JPS6396483A - Melter - Google Patents

Melter

Info

Publication number
JPS6396483A
JPS6396483A JP14432986A JP14432986A JPS6396483A JP S6396483 A JPS6396483 A JP S6396483A JP 14432986 A JP14432986 A JP 14432986A JP 14432986 A JP14432986 A JP 14432986A JP S6396483 A JPS6396483 A JP S6396483A
Authority
JP
Japan
Prior art keywords
melted
furnace body
melting device
space
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14432986A
Other languages
Japanese (ja)
Other versions
JP2519681B2 (en
Inventor
東 久雄
山中 龍夫
和憲 川崎
小坂 勝明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Aerospace Laboratory of Japan
Nissan Motor Co Ltd
Original Assignee
National Aerospace Laboratory of Japan
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Aerospace Laboratory of Japan, Nissan Motor Co Ltd filed Critical National Aerospace Laboratory of Japan
Priority to JP61144329A priority Critical patent/JP2519681B2/en
Publication of JPS6396483A publication Critical patent/JPS6396483A/en
Application granted granted Critical
Publication of JP2519681B2 publication Critical patent/JP2519681B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「発明の目的」 (産業上の利用分野) この発明は、被溶融物を極低重力ないしは無重力環境に
て加熱溶融するのに利用する溶融装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION (Industrial Field of Application) The present invention relates to a melting apparatus that is used to heat and melt a material to be melted in an extremely low gravity or zero gravity environment.

(従来の技術) 従来、E記したような溶融装置としては、例えば、日経
マグロウヒル社が1984年に発行した「日経エアロス
ペース(別冊)j 「7市基地と宇宙利用」の1102
頁〜第109頁等に記載されているものがあり、その構
造を第4図に基づいて説明する。
(Prior art) Conventionally, as a melting device as described in E, for example, the melting device described in "Nikkei Aerospace (separate volume) J 7 City Bases and Space Utilization" published by Nikkei McGraw-Hill in 1984, 1102
Some of them are described on pages 1 to 109, and their structures will be explained based on FIG. 4.

図において符号100は炉であって、この炉100は、
各々の頂点が対称位置となるようにした複数の放物面か
ら成る炉内面100aを有するとともに、密閉された空
間101を形成し、各放物面の頂点に加f’s毛段とし
てのハロゲンランプ102が取付けである。また、前記
炉100の中央部には、透光性を有する材質から成る円
筒形の容器103と、前記容器103の内部に向けて開
口するH 響ドライへとしてのスピーカ104とが設け
である。なお、前記炉100の内部には、不活性なガス
が對入しである。
In the figure, reference numeral 100 is a furnace, and this furnace 100 is
It has a furnace inner surface 100a consisting of a plurality of paraboloids whose apexes are symmetrical, and also forms a sealed space 101, with halogen as a hair stage added to the apex of each paraboloid. Lamp 102 is attached. Further, in the center of the furnace 100, there are provided a cylindrical container 103 made of a translucent material and a speaker 104 as an H2 sound dryer that opens toward the inside of the container 103. Note that an inert gas is contained inside the furnace 100.

そして、L記の炉100は、極低重力ないしは無重力環
境において、容器103の内部に被溶融物(例えば、石
英ガラス製のポール笠)Mを浮遊させるとともに、スピ
ーカ104から容器103内に音波パターンを発生させ
て前記被溶融物Mを当該炉100の中心に保持し、さら
に、各ハロゲンランプ102の光を炉内面100aの反
射で炉100の中心に集光することにより、被溶融物M
を加熱溶融する。
The furnace 100 described in L suspends a material to be melted (for example, a pole cap made of quartz glass) M inside a container 103 in an extremely low gravity or zero gravity environment, and emits a sound wave pattern from a speaker 104 into the container 103. The object to be melted M is held at the center of the furnace 100 by generating a
Heat to melt.

