JPS6396022A - Panel wall for deformation of bottle body - Google Patents

Panel wall for deformation of bottle body

Info

Publication number
JPS6396022A
JPS6396022A JP61235865A JP23586586A JPS6396022A JP S6396022 A JPS6396022 A JP S6396022A JP 61235865 A JP61235865 A JP 61235865A JP 23586586 A JP23586586 A JP 23586586A JP S6396022 A JPS6396022 A JP S6396022A
Authority
JP
Japan
Prior art keywords
deformation
panel wall
bottle
pressure
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61235865A
Other languages
Japanese (ja)
Other versions
JPH07102856B2 (en
Inventor
善明 林
加藤 豊治
板倉 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshino Kogyosho Co Ltd
Original Assignee
Yoshino Kogyosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshino Kogyosho Co Ltd filed Critical Yoshino Kogyosho Co Ltd
Priority to JP23586586A priority Critical patent/JPH07102856B2/en
Priority to US07/155,732 priority patent/US4877141A/en
Publication of JPS6396022A publication Critical patent/JPS6396022A/en
Publication of JPH07102856B2 publication Critical patent/JPH07102856B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0223Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、2軸延伸ブロー成形されたポリエチレンテレ
フタレート樹脂型の壜体の胴部に形成される減圧吸収用
のパネル壁の構造に関するものであって、さらに経営す
れば、槽体内の増圧に対しCは大きな耐久力を発揮する
が、槽体内の減圧に対しては容易にかつ均一に変形する
パネル壁の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a panel wall for vacuum absorption formed in the body of a polyethylene terephthalate resin bottle that is biaxially stretched and blow-molded. In other words, C exhibits great durability against increased pressure inside the tank, but relates to a panel wall structure that easily and uniformly deforms when the pressure inside the tank decreases.

〔従来の技術〕[Conventional technology]

ポリエチレンテレフタレート樹脂(以下、単にPETと
記す)製の2軸延伸ブロー成形された壜体は、2軸延伸
ブロー成形後に熱処理(ヒートセント)することにより
、壜体自体の耐熱性を向上させ、果汁飲料等の高温充填
が必要な内容液を充填収納することができる耐熱壜体と
することができることが知られている。
The biaxial stretch blow molded bottle made of polyethylene terephthalate resin (hereinafter simply referred to as PET) is heat treated (heat cent) after the biaxial stretch blow molding to improve the heat resistance of the bottle itself, and to improve the heat resistance of the bottle itself. It is known that heat-resistant bottles can be used to fill and store liquids such as beverages that require high-temperature filling.

しかしながら、この種のpET製壜体壜体ガラス製壜体
や金属fM壜壜体ように高い剛性を有するものではなく
、柔軟性があるために、壜体の構造を通常のものとした
のでは、高温充填した際に、内容液の体稍収縮、ヘッド
スペースの茎気圧低下等により槽体内に発生ずる減圧に
よって、その胴部が不正に変形して商品としての外観を
著しく害することになってしまう。
However, this type of pET bottle does not have high rigidity like glass bottles or metal fM bottles, but it is flexible, so the structure of the bottle is probably a normal one. When filled at high temperature, the body of the tank will be improperly deformed due to the internal contraction of the liquid inside the tank and the drop in stem pressure in the head space, which will cause the body to deform and seriously impair the appearance of the product. Put it away.

それゆえ、この種のPET製壜体壜体って巳」、胴部に
ほぼ平坦となった縦長の減圧吸収用のパネル壁を陥没並
列設し、壜体内に発生した減1[−をこのパネル壁の変
形により吸収することにより、変形後の壜体形状を、外
観十、特に異常を感じさせないようにし−ζいる。
Therefore, this type of PET bottle is designed with almost flat vertically long panel walls for absorbing reduced pressure installed parallel to each other in the body. By absorbing the deformation through the deformation of the panel wall, the shape of the deformed bottle is made to have an appearance that does not give any impression of abnormality.

