成と良く一
致し、(前述の文献2)組成の制御が良くなされている
ことが判る。この特性は従来報告されている特性の2.
5倍以上である。第2図は第2実施例で得た触媒をメタ
ノール酸化用触媒に用いた場合の分極特性を示す。0.
4■で273 m A / cnlの特性が得られた。
Figure 1 shows the relationship between current and composition at 0.4 V (versus the hydrogen electrode) obtained under the conditions shown in the figure when the catalyst prepared in Example 1 was used as a methanol oxidation catalyst. shows. The maximum value is 200 when the platinum to ruthenium ratio is 1:1.
mA/ca was obtained. This maximum composition agrees well with the maximum composition clarified for a simple alloy with a clear composition (refer to the above-mentioned document 2), and it can be seen that the composition is well controlled. This characteristic is 2nd of the previously reported characteristics.
It is more than 5 times. FIG. 2 shows the polarization characteristics when the catalyst obtained in Example 2 is used as a methanol oxidation catalyst. 0.
A characteristic of 273 mA/cnl was obtained at 4■.

この特性は従来値の約3.5倍である。This characteristic is about 3.5 times the conventional value.

(発明の効果) 以上の説明で判るように本発明の高分散白金・ルテニウ
ム二元クラスター触媒の製造方法によれば、従来法に比
ベクラスクー径が小さく、即ち比表面積が大きく、また
組成の制御が容易で高性能触媒を作製することができる
という優れた効果がある。
(Effects of the Invention) As can be seen from the above explanation, according to the method for producing a highly dispersed platinum/ruthenium binary cluster catalyst of the present invention, compared to the conventional method, the Bekklasku diameter is smaller, that is, the specific surface area is larger, and the composition can be controlled. It has the excellent effect of being easy to prepare and making it possible to produce a high-performance catalyst.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の高分散白金・ルテニウム二元クラスク
ー触媒の製造方法の第1実施例により作製した触媒をメ
タノール酸化用触媒として用いたときの電流と組成の関
係を示すグラフ、第2図は第2実施例により作製した触
媒をメタノール酸化触媒に用いた場合の分極特性を示す
グラフである。 出願人  田中貴金属工業株式会社 渡辺 政廣 本屋 哲 第1図 ルテニウへ原子/白金原子
FIG. 1 is a graph showing the relationship between current and composition when a catalyst prepared according to the first embodiment of the method for producing a highly dispersed platinum/ruthenium binary Claskue catalyst of the present invention is used as a methanol oxidation catalyst, and FIG. is a graph showing the polarization characteristics when the catalyst produced according to the second example is used as a methanol oxidation catalyst. Applicant Tanaka Kikinzoku Kogyo Co., Ltd. Masahiro Watanabe Honya Tetsu Figure 1 Ruthenium Atom/Platinum Atom

Claims (1)

【特許請求の範囲】[Claims] 白金化合物の水溶液に還元剤を加えて、水溶性物質又は
コロイド状白金クラスターの前駆物質を作り、次にこの
前駆物質を含む水溶液中に過酸化水素の共存下で水溶性
ルテニウム化合物を加え、白金・ルテニウムの二元クラ
スター触媒を得ることを特徴とする高分散白金・ルテニ
ウム二元クラスター触媒の製造方法。
A reducing agent is added to an aqueous solution of a platinum compound to create a water-soluble substance or a precursor of colloidal platinum clusters, and then a water-soluble ruthenium compound is added to the aqueous solution containing this precursor in the presence of hydrogen peroxide to produce platinum. - A method for producing a highly dispersed platinum-ruthenium binary cluster catalyst, which is characterized by obtaining a ruthenium binary cluster catalyst.
JP61244949A 1986-10-15 1986-10-15 Highly dispersed platinum / ruthenium binary cluster-Method for producing catalyst Expired - Lifetime JPH088996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61244949A JPH088996B2 (en) 1986-10-15 1986-10-15 Highly dispersed platinum / ruthenium binary cluster-Method for producing catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61244949A JPH088996B2 (en) 1986-10-15 1986-10-15 Highly dispersed platinum / ruthenium binary cluster-Method for producing catalyst

Publications (2)

Publication Number Publication Date
JPS6397232A true JPS6397232A (en) 1988-04-27
JPH088996B2 JPH088996B2 (en) 1996-01-31

Family

ID=17126356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61244949A Expired - Lifetime JPH088996B2 (en) 1986-10-15 1986-10-15 Highly dispersed platinum / ruthenium binary cluster-Method for producing catalyst

Country Status (1)

