JPS6396490A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS6396490A
JPS6396490A JP24120786A JP24120786A JPS6396490A JP S6396490 A JPS6396490 A JP S6396490A JP 24120786 A JP24120786 A JP 24120786A JP 24120786 A JP24120786 A JP 24120786A JP S6396490 A JPS6396490 A JP S6396490A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat transfer
fluid
primary fluid
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24120786A
Other languages
Japanese (ja)
Inventor
Harutsugu Mori
治嗣 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP24120786A priority Critical patent/JPS6396490A/en
Publication of JPS6396490A publication Critical patent/JPS6396490A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To prevent Karman's vortex as well as fluid separation, improve heat transfer characteristics and miniaturize a heat exchanger, by a method wherein primary fluid is made to flow through the outside of heat transfer tubes, whose back surface is formed into aerofoil, while secondary fluid is introduced into the inside of the heat transfer tube. CONSTITUTION:The back surface of a heat transfer tube 1 of ceramics with respect to the flow direction of primary fluid 2 is formed so as to be streamline. The heat transfer tubes 1 are arranged so as to form multiple flow paths. The fore surface of the same tube 1 is provided with a curved surface having a proper curvature. The primary fluid 2 is made to flow through primary fluid flow paths at the outside of the heat transfer tubes 1, while secondary fluid is introduced into the heat transfer tubes 1. As a result, generation of Karman's vortex or fluid separation in the primary fluid may be prevented. Further, the heat transfer characteristic of the title heat exchanger is increased remarkably and the heat transfer tubes 1 can be arranged densely whereby the heat exchanger may be miniaturized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は熱交換器に係り、特に熱交換器の伝熱特性の向
、Fに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heat exchanger, and particularly relates to the direction of heat transfer characteristics, F, of a heat exchanger.

[従来の技術] 一般に、鍛造炉用等の伝熱管形式の熱交換器においては
、第2図に示すように多重に配置された伝熱管a内に二
次流体が導入されると共に伝熱管a外に一次流体すの流
路が形成され、−送流体すは伝熱管aと直角方向に流さ
れる。これにより、伝熱管aを介して一次流体すと二次
流体との間で熱交換が行なわれる。
[Prior Art] Generally, in a heat exchanger type heat exchanger for a forging furnace or the like, a secondary fluid is introduced into heat exchanger tubes a arranged in multiple layers as shown in FIG. A flow path for a primary fluid is formed outside, and the fluid is flowed in a direction perpendicular to the heat exchanger tube a. Thereby, heat exchange is performed between the primary fluid and the secondary fluid via the heat transfer tube a.

[発明が解決しようとする問題点] ところで、従来の伝熱管aは通常第2図に示すように真
円の断面形状を有しており、この伝熱管aに直角に一次
流体b lfi流される。従って、伝熱管aの背面部に
おいて一次流体すのカルマン渦C及び流体剥離が生じや
すく、その結果−送流体すと伝熱管aとの間の熱伝達率
が低下し、熱交換器としての伝熱特性が低下するという
問題があった。
[Problems to be Solved by the Invention] By the way, a conventional heat exchanger tube a usually has a perfect circular cross-sectional shape as shown in FIG. . Therefore, Karman vortices C and fluid separation of the primary fluid are likely to occur at the back surface of the heat exchanger tube a, and as a result, the heat transfer coefficient between the fluid supply and the heat exchanger tube a decreases, and the heat transfer as a heat exchanger is reduced. There was a problem that thermal properties deteriorated.

かくして本発明の目的は上記従来技術の問題点を解消し
、伝熱特性の優れた熱交換器を提供することにある。
Thus, an object of the present invention is to solve the problems of the prior art described above and to provide a heat exchanger with excellent heat transfer characteristics.