ごの耐熱PET製壜体壜体成されるパネル壁に作用する
圧力および応力は、高温内容液の充填時には、充填機に
よる口元シールのためのヘット−圧および充填時に上位
に位置するタンク内の内容液と壜体内に充填された内容
液との液面位置の高さ差による液圧が作用し、内容液の
充填直後には大気圧に開放され、キャッピング時にはヘ
ッドスペース蒸気圧による内圧上昇(例えば、90°C
の内容液を充填した場合には、蒸気による圧力上昇によ
り壜体内圧は約1 、 7149 k+r/cJとなる
)が発生し、転倒滅菌時にはキャッピング時の状態から
大気による徐冷により徐々に友気圧が低下し、そして冷
却時には内容液の体積減少による減圧およびヘッドスペ
ース苺気圧の低下による減圧か発生し、これらの圧力変
化に応して変形応力が発生ずる。
Pressure and stress acting on the panel walls of the bottle made of heat-resistant PET are the pressure and stress that is applied to the panel walls of the bottle when filling with high-temperature contents. The liquid pressure due to the height difference between the liquid level and the liquid filled in the bottle is released to atmospheric pressure immediately after filling, and when capping, the internal pressure rises due to headspace vapor pressure ( For example, 90°C
When the bottle is filled with liquid, the internal pressure of the bottle becomes approximately 1,7149 k+r/cJ due to the pressure increase caused by the steam, and during tumble sterilization, the pressure gradually decreases from the state at the time of capping due to slow cooling in the atmosphere. During cooling, a decrease in pressure occurs due to a decrease in the volume of the liquid content and a decrease in pressure in the head space, and deformation stress is generated in response to these pressure changes.

このように、パネル壁は、内容液からの加熱を受けると
共に、上記した加圧(充填時、キャッピング時)、常圧
(充填直後)、減圧(冷却時)の圧力変化を受けるごと
になるため、充填時およびキャッピング時後の蒸気圧と
内容液の熱とのためにパネル壁ば高温加圧の状態となり
、空滑時に比べて外側に凸状に押出し変形されるごとに
なる。
In this way, the panel wall is not only heated by the liquid content, but also subjected to pressure changes such as the above-mentioned pressurization (during filling and capping), normal pressure (immediately after filling), and reduced pressure (during cooling). Due to the steam pressure and the heat of the content liquid during filling and capping, the panel wall is in a high temperature and pressurized state, and is pushed outward and deformed in a convex shape compared to when sliding.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

多くの実験によると、充填液温か80℃以下である場合
には、発生ずる茄気圧は比較的低く、また壜体の昇温程
度も少ないので、壜体自体の許容応力がまだ大きい状態
にあり、パネル壁が凸状に変形する傾向は比較的小さく
、冷却後はこのパネル壁の凸状変形の影ζTがほとんど
現れないのであるが、充填液温が85℃以十、特に90
°C以上となると、発生ずる茄気圧が高くなり、キャッ
ピング後のパネル壁の凸状変形程度が大きくなる。
According to many experiments, when the temperature of the filled liquid is below 80°C, the generated pressure is relatively low and the degree of temperature increase in the bottle is also small, so the allowable stress of the bottle itself is still large. , the tendency of the panel wall to deform into a convex shape is relatively small, and the shadow of this convex deformation ζT of the panel wall hardly appears after cooling.
When the temperature exceeds .degree. C., the generated internal pressure becomes high, and the degree of convex deformation of the panel wall after capping becomes large.

このパネル壁におりる凸状変形は、充填液温および一1
=記した蒸気圧の影グを受げながら壜体材質の強度低下
と残留歪とが相成っ゛C永久歪として残るf順向がある
This convex deformation on the panel wall is due to the filling liquid temperature and
= Under the influence of the vapor pressure mentioned above, the decrease in the strength of the bottle material and the residual strain occur together. (C) There is a forward direction (F which remains as permanent strain).

従来のこの種の壜体に設けられたパネル壁は、均一な変
形を得るためにその全域をできるだけ平坦にするとか、
凸状変形を少なくするために傾斜面で構成するとか、凸
状変形をしffi、ff< <するために凹溝で囲った
構成とするとか、縦横のリブ条を屈曲付形した構成とな
っていたが、実際には上記したように充填液温が85°
C以」二となると、パネル壁に必然的に発生ずる凸状変
形が、充填液温の熱の影響と蒸気圧の影響とによって大
きくなってしまい、冷却した時に残留歪となっ゛(永久
変形してしまい、この凸状に永久変形したパネル壁が正
常なパネル壁として機能することができずに減圧吸収作
用が消失しているために、壜体の胴部全体が三角形や楕
円形に不正変形したり、正常な減圧吸収変形しないパネ
ル壁が生じて壜体の外観を不良なものとしていた。
The panel walls installed on conventional bottles of this type are made as flat as possible over the entire area in order to achieve uniform deformation.
In order to reduce convex deformation, it is constructed with an inclined surface, in order to cause convex deformation and ffi, ff< However, in reality, as mentioned above, the filling liquid temperature was 85°.
In the case of C and above, the convex deformation that inevitably occurs on the panel wall becomes large due to the thermal influence of the filling liquid temperature and the influence of the vapor pressure, resulting in residual strain (permanent deformation) when cooled. The panel wall, which has been permanently deformed into a convex shape, is no longer able to function as a normal panel wall and the decompression absorption effect has disappeared, resulting in the entire body of the bottle becoming irregularly shaped into a triangular or oval shape. The appearance of the bottle was deteriorated due to deformation or failure of the panel wall to absorb and deform under reduced pressure.