(発明が解決しようとする問題点) ところが、上記したような従来の溶融装置にあっては、
容器103内に音波パターンを発生させて被溶融物Mの
浮遊位置を保つという音波浮遊方式を用いていたため。
(Problems to be solved by the invention) However, in the conventional melting device as described above,
This is because a sonic floating method was used in which a sonic wave pattern was generated within the container 103 to maintain the floating position of the material to be melted M.

■被溶融物Mに常時音波による圧力が加わる。(2) Pressure is constantly applied to the material M to be melted by sound waves.

■ハロゲンランプ102と被溶融物Mとの間に介在する
容器103によって熱効率が低下する。
(2) Thermal efficiency is reduced due to the container 103 interposed between the halogen lamp 102 and the object M to be melted.

■ハロゲンランプ102に加熱される耐熱ケージTの間
接的加熱手段を採用する場合、この加熱手段によって音
波パターンが撹乱される恐れがあるので結果的に前記加
熱手段の配置等が難しい。
(2) When indirect heating means of the heat-resistant cage T heated by the halogen lamp 102 is employed, the sound wave pattern may be disturbed by this heating means, and as a result, the arrangement of the heating means is difficult.

■地球周回軌道上の航行体に当該溶融装置を搭・la 
した場合、前記航行体に希薄大気の抵抗によるマイナス
加速度(減速)が作用することから、被溶融物Mが炉1
00に対して変位しようとし、このとき前述の音圧も常
に作用しているので前記被溶融物Mの完全な無重力状態
が達成できない。
■The melting device is installed on a navigation vehicle in orbit around the earth.
In this case, since negative acceleration (deceleration) due to the resistance of the thin atmosphere acts on the navigation vehicle, the material to be melted M is in the furnace 1.
00, and at this time, the above-mentioned sound pressure is always acting, so that the melted material M cannot achieve a completely weightless state.

などの問題点があった。There were problems such as.

(発明の目的) この発明は、このような諸問題点に着目して成されたも
ので、炉体内において被溶融物を無重力状態で且つ所定
の位置に保つことができるとともに、熟効率良く溶融を
行うことができる溶融装置を提供することを目的として
いる。
(Purpose of the Invention) This invention was made by focusing on the above-mentioned problems, and it is possible to maintain the material to be melted in a weightless state and at a predetermined position in the furnace body, and to melt the material with high ripening efficiency. The purpose of the present invention is to provide a melting device capable of performing the following steps.

[発明の構成」 (問題点を解決するための手段) この発明による溶融装置は、被溶融物を極低重力ないし
は無重力環境にて加熱溶融する装置であって、前記被溶
融物を浮遊させる空間を形成する炉体と、前記空間内で
の被溶融物の変位を検出する変位検出手段と、前記被溶
融物に対する加熱−手段と、当該炉体の位置を変化させ
る位置制御手段とを備えたことを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) A melting device according to the present invention heats and melts a material to be melted in an extremely low gravity or zero gravity environment, and includes a space in which the material to be melted is suspended. A furnace body forming a furnace body, a displacement detection means for detecting displacement of the object to be melted within the space, a means for heating the object to be melted, and a position control means for changing the position of the furnace body. It is characterized by

(天施例) 以下、この発明を図面に基づいて説明する。(Heavenly Example) The present invention will be explained below based on the drawings.

第1図〜第3図は、この発明の一実施例を説明する図で
ある。
FIGS. 1 to 3 are diagrams illustrating an embodiment of the present invention.