[問題点を解決するための手段] 本発明の熱交換器は上記目的を達成するために、伝熱管
外に一次流体が流されると共に伝熱管内に二次流体が導
入される熱交換器において、上記伝熱管の一次流体の流
れ方向に対する背面部を流線形に成形したものである。
[Means for Solving the Problems] In order to achieve the above object, the heat exchanger of the present invention is a heat exchanger in which a primary fluid is flowed outside the heat exchanger tubes and a secondary fluid is introduced into the heat exchanger tubes. , the back surface of the heat transfer tube in the flow direction of the primary fluid is shaped into a streamlined shape.

[作 用] 一般にレイノルズ数Reの流れの中にこの流れと直角方
向に配置された円柱の流れに対する前面部の熱伝達率を
示すヌツセルト数NutはNIJt=  0.746−
 RQ!/2で表わされることが知られている。
[Function] In general, the Nutsselt number Nut, which indicates the heat transfer coefficient at the front surface of a cylinder placed perpendicular to the flow in a flow with a Reynolds number Re, is NIJt = 0.746-
RQ! It is known that it can be expressed as /2.

これに対して上記円柱の背面部のヌツセルト数Nurは Nur= 0.114− ReV3 と表わされ、例えばレイノルズ数Re=8000の流れ
に対しては、 となって、巨視的な評価では円柱の前面部の方が背面部
より32%も伝熱効率に優れていることがわかる。すな
わち、これだけ円柱の背面部は前面部より伝熱効率が劣
ることになる。
On the other hand, the Nutsselt number Nur at the back surface of the cylinder is expressed as Nur = 0.114-ReV3. For example, for a flow with a Reynolds number Re = 8000, it becomes It can be seen that the front part has a 32% better heat transfer efficiency than the back part. In other words, the heat transfer efficiency of the back surface of the cylinder is inferior to that of the front surface.

そこで、従来は円形断面を有していた伝熱管の一次流体
の流れ方向に対する背面部を流線形として一次流体のカ
ルマン渦及び流体剥離の発生を防止することにより、伝
熱管の全周において10〜20%程度の伝熱効率の向上
を図ることができる。
Therefore, by making the back surface of the heat exchanger tube, which had conventionally had a circular cross section in the flow direction of the primary fluid, streamlined to prevent the occurrence of Karman vortices and fluid separation of the primary fluid, the entire circumference of the heat exchanger tube was Heat transfer efficiency can be improved by about 20%.

また、このようにすることによってカルマン渦による流
体振動が防止されるので伝熱管の配列ピッチを小さくし
てより密に配列することが可能となり、加えて、管外流
路断面積減少による管外−泡流体の速度上昇によって、
さらに管外熱伝達も改善されるので、熱交換器のコンパ
クト化が達成される。
In addition, by doing this, fluid vibrations due to Karman vortices are prevented, making it possible to reduce the arrangement pitch of the heat transfer tubes and arrange them more densely. Due to the increased velocity of the foam fluid,
Furthermore, extratubular heat transfer is also improved, so that the heat exchanger can be made more compact.

[実施例] 以下、本発明の実施例を添付図面に従って説明する。[Example] Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明の一実施例に係る熱交換器に配列された
伝熱管部分の断面図である。熱交換器内に伝熱管1が多
重に配置されており、この伝熱管1外にこれと直角方向
の一次流体用流路が形成されている。ここで、伝熱管1
はセラミックスからなり、−泡流体の流れ方向に対する
前面部が適当な曲率を有する曲面から形成される一方、
背面部が流線形をなすように成形されている。
FIG. 1 is a sectional view of heat exchanger tube portions arranged in a heat exchanger according to an embodiment of the present invention. Heat exchanger tubes 1 are arranged in multiple layers within the heat exchanger, and a primary fluid flow path is formed outside the heat exchanger tubes 1 in a direction perpendicular to the heat exchanger tubes. Here, heat exchanger tube 1
is made of ceramics, - the front part with respect to the flow direction of the foam fluid is formed from a curved surface having an appropriate curvature;
The back part is shaped to have a streamlined shape.