このパネル壁に生じた永久変形を詳細に調べてみると、
パネル壁を陥没成形するためにパネル壁の周囲に屈曲成
形される段部の二つの屈曲部の屈曲角度が相互に反対方
向に変化して、成形時の角度とは異なる値になっている
ことが判明した。
A detailed examination of the permanent deformation that occurred in this panel wall revealed that
The bending angles of the two bent parts of the stepped part that is bent and formed around the panel wall in order to recess form the panel wall change in opposite directions, resulting in a value that is different from the angle at the time of forming. There was found.

この段部における二つの屈曲部の屈曲角度の変化は、前
記した充填液温と蒸気圧との作用によって二つの屈曲部
にその屈曲程度を互いに反対方向に変化させる変形が生
じ、この変化程度が許容応力範囲を越えるために永久変
形となるためと思われるが、このように段部が変形して
しまうと、パネル壁全体が凸状に変形保持されてしまい
、減圧吸収のために円滑に陥没変形することかできなく
なってしまうのである。
The change in the bending angle of the two bends in this step is caused by the action of the filling liquid temperature and vapor pressure described above causing deformation in the two bends that changes the degree of bending in opposite directions. This is probably due to permanent deformation due to exceeding the allowable stress range, but if the step section deforms in this way, the entire panel wall will remain deformed in a convex shape, and will collapse smoothly to absorb the reduced pressure. It becomes impossible to transform.

また、キャッピング時の増圧に対する凸状変形が少なく
、反対に冷却時の減圧に対して凹状に変形し易いパネル
壁の構造は平坦構造であることは知られているが、単に
パネル壁全体を平坦構造にしたのでは、上記したごとく
段部に永久変形が生じてしまって正常な減圧吸収変形を
得ることかできなくなってしまい、例え減圧吸収変形を
することができる状態であっても、このパネル壁に減圧
により作用する応力の作用形態を特定して一定化するこ
とができないので、一定の安定した変形進行を得ること
ができず、このため各パネル壁間で減圧吸収変形程度が
異なってしまって、壜体の外、 観を異常なものとする
結果となっていた。
Furthermore, it is known that the structure of the panel wall is flat, which is less prone to convex deformation due to increased pressure during capping, and conversely more likely to deform concave due to reduced pressure during cooling. If a flat structure is used, permanent deformation will occur in the stepped portion as described above, making it impossible to obtain normal decompression absorption deformation.Even if decompression absorption deformation is possible, this Because it is not possible to specify and stabilize the mode of action of the stress that acts on the panel wall due to reduced pressure, it is not possible to obtain a constant and stable deformation progress, and as a result, the degree of deformation that absorbs the reduced pressure differs between each panel wall. This resulted in an abnormal appearance on the outside of the bottle.

なお、パネル壁における凸状変形を永久変形として残さ
ない最も簡11′!な1段は、壜体に対するヒートセッ
ト効果を高くすれば良いのであるが、ヒートセント効果
を高くするためには、ヒートセット温度を高くしかつ七
ソ1へ時間を14くする必要があるため、生産性が著し
く低下することになり、実用的でなく、またこのように
して充分なし−1〜セントを施したとしても、パネル壁
の減圧吸収のための変形を均一に発生させることができ
るとは限らず、不均一な変形による外観の低生と云う問
題は未解決のままである。
In addition, the simplest method is 11', which does not leave convex deformation in the panel wall as a permanent deformation! The first stage can be achieved by increasing the heat setting effect on the bottle, but in order to increase the heat setting effect, it is necessary to increase the heat setting temperature and increase the time to 14 degrees. , the productivity will be significantly reduced, and it is not practical, and in this way, even if the deformation for vacuum absorption of the panel wall is applied, it is not possible to uniformly generate deformation for vacuum absorption of the panel wall. However, the problem of poor appearance due to non-uniform deformation remains unsolved.