すなわち、溶融装置1は、第1図および第2図に示すよ
うに、円筒形を成すケーシング2の内部を二枚の隔壁3
a、3bで区切って三つの収容室4a 、4b 、4c
を形成し、一方の端部の収容室4a(第2図における上
段側の収容室)内に、従来既知のレートジャイロ5とバ
ッテリー6とコンピュータ7と出力分配装置14とを収
容するとともに、中間の収容室4b内に炉体8とガス分
配器15とを収容し、他方の収容室4C内にスラスタ−
9,9の燃料ポンベ10を収容している。前記スラスタ
9.9は、この実施例における前記炉体8の位置制御手
段であって、ケーシング2の側面の相反する位置に設け
てあり、第2図上において上下左右およびケーシング2
の直径方向に開口する5個の噴射ノズル9aを夫々有し
ている。
That is, as shown in FIGS. 1 and 2, the melting device 1 includes two partition walls 3 inside a cylindrical casing 2.
Three storage chambers 4a, 4b, 4c separated by a and 3b
A conventionally known rate gyro 5, battery 6, computer 7, and output distribution device 14 are housed in a housing chamber 4a at one end (the upper housing chamber in FIG. 2), and an intermediate The furnace body 8 and the gas distributor 15 are housed in one housing chamber 4b, and the thruster is housed in the other housing chamber 4C.
It accommodates 9,9 fuel pumps 10. The thrusters 9.9 are position control means for the furnace body 8 in this embodiment, and are provided at opposite positions on the side surfaces of the casing 2, and are located at the top, bottom, left and right of the casing 2 in FIG.
Each of the injection nozzles 9a has five injection nozzles 9a that open in the diametrical direction.

前記炉体8は、密閉された空間11を形成する略球形を
成すものであって、当該炉体8の中心に向けて開口する
多数の反射部8aを外側に突出させた状態で備えている
。前記反射部8aは、その内面が放物面を成し、前記炉
体1の中心と相対向する頂点位置に、加熱手段としての
ハロゲンランプ12を設けている。なお、ハロゲンラン
プ12の炉外側には、炉体8内の熱を吸収し且つ発散さ
せるためのヒートシンクを設けることがある。
The furnace body 8 has a substantially spherical shape forming a sealed space 11, and includes a large number of reflecting portions 8a that open toward the center of the furnace body 8 and protrude outward. . The reflective portion 8a has a parabolic inner surface, and is provided with a halogen lamp 12 as a heating means at an apex position opposite to the center of the furnace body 1. Note that a heat sink may be provided outside the furnace of the halogen lamp 12 to absorb and dissipate heat within the furnace body 8.

また、前記炉体8の壁部には、被溶融物Mの変位検出手
段としての二つの二次元画像処理袋に13a、13bが
設けである。前記二次元画像処理装置13a、13bは
、一方が空間11内のX軸、y@に基づく画像を捉える
位置であるのに対して、他方が前記空間11内のy軸、
z軸に基づく画像を捉える位置にあり、双方ともコンピ
ュータ7に接続しである。
Furthermore, two two-dimensional image processing bags 13a and 13b are provided on the wall of the furnace body 8 as means for detecting displacement of the object M to be melted. One of the two-dimensional image processing devices 13a and 13b is at a position to capture an image based on the X-axis and y@ in the space 11, while the other is at a position to capture an image based on the y-axis and y@ in the space 11.
Both are connected to the computer 7, in a position to capture images based on the z-axis.

ここで、各装置の接続系統を第3図に基づいて説明する
と、コンピュータ7には、当該溶融装置1目体の要分を
制御するだめの姿勢制御用信号を送る前記レートジャイ
ロ5と、前記両二次元画像処理装置13a、13bと、
出力分配装置14とが接続しである。前記出力分配装置
14には、バッテリー6と、ハロゲンランプ12と、各
スラスタ−9,9とが接続してあり、前記コンピュータ
7かもの指令信号により、各ハロゲンランプ12および
各スラスタ−9にこれらを動作させるための電力を供給
する。
Here, the connection system of each device will be explained based on FIG. Both two-dimensional image processing devices 13a and 13b,
The output distribution device 14 is connected thereto. A battery 6, a halogen lamp 12, and each thruster 9 are connected to the output distribution device 14, and each halogen lamp 12 and each thruster 9 are controlled by a command signal from the computer 7. Supplies power to operate.