このような熱交換器の一次流体用流路に一次流体2を流
すと共に伝熱管1内に二次流体を導入する。すると、伝
熱管1の背面部が流線形となっているので、−泡流体2
はその流れに伴って伝熱管1の前面部から背面部に導か
れたときにここで流体剥離やカルマン渦を発生すること
なく滑らかに下流側へ流される。その結果、伝熱管1を
介して一次流体2と二次流体との間で効率よく熱交換が
行なわれる。
The primary fluid 2 is caused to flow through the primary fluid flow path of such a heat exchanger, and the secondary fluid is introduced into the heat exchanger tubes 1. Then, since the back side of the heat transfer tube 1 has a streamlined shape, -bubble fluid 2
When it is guided from the front side to the back side of the heat exchanger tube 1 along with the flow, it is smoothly flowed downstream without generating fluid separation or Karman vortices. As a result, heat is efficiently exchanged between the primary fluid 2 and the secondary fluid via the heat transfer tube 1.

なお、上述したように一次流体2のカルマン渦の発生が
防止されるので、カルマン渦に起因する流体振動が抑制
され、このため伝熱管1をより小さなピッチで配列する
ことかり能となり、加えて、伝熱管背面部の伝熱効率改
善と管外流路断面積減少に伴う管外熱伝達の向上による
重畳効果によって、熱交換器の小型化を図ることができ
る。
Note that, as described above, since the generation of Karman vortices in the primary fluid 2 is prevented, fluid vibrations caused by Karman vortices are suppressed, which makes it possible to arrange the heat exchanger tubes 1 at a smaller pitch. The heat exchanger can be downsized by the combined effect of improving the heat transfer efficiency at the back surface of the heat exchanger tube and improving the extratubular heat transfer due to the reduction in the cross-sectional area of the extratube flow path.

また、上記実施例ではセラミックス製の伝熱管を用いた
がこれに限るものではない。
Further, in the above embodiment, a heat exchanger tube made of ceramics is used, but the present invention is not limited to this.

[発明の効果] 以上説明したように本発明によれば、次の如き優れた効
果が発揮される。
[Effects of the Invention] As explained above, according to the present invention, the following excellent effects are exhibited.

(1)  −泡流体のカルマン渦や流体剥離の発生が防
止される。
(1) - Occurrence of Karman vortices and fluid separation of bubble fluid is prevented.

(2)  従って、熱交換器の伝熱特性が著しく向上す
ると共に伝熱管の配列を密にして熱交換器の小型化を図
ることができる。
(2) Therefore, the heat transfer characteristics of the heat exchanger are significantly improved, and the heat exchanger can be downsized by closely arranging the heat exchanger tubes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る熱交換器に配列された
伝熱管部分の断面図、第2図は従来例における伝熱管部
分の断面図である。 図中、1は伝熱管、2は一次流体である。 特 許 出 願 人  石川島播磨重工業株式会社代理
人弁理士 絹  谷  信  雄 合 第1図 第2図 1・・・イi乏熱管 2・・・−次流体
FIG. 1 is a sectional view of a heat exchanger tube portion arranged in a heat exchanger according to an embodiment of the present invention, and FIG. 2 is a sectional view of a heat exchanger tube portion in a conventional example. In the figure, 1 is a heat exchanger tube, and 2 is a primary fluid. Patent Applicant: Ishikawajima-Harima Heavy Industries Co., Ltd. Representative Patent Attorney Nobuo Kinutani Yugoi Figure 1 Figure 2 1...i.