本発明は、パネル壁の基本的な構造を重用構造とした状
態で、増圧による段部の永久変形の発41−を防止する
と共に、減圧吸収変形が一定の形態でかつ各パネル壁で
均一に発生させることをその技術的課題とするものであ
る。
The present invention prevents permanent deformation of stepped portions due to increased pressure when the basic structure of the panel wall is a heavily used structure, and the deformation due to reduced pressure is constant and uniform on each panel wall. The technical challenge is to make it occur.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による手段は、2軸延伸ブロー成形されたPET
製壜体壜体(第1図参照)の胴部2に縦長に並列段され
たパネル壁3において、このパネル壁3の長手辺に沿っ
た仮想される中心線M(第2図参照)上に屈曲点である
頂点3dを位置させて短手辺方向に横断する形態で延ひ
る少なくとも一対の稜線段部3cを設けること、この一
対の稜線段部3c間の陥没した部分を平坦な平面部3a
とするごと、稜線段部3cの段差を1.O+lIn以下
とすること、そして平面部3aを長手辺方向の中央に位
置させることである。
The means according to the invention comprises biaxially stretched blow-molded PET
In the panel wall 3 vertically arranged in parallel on the body 2 of the bottle body (see Fig. 1), on the imaginary center line M (see Fig. 2) along the long side of this panel wall 3. At least a pair of ridgeline step portions 3c are provided extending in the transverse direction with the apex 3d which is the bending point located at 3a
, the height difference of the ridge line step portion 3c is increased to 1. O+lIn or less, and the plane portion 3a is located at the center in the longitudinal direction.

〔作用〕[Effect]

中心線M上に頂点3dを位置させた稜線段部3cを成形
するごとによって、パネル壁3に減圧が作用して変形の
ための応力が発生ずると、この応力は稜線段部3cに沿
って頂点3dに41<中して作用し、ご、  −7− のためパネル壁3はごの頂点3dの位置する箇所から減
圧吸収のための変形を起こすごとになる。
Every time the ridgeline stepped portion 3c with the apex 3d positioned on the center line M is formed, reduced pressure acts on the panel wall 3 and stress for deformation is generated, and this stress is applied along the ridgeline stepped portion 3c. 41 acts on the apex 3d, and because of this, the panel wall 3 is deformed to absorb the reduced pressure from the location where the apex 3d is located.

一対の稜線段部3cの間に平面部3aを位置させること
によって、頂点3dに減圧変形のための応力が集中して
作用すると、平面部3aばその中央の上下両端に変形力
を受けることになり、これによって平面部3aにおける
減圧吸収変形が円滑にかつ確実にそして常に一定した状
態で引き起こされることになる。
By locating the flat portion 3a between the pair of ridge step portions 3c, when the stress for decompression deformation concentrates on the apex 3d, the flat portion 3a receives deformation force at both upper and lower ends of the center. As a result, decompression absorption deformation in the flat portion 3a is caused smoothly, reliably, and always in a constant state.

平面部3aが長手辺方向の中央に位置しているごとによ
って、減圧吸収変形がパネル壁3の中央部で発生ずるこ
とになり、このためパネル壁3に生しる減圧吸収のため
の変形は偏ることなく、一定の秩序をもって全体的に生
じるごとになる。
Since the flat portion 3a is located at the center in the longitudinal direction, deformation for absorbing reduced pressure occurs at the center of the panel wall 3. Therefore, the deformation for absorbing reduced pressure that occurs in the panel wall 3 is It occurs as a whole, without bias, and in a certain order.

そして、稜線段部3cの段差を1.0+u+以下とした
ので、この稜線段部3cを形成する二つの屈曲部の間隔
が狭い壁断面構造となり、このため増圧および減圧によ
る圧力の作用および充填液温の作用にもかかわらず、こ
の稜線段部3cにおりる壁断面構造は変形し難いものと
なっている。
Since the level difference of the ridgeline step 3c is set to 1.0+u+ or less, the wall cross-sectional structure has a narrow interval between the two bent portions forming the ridgeline step 3c, so that the pressure action due to pressure increase and decrease and the filling Despite the effect of liquid temperature, the wall cross-sectional structure extending down to this ridge line step portion 3c is difficult to deform.

−9= それゆえ、キャッピング時の増圧と充填液温とがこの稜
線段部3cに作用したとしても、稜線段部3cは永久変
形することがなく、パネル壁3の凸状永久変形を生じる
ことがない。
-9= Therefore, even if the pressure increase and filling liquid temperature during capping act on this ridgeline stepped portion 3c, the ridgeline stepped portion 3c will not be permanently deformed, and a convex permanent deformation of the panel wall 3 will occur. Never.