次に、上記溶融装置1の作用を説明する。ます、被溶融
物Mは、極低重力ないしは′S重力状態において、炉体
8内の空間11の中心に浮遊しており、この際、当該溶
融装置1も浮遊状態にある。なお、前記被溶融物Mを空
間11の中心にセットするために図外の保持手段を用い
ることがある。そして、各ハロゲンランプ12を点灯す
ることにより、その光を夫々の反射部8aで反射させて
空r#n11の中心部分に集光し、前記被溶融物Mを非
接触状・態で加熱溶融する。
Next, the operation of the melting device 1 will be explained. First, the material to be melted M is floating in the center of the space 11 within the furnace body 8 in an extremely low gravity or 'S gravity state, and at this time, the melting device 1 is also in a floating state. Note that in order to set the object M to be melted at the center of the space 11, a holding means not shown may be used. Then, by lighting each halogen lamp 12, the light is reflected by each reflecting part 8a and focused on the center part of the air r#n11, and the object M to be melted is heated and melted in a non-contact state. do.

また、当該溶融装置1は、上記処理中において装置自体
あるいは被溶融物Mが相対移動し、炉体8と被溶融物M
との間に変位が生じると、レートジャイロ5からの姿勢
制御用の信号と、二つの二次元画像処理装置13a、1
3bからの各二次元座標玉の変位検出データとをコンピ
ュータ7に入力して前記被溶融物Mの三次元座標1にお
ける変位(または移動速度)を実時間で処理し、さらに
、その変位に追従させるための溶融装置1自体の位置制
御量を計算して出力分配位置14に指令信号を送ること
により、スラスタ−9のうちの選択されたノズル9aか
らガスを噴射してその推力で溶融装置1を移動させる。
Further, in the melting apparatus 1, the apparatus itself or the material to be melted M moves relative to each other during the above processing, and the furnace body 8 and the material to be melted M move relative to each other.
When a displacement occurs between the rate gyro 5 and the two two-dimensional image processing devices 13a and 1
3b and the displacement detection data of each two-dimensional coordinate ball are input into the computer 7, the displacement (or moving speed) of the object M to be melted at the three-dimensional coordinate 1 is processed in real time, and the displacement is further followed. By calculating the position control amount of the melting device 1 itself to cause the melting device 1 to move and sending a command signal to the output distribution position 14, gas is injected from the selected nozzle 9a of the thruster 9 and the melting device 1 is move.

したがって、この溶融装置1は、炉体8に対する被溶融
物−Mの動きに追従して移動し、前記被溶融物Mを常に
炉体8の中心に保つように動作する。なお、溶融装置1
の制御は、加熱処理中に限らず被溶融物Mの冷却処理中
にも行うことが当然可能である。
Therefore, the melting apparatus 1 moves to follow the movement of the object to be melted-M relative to the furnace body 8, and operates to keep the object to be melted M at the center of the furnace body 8 at all times. In addition, the melting device 1
Of course, the control can be performed not only during the heat treatment but also during the cooling treatment of the material M to be melted.

この実施例による溶融装δ1によれば、被溶融物Mに何
ら外力が作用しないことが明らかであると共に、ハロゲ
ンランプ12と被溶融物Mとの間に他の物体が介在しな
いので熱効率も良い、また、溶融装置1を地球周回軌道
上で使用する場合、希薄大気による空力抵抗で前記溶融
装置1にマイナスの加速度(減速)が作用したとしても
、上述した制御により、実質上、前記被溶融物Mを空間
11において無重力状態にし且つ炉体8の中心に保って
溶融することができる。
According to the melting device δ1 according to this embodiment, it is clear that no external force acts on the material to be melted M, and since no other object is interposed between the halogen lamp 12 and the material to be melted M, thermal efficiency is also good. Furthermore, when the melting device 1 is used in earth orbit, even if negative acceleration (deceleration) acts on the melting device 1 due to aerodynamic resistance due to the diluted atmosphere, the above-mentioned control allows the melting device to be substantially The object M can be melted while being kept in a weightless state in the space 11 and at the center of the furnace body 8.