Country Link
JP (1) JPH088996B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251865A (en) * 1988-08-16 1990-02-21 Matsushita Electric Ind Co Ltd Manufacture of fuel electrode catalyser for liquid fuel cell
JPH0298053A (en) * 1988-10-04 1990-04-10 Matsushita Electric Ind Co Ltd Manufacture of platinum ruthenium catalyst for fuel cell
JPH04118860A (en) * 1990-09-10 1992-04-20 Fuji Electric Co Ltd Manufacture of fuel cell alloy catalyst
WO1999032223A1 (en) * 1997-12-22 1999-07-01 Toyota Jidosha Kabushiki Kaisha Exhaust gas cleaning catalyst, process for producing the same, and exhaust gas cleaning method
WO1999066576A1 (en) * 1998-06-16 1999-12-23 Tanaka Kikinzoku Kogyo K.K. Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell
JP2005150085A (en) * 2003-11-13 2005-06-09 Samsung Sdi Co Ltd Catalyst support consisting of metal oxide-carbon composite, and fuel cell utilizing this
US7201993B2 (en) 2000-08-04 2007-04-10 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
JP2007265887A (en) * 2006-03-29 2007-10-11 Nippon Steel Corp Anode catalyst for solid polymer fuel cell
JP2008503332A (en) * 2004-06-21 2008-02-07 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Metal oxide sol

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251865A (en) * 1988-08-16 1990-02-21 Matsushita Electric Ind Co Ltd Manufacture of fuel electrode catalyser for liquid fuel cell
JPH0298053A (en) * 1988-10-04 1990-04-10 Matsushita Electric Ind Co Ltd Manufacture of platinum ruthenium catalyst for fuel cell
JPH04118860A (en) * 1990-09-10 1992-04-20 Fuji Electric Co Ltd Manufacture of fuel cell alloy catalyst
WO1999032223A1 (en) * 1997-12-22 1999-07-01 Toyota Jidosha Kabushiki Kaisha Exhaust gas cleaning catalyst, process for producing the same, and exhaust gas cleaning method
US6440378B1 (en) 1997-12-22 2002-08-27 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases, a method of producing the same, and a method of purifying exhaust gases
WO1999066576A1 (en) * 1998-06-16 1999-12-23 Tanaka Kikinzoku Kogyo K.K. Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell
US6339038B1 (en) 1998-06-16 2002-01-15 Tanaka Kikinzoku Kogyo K. K. Catalyst for a fuel cell containing polymer solid electrolyte and method for producing catalyst thereof
US7201993B2 (en) 2000-08-04 2007-04-10 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US7455703B2 (en) 2000-08-04 2008-11-25 Panasonic Corporation Method for manufacturing polymer electrolyte fuel cell
JP2005150085A (en) * 2003-11-13 2005-06-09 Samsung Sdi Co Ltd Catalyst support consisting of metal oxide-carbon composite, and fuel cell utilizing this
JP2008503332A (en) * 2004-06-21 2008-02-07 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Metal oxide sol
JP2007265887A (en) * 2006-03-29 2007-10-11 Nippon Steel Corp Anode catalyst for solid polymer fuel cell

Also Published As

Publication number Publication date
JPH088996B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
US4044193A (en) Finely particulated colloidal platinum compound and sol for producing the same, and method of preparation of fuel cell electrodes and the like employing the same
Wu et al. Sophisticated construction of Au islands on Pt–Ni: an ideal trimetallic nanoframe catalyst
Han et al. Promotion effect of metal phosphides towards electrocatalytic and photocatalytic water splitting
US4629709A (en) Non-noble metal catalytic microaggregates, a method for their preparation and their application in the catalysis of the photoreduction of water
Du et al. Alloy electrocatalysts
DE112010005263B4 (en) Platinum monolayer on hollow, porous nanoparticles with large surface areas and fabrication process
KR101270809B1 (en) Platinum alloy carbon-supported catalysts
US5702836A (en) Electrocatalyst
CN109055961B (en) Noble metal supported nano-frame catalyst and preparation method and application thereof
USRE33149E (en) Finely particulated colloidal platinum compound and sol for producing the same and method of preparation of fuel cell electrodes and the like employing the same
JP5665743B2 (en) Continuous production method of catalyst
Ramani et al. Chemically designed CeO 2 nanoboxes boost the catalytic activity of Pt nanoparticles toward electro-oxidation of formic acid
CN112108160A (en) Preparation method of dodecahedron hollow cobalt nickel selenide/iron oxyhydroxide composite catalyst
CN114108004B (en) Ruthenium-based alloy catalyst and preparation method and application thereof
JP2007123195A (en) Method of manufacturing catalyst
JPS6397232A (en) Production of high-dispersion binary pt-ru cluster catalyst
Chalgin et al. Manipulation of electron transfer between Pd and TiO2 for improved electrocatalytic hydrogen evolution reaction performance
CN108666590B (en) Preparation method of crown-shaped multistage PdAg nano dendrites, obtained material and application thereof
CN112893863B (en) Preparation method of gold platinum nano material
JP4215583B2 (en) Reducing agent solution, method for producing metal powder using the same, and method for forming metal film
JPH04135642A (en) Platinum alloy catalyst and its production
JP2890486B2 (en) Fuel electrode catalyst for liquid fuel cell and method for producing the same
CN112774697A (en) Monoatomic metal-molybdenum sulfide nano-composite and preparation method and application thereof
CA1058283A (en) Fuel cell electrodes with finely divided platinum catalyst
Yongprapat et al. Improvement of catalytic performance of AuAg/C catalysts prepared by galvanic displacement technique for glycerol electrooxidation in alkaline medium