また、平面部3aは稜線段部3cの存在によって、壜体
1の2軸延伸ブロー成形時に、周囲部分、すなわちパネ
ル壁3の他の部分である変形部3b (第2図参照)と
かりブ部4からの残留応力を受は難い状態となるので、
ヒートセット成形時にパネル壁3の平坦寸法精度が高く
なり、成形された壜体1への高温充填による大味バラツ
キの増加を抑制することができて、より高い品質の壜体
をMfljするごとができる。
Also, due to the presence of the ridgeline stepped portion 3c, the flat portion 3a is connected to the surrounding portion, that is, the deformed portion 3b (see FIG. 2), which is another portion of the panel wall 3, during biaxial stretch blow molding of the bottle 1. Since it becomes difficult to receive the residual stress from part 4,
During heat-set molding, the flat dimensional accuracy of the panel wall 3 is increased, and it is possible to suppress the increase in flavor variation due to high-temperature filling of the molded bottle 1, making it possible to produce bottles of higher quality each time. can.

〔実施例〕〔Example〕

容量1.51、胴部2肉厚0.33〜0.3511の標
準的な2軸延伸ブロー成形されたPET製壜体壜体部2
に陥没成形されるパネル壁3の段部5の段差を種々変え
て、段部5の段差と変形との関係を、90℃の温水を規
定量充填、ギヤソピング後30秒転例、そして正立で5
分30秒放置後冷水で室温まで冷却して実験したところ
、0段部の段差が2.01の場合 キャッピング後のパネル壁3の膨らみ変形が大きく、こ
の変形による段部の変形が永久変形となって冷却時の変
形が不良となった。
Standard biaxial stretch blow-molded PET bottle body 2 with a capacity of 1.51 and a body 2 wall thickness of 0.33 to 0.3511
The relationship between the level difference and the deformation of the stepped portion 5 of the panel wall 3 to be recessed was varied, and the relationship between the stepped portion 5 and the deformation was determined by filling a specified amount of 90°C hot water, turning for 30 seconds after gear soaping, and then standing upright. So 5
An experiment was conducted by leaving it for 30 seconds and then cooling it to room temperature with cold water. When the step difference at the 0th step was 2.01, the bulging deformation of the panel wall 3 after capping was large, and the deformation of the step due to this deformation was considered to be permanent deformation. This resulted in poor deformation during cooling.

0段部の段差が1.2mmの場合 キャッピング後のパネル壁3の膨らみ変形が普通である
が、この変形による段部の変形が永久変形となって冷却
時におりるパネル壁3の減圧吸収変形が円滑に起こらな
かった。
When the level difference at the 0th step is 1.2 mm, the panel wall 3 will normally bulge and deform after capping, but the deformation of the step due to this deformation becomes permanent deformation and the panel wall 3 absorbs decompression during cooling. It didn't happen smoothly.

0段部の段差が1.0凋■の場合 キャッピング後のパネル壁3の膨らみ変形は比較的小さ
く、この変形による段部の永久変形程度も小さく、この
ため冷却時におりるパネル壁3の減圧吸収変形が、壜体
1の外観を害するほど不均一となることばなかった。
When the step difference at the 0th step is 1.0 mm, the bulging deformation of the panel wall 3 after capping is relatively small, and the degree of permanent deformation of the step due to this deformation is also small, so that the depressurization of the panel wall 3 that occurs during cooling is The absorption deformation did not become so non-uniform as to impair the appearance of the bottle 1.

0段部の段差が0.7mmの場合 キャッピング後のパネル壁3の膨らめ変形は小さく、こ
の変形による段部の永久変形はほとんど起こらず、この
ため冷却時におけるパネル壁3の減圧吸収変形(:l極
めて円滑にかつ均一に達成された。
When the step difference at the 0th step is 0.7 mm, the expansion deformation of the panel wall 3 after capping is small, and this deformation causes almost no permanent deformation of the step. Therefore, the decompression absorption deformation of the panel wall 3 during cooling occurs. (:lAchieved very smoothly and uniformly.

0段部の段差が0.5+nlの場合 段差が0.7mmの場合とは七んど同じで、キャッピン
グ時のパネル壁3の変形量は同じ程度であるが、段部に
永久変形を生じるごとは全くなく、パネル壁3の減圧吸
収変形は極めて円滑にかつ均一に達成された。
When the step difference at the 0th step is 0.5+nl, it is almost the same as when the step is 0.7 mm, and the amount of deformation of the panel wall 3 during capping is about the same, but as permanent deformation occurs at the step. There was absolutely no deformation of the panel wall 3 due to its absorption of reduced pressure, and the deformation of the panel wall 3 was achieved extremely smoothly and uniformly.