なお、当該溶融装置の加熱手段がL記実施例に限定され
ることはなく、ハロゲンランプ12のほかキャノンラン
プなどを用いることも一例であり、さらに、これらのラ
ンプによって加熱する耐熱ケージ等の間接的加熱手段を
被溶融物Mの近傍に配設しても問題はない、また、被溶
融物Mの位置検出手段としては、超音波やレーザを利用
した距殖センサなども用いることが可能であるが、被溶
融物Mに外力を手元ないという観点から言えば光学的な
手段がより一層望ましい。
Note that the heating means of the melting device is not limited to the embodiment described in L. In addition to the halogen lamp 12, it is also possible to use a Canon lamp, etc., and furthermore, indirect There is no problem even if the heating means is arranged near the object M to be melted.Furthermore, as a means for detecting the position of the object M to be melted, it is also possible to use a rangefinder sensor using ultrasonic waves or a laser. However, optical means are even more desirable from the viewpoint of not having to apply external force to the material M to be melted.

さらに、溶融装置の詳細な構造が上記実施例に限定され
ることはなく、例えばステスター9を直接取付けた炉体
8を浮遊させ、この炉体8を遠隔操作することも可能で
あり、そのほか、ケーシングの形状および構造や各制御
装置の配置要領なども適宜変更することが出来る。
Furthermore, the detailed structure of the melting device is not limited to the above embodiment; for example, it is also possible to float the furnace body 8 to which the tester 9 is directly attached and remotely control the furnace body 8. The shape and structure of the casing, the arrangement of each control device, etc. can be changed as appropriate.

[発明の効果] 以り説明してきたように、この発明の溶融装置によれば
、被溶融物を極低重力ないしは無重力環境にて加熱溶融
する装置であって、前記被溶融物を浮遊させる空間を形
成する炉体と、前記空間内での被溶融物の変位を検出す
る変位検出手段と、前記被溶融物に対する加、1?8−
p段と、当該炉体の位置を変化させる位置〃制御手段と
を備えたため、炉体内において被溶融物を無重力状態で
所定の位置に保つことができるとともに、非接触状態に
て熱効率良く溶融を行うことができるという優れた効果
を有する。
[Effects of the Invention] As described above, the melting apparatus of the present invention is an apparatus for heating and melting a material to be melted in an extremely low gravity or zero gravity environment, and a space in which the material to be melted is suspended. a furnace body forming a furnace body, a displacement detecting means for detecting displacement of the object to be melted within the space, and an addition to the object to be melted;
Since it is equipped with a p-stage and a position control means for changing the position of the furnace body, it is possible to maintain the material to be melted in a predetermined position in the furnace body in a zero-gravity state, and to melt it thermally efficiently in a non-contact state. It has an excellent effect in that it can be carried out.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による溶融装置を説明する
断面図、第2図は第1図に示す溶融装置を部分的にM断
じて説明する窪視図、第3図は溶融装置における各制御
装置の接続を系統的に示す説明図、7JS4図は従来の
溶融装置を説明する断面図である。 1・・・溶融装置、8・・・炉体、9・・・スラスタ−
(位置制御手段)、11・・・空間、12・・・ハロゲ
ンランプ(加熱手段)、13a、13b・・・二次元画
像処理装置(変位検出手段)、M・・・被溶融物。
FIG. 1 is a sectional view illustrating a melting device according to an embodiment of the present invention, FIG. 2 is a hollow view partially cut away to explain the melting device shown in FIG. 1, and FIG. FIG. 7JS4, which is an explanatory diagram systematically showing the connection of the control device, is a cross-sectional diagram illustrating a conventional melting device. 1... Melting device, 8... Furnace body, 9... Thruster
(position control means), 11...space, 12...halogen lamp (heating means), 13a, 13b...two-dimensional image processing device (displacement detection means), M...object to be melted.