Claims (1)

【特許請求の範囲】[Claims] 伝熱管外に一次流体が流されると共に伝熱管内に二次流
体が導入される熱交換器において、上記伝熱管の一次流
体の流れ方向に対する背面部を流線形に成形したことを
特徴とする熱交換器。
A heat exchanger in which a primary fluid is flowed outside the heat exchanger tubes and a secondary fluid is introduced into the heat exchanger tubes, characterized in that the back surface of the heat exchanger tubes in the flow direction of the primary fluid is shaped into a streamlined shape. exchanger.
JP24120786A 1986-10-13 1986-10-13 Heat exchanger Pending JPS6396490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24120786A JPS6396490A (en) 1986-10-13 1986-10-13 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24120786A JPS6396490A (en) 1986-10-13 1986-10-13 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS6396490A true JPS6396490A (en) 1988-04-27

Family

ID=17070795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24120786A Pending JPS6396490A (en) 1986-10-13 1986-10-13 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS6396490A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1439363A1 (en) * 2003-01-15 2004-07-21 Air Tech. Co., Ltd. Evaporation type condensation radiator piping for refrigeration and air-conditioning facilities
EP1439361A1 (en) * 2003-01-15 2004-07-21 Air Tech. Co., Ltd. Evaporative heat exchanger with a streamline cross section tube coil with less or even without cooling fins
EP1528345A1 (en) 2003-11-03 2005-05-04 Ho-Hsin Wu Evaporative condenser without cooling fins
SG112897A1 (en) * 2003-10-17 2005-07-28 Hsin Wu Ho Evaporation type condensation radiator piping for refrigeration and air-conditioning facilities
KR100780719B1 (en) * 2000-01-28 2007-11-30 주식회사 엘지이아이 Evaporator for refrigerator
JP2011191090A (en) * 2010-03-12 2011-09-29 Chugoku Electric Power Co Inc:The Underwater radiation measuring device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100780719B1 (en) * 2000-01-28 2007-11-30 주식회사 엘지이아이 Evaporator for refrigerator
EP1439363A1 (en) * 2003-01-15 2004-07-21 Air Tech. Co., Ltd. Evaporation type condensation radiator piping for refrigeration and air-conditioning facilities
EP1439361A1 (en) * 2003-01-15 2004-07-21 Air Tech. Co., Ltd. Evaporative heat exchanger with a streamline cross section tube coil with less or even without cooling fins
SG112897A1 (en) * 2003-10-17 2005-07-28 Hsin Wu Ho Evaporation type condensation radiator piping for refrigeration and air-conditioning facilities
EP1528345A1 (en) 2003-11-03 2005-05-04 Ho-Hsin Wu Evaporative condenser without cooling fins
JP2011191090A (en) * 2010-03-12 2011-09-29 Chugoku Electric Power Co Inc:The Underwater radiation measuring device

Similar Documents

Publication Publication Date Title
JPH07151108A (en) Piffuser
US20020088611A1 (en) Heat exchanger for liquid and gaseous media
JPS6396490A (en) Heat exchanger
JP3353594B2 (en) Fin tube type heat exchanger
EP0802383A3 (en) Multitubular heat exchanger having an appropriate tube arrangement pattern
JP4489336B2 (en) Structural parts that receive hot gases
JPS60194293A (en) Heat exchanger equipped with fin
JP3048541B2 (en) Air conditioner heat exchanger
US5611395A (en) Fin for heat exchanger
JPS59119192A (en) Heat transfer pipe
JPH10306995A (en) Heat transfer pipe and egr gas-cooler using it
JPS5845495A (en) Heat transmitting fin
JPH06194085A (en) Radiator for car
JPS5832903A (en) Axial flow turbine
EP3763926B1 (en) Heat exchanger for aircraft engine
JP2001248980A (en) Multitubular heat exchanger
JPS616590A (en) Finned heat exchanger
JPH10196303A (en) High performance blade
JP2004085090A (en) Tube structure of multitubular exchanger
CN216448194U (en) Flow guide flue
JP2001041676A (en) Plate type heat exchanger
JP4813684B2 (en) Heat exchanger
JP2010230213A (en) Heat exchanger
JPS58182090A (en) Forming method of heat exchange tube
JPS5937576Y2 (en) Shell-and-tube heat exchanger