なる結果を得ることができた。I was able to get the following results.

この実験結果から、減圧吸収変形をする必要のあるパネ
ル壁3に設ける段部の段差は1.01以下とする必要が
あるご吉が確認できる。
From this experimental result, it can be confirmed that the difference in level of the step provided in the panel wall 3 that needs to be deformed to absorb reduced pressure needs to be 1.01 or less.

また、パネル壁3に形成される平面部3aは、このパネ
ル壁3における変形形態を安定させるだめの主体部分と
なっているのであるが、多くの実験によるとこの平面部
3aの大きさは、パネル壁3全体に対して4分の1程度
が適当である。
Further, the flat portion 3a formed on the panel wall 3 is the main part that stabilizes the deformation form of the panel wall 3, but according to many experiments, the size of the flat portion 3a is as follows. Approximately one-fourth of the entire panel wall 3 is suitable.

さらに、パネル壁3に作用する外部からの圧力に従って
生じる応力を頂点3dに集中作用させるための稜線段部
3cは、その作用から、中心線Mに対して傾斜している
ことが必要である。この稜線段部3cの傾斜角度、すな
わち頂点3dの角度は30〜140°程度が良く、30
°以下であると発生した応力の頂点3dへの集中程度が
強くなり過ぎて、平面部3aにおける変形が屈曲変形に
近い状態となってしまって、変形が平面部3aに集中し
°(しまう傾向が強くなり、反対に140°以上である
と、発生した応力の頂点3dへの集中程度が悪く、パネ
ル壁3の変形を均一にする効果が低下する。
Furthermore, the ridge line step portion 3c for concentrating the stress generated in accordance with the external pressure acting on the panel wall 3 on the apex 3d needs to be inclined with respect to the center line M for this purpose. The angle of inclination of this ridgeline stepped portion 3c, that is, the angle of the apex 3d, is preferably about 30 to 140 degrees;
If it is less than °, the degree of concentration of the generated stress on the vertex 3d will become too strong, and the deformation in the flat part 3a will be close to bending deformation, and the deformation will tend to concentrate on the flat part 3a. On the other hand, if the angle is 140° or more, the degree of concentration of the generated stress on the vertex 3d is poor, and the effect of making the deformation of the panel wall 3 uniform is reduced.

第2図および第3図に示した実施例は、パネル壁3の長
手辺長さの3等分点に頂点3dを位置させると共に、頂
点3dの角度を約80°に設定し、稜線段部3cの段差
をQ、7mmで成形した場合を示している。
In the embodiment shown in FIGS. 2 and 3, the apex 3d is located at a point dividing the length of the long side of the panel wall 3 into three equal parts, and the angle of the apex 3d is set to about 80°, and the ridge step part This shows the case where a step of 3c is formed with Q of 7mm.

この実施例の場合、キヤ・ノピング時の増圧による凸状
変形は、主とし一ζ変形部3bで達成され、平面部3a
の凸状変形量はわずかであったが、減圧吸収変形に際し
ては、平面部3aが大きく陥没変形すると共に、この平
面部3aの陥没変形に引っ張られた形で変形部3bも大
きく湾曲変形し、パネル壁3一 12− 全体で一定した変形形状となった。
In the case of this embodiment, the convex deformation due to the pressure increase during canoping is mainly achieved in the 1ζ deformation part 3b, and the flat part 3a
Although the amount of convex deformation was small, during the decompression absorption deformation, the flat part 3a was greatly depressed and deformed, and the deformed part 3b was also greatly curved and deformed by being pulled by the depressed deformation of the flat part 3a. Panel wall 3-12- The deformed shape was constant throughout.

第4図および第5図に示した実施例は、第2図および第
3図に示した実施例の平面部3aを稜線段部3cで完全
に囲った形態とすると共に、両度形部3bに第2の頂点
3fを屈曲点とする屈曲線部3gを成形し、この屈曲線
部3gにより変形部3bの一部を段部5に向かって上昇
傾斜して湾曲壁構造となった変形補助部3eに成形して
いる。
In the embodiment shown in FIGS. 4 and 5, the planar portion 3a of the embodiment shown in FIGS. A bending line portion 3g having a bending point at the second apex 3f is formed, and a part of the deformation portion 3b is tilted upward toward the step portion 5 by this bending line portion 3g to form a curved wall structure. It is molded in the part 3e.