Claims (1)

【特許請求の範囲】[Claims] (1)被溶融物を極低重力ないしは無重力環境にて加熱
溶融する装置であって、前記被溶融物を浮遊させる空間
を形成する炉体と、前記空間内での被溶融物の変位を検
出する変位検出手段と、前記被溶融物に対する加熱手段
と、当該炉体の位置を変化させる位置制御手段とを備え
たことを特徴とする溶融装置。
(1) A device that heats and melts a material to be melted in an extremely low gravity or zero gravity environment, which includes a furnace body that forms a space in which the material to be melted floats, and detects the displacement of the material to be melted within the space. A melting apparatus comprising: a displacement detecting means for changing the position of the furnace body; a heating means for the object to be melted; and a position controlling means for changing the position of the furnace body.
JP61144329A 1986-06-19 1986-06-19 Melting device Expired - Lifetime JP2519681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61144329A JP2519681B2 (en) 1986-06-19 1986-06-19 Melting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61144329A JP2519681B2 (en) 1986-06-19 1986-06-19 Melting device

Publications (2)

Publication Number Publication Date
JPS6396483A true JPS6396483A (en) 1988-04-27
JP2519681B2 JP2519681B2 (en) 1996-07-31

Family

ID=15359575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61144329A Expired - Lifetime JP2519681B2 (en) 1986-06-19 1986-06-19 Melting device

Country Status (1)

Country Link
JP (1) JP2519681B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051996U (en) * 1991-02-19 1993-01-14 三菱電機株式会社 Light irradiation heating furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051996U (en) * 1991-02-19 1993-01-14 三菱電機株式会社 Light irradiation heating furnace

Also Published As

Publication number Publication date
JP2519681B2 (en) 1996-07-31

Similar Documents

Publication Publication Date Title
Nomoto et al. Single degenerate models for Type Ia supernovae: progenitor’s evolution and nucleosynthesis yields
US3808550A (en) Apparatuses for trapping and accelerating neutral particles
Blondin et al. Formation of the circumstellar shell around SN 1987A
Naumann et al. Materials processing in space: early experiments
ATE360190T1 (en) AIR RECONNAISSANCE SYSTEM
Soker et al. Hot bubbles in cooling flow clusters
CN110625258B (en) Metal additive manufacturing device for weightless flight and vacuum working conditions
US5120008A (en) Orbital debris processor and method therefor
Barmatz Overview of containerless processing technologies
JPS6396483A (en) Melter
TW202042987A (en) Machining system, machining method, robot system, connecting device, and end effector device
Song et al. Design and control of soft unmanned aerial vehicle “s-cloud”
JP3946487B2 (en) Takeoff and landing assistance mechanism and takeoff and landing assistance device
Gardner et al. High-efficiency targets for high-gain inertial confinement fusion
US4158598A (en) Parabolic lithium mirror for a laser-driven hot plasma producing device
JP4540639B2 (en) Takeoff and landing assistance device
Rozyczka et al. Two-Dimensional Models of Stellar Wind Bubbles-Part Three-Self-Confining Flows in Media with Strong Density Gradients
Stahler Early stellar evolution
US3341152A (en) Means for and method of controlling attitude of re-entry vehicle
Leuteri Costanzo et al. Modelling and simulation of in-orbit centrifugal casting of a paraffin wax grain inside a 3U CubeSat
Jiao et al. Research on levitation coupled with standing wave levitation and electromagnetic levitation
Craig Experimental observations of underwater detonations near the water surface
Wang et al. Experimental study of formation alignment of multiple autonomous air‐levitated vehicles with rule‐based controls
Costanzo et al. Modeling and Simulation of In-Orbit Centrifugal Casting of a Paraffin Wax Grain Inside a 3U CubeSat
JPS6379093A (en) Fuel pellet injector

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term