この実施例の場合、キャッピング時の増圧に対する変形
部3bの膨らみ変形が抑制され、これによってパネル壁
3全体のキャッピング時の膨らみ変形が小さくなって、
パネル壁3とリブ部4との境界を形成する段部5に永久
変形を全く発生させることがなく、また減圧吸収変形時
における応力の集中が平面部3aの両端と、変形部3b
の第2の頂点3fにも成る程度集中するので、変形部3
bの変形形態を一定化することができ、より安定したパ
ネル壁3の減圧吸収変形を得ることができる。
In the case of this embodiment, the bulging deformation of the deformable portion 3b due to the pressure increase during capping is suppressed, thereby reducing the bulging deformation of the entire panel wall 3 during capping,
There is no permanent deformation at all in the stepped portion 5 that forms the boundary between the panel wall 3 and the rib portion 4, and stress concentration during decompression absorption deformation occurs at both ends of the flat portion 3a and the deformed portion 3b.
The deformed portion 3
The deformation form of b can be made constant, and more stable decompression absorption deformation of the panel wall 3 can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなごとく、本発明は、パー14= ネル壁にお&ノる増圧時の変形量を抑制し、反対に減圧
時の変形量を増大すると共にその減圧変形の発生を円滑
にそして安定したものとするので、壜体の外観を良好に
維持することができ、また段差の小さい稜線段部を有す
ることによって、ヒートセント成形時における平坦なパ
ネル壁の・J′法法定定性高くすることができ、このた
め高温充填における大味バラツキをほとんどなくずこと
ができ、より高い品質の壜体を成形することができ、さ
らにこのようにパネル壁の減圧吸収変形が円滑にかつ一
定して安定しているので、より高い耐熱性を発揮する壜
体を得ることかできる等多くの優れた効果を有するもの
である。
As is clear from the above description, the present invention suppresses the amount of deformation of the par 14 = wall during pressure increase, and conversely increases the amount of deformation during depressurization and smoothes the occurrence of deformation due to pressure reduction. This makes it possible to maintain the appearance of the bottle well, and by having a ridge line step with a small step, it is possible to improve the J' law specificity of a flat panel wall during heat cent molding. As a result, it is possible to almost eliminate variations in flavor during high-temperature filling, making it possible to form bottles of higher quality.Furthermore, in this way, the deformation of the panel wall to absorb the reduced pressure is smooth and constant. Since it is stable and stable, it has many excellent effects such as being able to obtain a bottle that exhibits higher heat resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明が実施される一般的な2軸延伸ブロー
成形されたポリエチレンテレフタレーI・樹脂製の大型
壜の全体外観図を示すものである。 第2図および第3図は、本発明の一実施例を示すもので
、第2図はその正面図、第3図は中心線に沿った断面図
である。 第4図および第5図は、本発明の他の実施例を示すもの
で、第4図はその正面図、第5図は中心線に沿った断面
図である。 符号の説明 1;壜体、2;胴部、3;パネル壁、4;リブ部、5;
段部、3a;平面部、3I〕;変形部、3c;稜線段部
、3d;頂点、3e;変形補助部、3fi第2の頂点、
3g;屈曲線部、M;中心線。 出願人 株式会社 吉 野 工 業 所ンザレl勿
FIG. 1 shows an overall external view of a large bottle made of polyethylene terephthalate I resin, which is generally biaxially stretched and blow-molded, in which the present invention is carried out. 2 and 3 show an embodiment of the present invention, with FIG. 2 being a front view thereof and FIG. 3 being a sectional view taken along the center line. 4 and 5 show another embodiment of the present invention, with FIG. 4 being a front view thereof and FIG. 5 being a sectional view taken along the center line. Explanation of symbols 1; Bottle body, 2; Body part, 3; Panel wall, 4; Rib part, 5;
Stepped portion, 3a; flat portion, 3I]; deformed portion, 3c; ridgeline stepped portion, 3d; apex, 3e; deformation auxiliary portion, 3fi second apex,
3g: Bent line part, M: Center line. Applicant: Yoshino Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 2軸延伸ブロー成形されたポリエチレンテレフタレート
樹脂製壜体(1)の胴部(2)に、該壜体(1)内の圧
力変化に対応して変形して該圧力変化を吸収すべく縦長
に陥没並列設された減圧吸収用のパネル壁(3)の構造
であって、長手辺に沿った仮想される中心線(M)上に
屈曲点である頂点(3d)を位置させて短手辺方向に横
断する形態で延びる少なくとも一対の稜線段部(3c)
間の陥没した部分を平坦な平面部(3a)とし、前記稜
線段部(3c)の段差を1.0mm以下の値とすると共
に、前記平面部(3a)を長手辺方向の中央に位置させ
て成る壜体の変形用パネル壁。
The body part (2) of the polyethylene terephthalate resin bottle (1) that has been subjected to biaxial stretch blow molding has a vertically elongated shape that deforms in response to pressure changes within the bottle (1) and absorbs the pressure changes. This is a structure of panel walls (3) for reducing pressure absorption installed in parallel with each other, with the apex (3d) that is the bending point located on the imagined center line (M) along the long side, and the short side at least a pair of ridgeline step portions (3c) extending transversely in the direction;
The depressed part in between is a flat plane part (3a), the step of the ridge step part (3c) is set to a value of 1.0 mm or less, and the plane part (3a) is located at the center in the longitudinal direction. A panel wall for transforming the bottle body.
JP23586586A 1986-10-03 1986-10-03 Panel wall for bottle deformation Expired - Fee Related JPH07102856B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP23586586A JPH07102856B2 (en) 1986-10-03 1986-10-03 Panel wall for bottle deformation
US07/155,732 US4877141A (en) 1986-10-03 1988-02-16 Pressure resistant bottle-shaped container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23586586A JPH07102856B2 (en) 1986-10-03 1986-10-03 Panel wall for bottle deformation

Publications (2)

Publication Number Publication Date
JPS6396022A true JPS6396022A (en) 1988-04-26
JPH07102856B2 JPH07102856B2 (en) 1995-11-08

Family

ID=16992394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23586586A Expired - Fee Related JPH07102856B2 (en) 1986-10-03 1986-10-03 Panel wall for bottle deformation

Country Status (1)

Country Link
JP (1) JPH07102856B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143594A (en) * 2006-12-13 2008-06-26 Dainippon Printing Co Ltd Contents container, and container body composing it
JP2009035264A (en) * 2007-07-31 2009-02-19 Yoshino Kogyosho Co Ltd Bottle
JP2011213394A (en) * 2010-03-31 2011-10-27 Yoshino Kogyosho Co Ltd Square shape bottle made of synthetic resin

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117109U (en) * 1984-09-06 1986-07-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117109U (en) * 1984-09-06 1986-07-24

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143594A (en) * 2006-12-13 2008-06-26 Dainippon Printing Co Ltd Contents container, and container body composing it
JP2009035264A (en) * 2007-07-31 2009-02-19 Yoshino Kogyosho Co Ltd Bottle
JP2011213394A (en) * 2010-03-31 2011-10-27 Yoshino Kogyosho Co Ltd Square shape bottle made of synthetic resin

Also Published As

Publication number Publication date
JPH07102856B2 (en) 1995-11-08

Similar Documents

Publication Publication Date Title
US5064081A (en) Pressure resistant polygonal bottle-shaped container having a polygonal bottom
JP4475010B2 (en) Synthetic resin housing
JP5057306B2 (en) Synthetic resin housing
KR101267463B1 (en) Synthetic resin bottle body
KR101305230B1 (en) Container made of polyester resin and method for molding thereof
JP4552498B2 (en) Synthetic resin housing
JPS6396022A (en) Panel wall for deformation of bottle body
JP4437313B2 (en) Synthetic resin housing
JP4993247B2 (en) Synthetic resin housing
JPH0565158A (en) Biaxially oriented blow-molded container
JP2009057085A (en) Synthetic resin bottle
JPH05310239A (en) Biaxially drawn blow-molded container
JP3513539B2 (en) Synthetic resin bottle
JPH10203521A (en) Foldable plastic bottle
JPH08230855A (en) Synthetic resin bottle
JP2590084B2 (en) Bottle panel wall
JPS6252035A (en) Vessel with recessed panel to which rib is formed
JP4887045B2 (en) Plastic bottle
JP3544706B2 (en) Biaxial stretch blow molded container
JP2949459B2 (en) Hollow container made of polyethylene terephthalate resin
JP2600016Y2 (en) Polyester resin bottle bottom structure and bottom mold
JP4203890B2 (en) Synthetic resin housing
JPH06336240A (en) Pressure resistant plastic bottle
JP3560368B2 (en) Biaxial stretch blow molded container
JP4212910B2 (en) Heat resistant stretch blow molded container

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees