JPS63957B2 - - Google Patents
Info
- Publication number
- JPS63957B2 JPS63957B2 JP53133280A JP13328078A JPS63957B2 JP S63957 B2 JPS63957 B2 JP S63957B2 JP 53133280 A JP53133280 A JP 53133280A JP 13328078 A JP13328078 A JP 13328078A JP S63957 B2 JPS63957 B2 JP S63957B2
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- semiconductor laser
- light
- laser
- injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004065 semiconductor Substances 0.000 claims description 33
- 238000002347 injection Methods 0.000 claims description 25
- 239000007924 injection Substances 0.000 claims description 25
- 230000010355 oscillation Effects 0.000 claims description 21
- 230000003287 optical effect Effects 0.000 claims description 15
- 230000001360 synchronised effect Effects 0.000 claims description 5
- 230000000087 stabilizing effect Effects 0.000 claims 1
- 239000013078 crystal Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000035559 beat frequency Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/068—Stabilisation of laser output parameters
- H01S5/0683—Stabilisation of laser output parameters by monitoring the optical output parameters
- H01S5/0687—Stabilising the frequency of the laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/14—External cavity lasers
- H01S5/141—External cavity lasers using a wavelength selective device, e.g. a grating or etalon
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
- Semiconductor Lasers (AREA)
Description
【発明の詳細な説明】
本発明は、光の同期制御ループおよび光注入同
期方式を具備し、発振周波数が極めて安定な半導
体レーザの光注入同期装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical injection locking device for a semiconductor laser which is equipped with an optical synchronization control loop and an optical injection locking method and whose oscillation frequency is extremely stable.
半導体レーザは、従来の気体レーザに比較して
共振器を構成しているミラーに壁開面を用いてい
るために反射率が低く、また共振器長が短かいた
めにQ値(クオリテイ・フアクタ)が低く、縦モ
ードを安定化することが不可能であつた。このよ
うな理由により、半導体レーザを光通信に用いる
場合には、発振周波数の不安定性が雑音の原因と
なつたり、材料分散を増加し、伝送容量を大幅に
減ずる原因となつた。これらの問題を解決するた
めに、周波数を安定化する技術が最近進歩し、縦
モードをシングルにする試みが成されている
(K・AiKi、A.P.L.30 649“1977”)。また半導体
レーザに外部共振器を具備し、Q値を見かけ上高
めて周波数を安定化する試みも成されている(昭
和53年度電子通信学会総合全国大会785、p.4―
42)。同様に、周波数を安定化する試みで、回折
格子を用いて周波数を選択する試みも成されてい
る(T.L.Paoli、IEEE.J.Q.E QE―11、No.7、
“1975”)。 Semiconductor lasers have lower reflectance than conventional gas lasers due to the use of wall openings in the mirrors that make up the resonator, and a lower Q value (quality factor) due to the shorter resonator length. ) was low, making it impossible to stabilize the longitudinal mode. For these reasons, when semiconductor lasers are used for optical communications, the instability of the oscillation frequency causes noise, increases material dispersion, and significantly reduces transmission capacity. To solve these problems, frequency stabilization techniques have recently advanced, and attempts have been made to make the longitudinal mode single (K. AiKi, APL 30 649 "1977"). Attempts have also been made to equip a semiconductor laser with an external resonator to apparently increase the Q value and stabilize the frequency (1973 National Conference of the Institute of Electronics and Communication Engineers, 785, p. 4).
42). Similarly, attempts have been made to select frequencies using diffraction gratings in an attempt to stabilize the frequencies (TL Paoli, IEEE.JQE QE-11, No. 7).
“1975”).
以上の技術によつて、半導体レーザの周波数の
安定性は向上したが、気体レーザあるいは従来の
通信用発振器の周波数の安定性と比較するとはる
かに劣つている。特に、周波数領域を使用する伝
送を設計する場合には、極めて周波数を安定にす
ることが望まれる。 Although the above techniques have improved the frequency stability of semiconductor lasers, they are far inferior to the frequency stability of gas lasers or conventional communication oscillators. In particular, when designing transmission using the frequency domain, it is desirable to have extremely stable frequencies.
本発明は、以上の問題点を考慮して、半導体レ
ーザの発振周波数を光の位相同期ループを構成す
る外部共振器で選択し、次に外部から光注入同期
を行なつて周波数を安定化し、更に同期がずれた
場合には、光注入光と発振光の周波数差を検出
し、同期制御ループで常に同期状態を保持するこ
とによつて発振周波数を安定化することを目的と
した半導体レーザの光注入同期装置を提供するも
のである。以下、図面により実施例を詳細に説明
する。 In consideration of the above problems, the present invention selects the oscillation frequency of a semiconductor laser using an external resonator constituting an optical phase-locked loop, and then performs optical injection locking from the outside to stabilize the frequency. Furthermore, if the synchronization is lost, the semiconductor laser is designed to stabilize the oscillation frequency by detecting the frequency difference between the injected light and the oscillated light and always maintaining the synchronized state in a synchronization control loop. The present invention provides an optical injection locking device. Hereinafter, embodiments will be described in detail with reference to the drawings.
まず、本発明の実施例を説明する前に、原理を
説明する。半導体レーザは壁開面で構成されたフ
アブリペロー型共振器の長さが短かく、壁開面の
反射率が低いために、共振器の損失を表わすQ値
が低い。即ち、縦モードが不安定であることを示
している。従つて、半導体レーザの周波数を安定
化するためには、外部からQ値を高くすることが
必要である。しかし外部からQ値を制御するだけ
では、周囲の温度やその他環境の変化などによつ
て周波数が変動する。従つて、所望の周波数の光
を外部から注入する光注入同期方式によつて極め
て安定な周波数が得られる。また、一度注入同期
した後に、半導体レーザの発振周波数が変動しな
いためには、注入する光周波数と発振周波数を比
較し、その誤差信号を外部共振器に負帰還する同
期制御ループを構成しておくことが必要である。 First, before describing embodiments of the present invention, the principle will be explained. In a semiconductor laser, a Fabry-Perot resonator configured with a wall opening is short, and the reflectance of the wall opening is low, so the Q value representing the loss of the resonator is low. That is, it shows that the longitudinal mode is unstable. Therefore, in order to stabilize the frequency of the semiconductor laser, it is necessary to increase the Q value externally. However, if the Q value is only controlled externally, the frequency will fluctuate depending on the ambient temperature and other environmental changes. Therefore, an extremely stable frequency can be obtained by an optical injection locking method in which light of a desired frequency is externally injected. In addition, in order to prevent the oscillation frequency of the semiconductor laser from changing after injection locking, a synchronization control loop must be configured to compare the injected optical frequency and the oscillation frequency and feed back the error signal negatively to the external resonator. It is necessary.
本発明は、以上の原理に基ずいて半導体レーザ
の位相同期を行なう装置であり、実施例を図面に
よつて説明する。 The present invention is an apparatus for performing phase synchronization of a semiconductor laser based on the above principle, and embodiments thereof will be described with reference to the drawings.
第1図は、本発明の半導体レーザの注入同期装
置の実施例を示したもので、1は半導体レーザ、
2はオーブン、3はレンズ、4は同調器、5は回
折格子、6はレーザ、7はハーフミラー、8はア
イソレータ、9はハーフミラー、10はアイソレ
ータ、11は出力光、12はハーフミラー、1
3,14はレンズ、15は変調器、16はレン
ズ、17はハーフミラー、18は受光器、19は
周波数弁別器、20は増幅器、21はマイクロ波
発振器、22,23は増幅器である。 FIG. 1 shows an embodiment of the injection locking device for a semiconductor laser according to the present invention, in which 1 indicates a semiconductor laser;
2 is an oven, 3 is a lens, 4 is a tuner, 5 is a diffraction grating, 6 is a laser, 7 is a half mirror, 8 is an isolator, 9 is a half mirror, 10 is an isolator, 11 is an output light, 12 is a half mirror, 1
3 and 14 are lenses, 15 is a modulator, 16 is a lens, 17 is a half mirror, 18 is a light receiver, 19 is a frequency discriminator, 20 is an amplifier, 21 is a microwave oscillator, and 22 and 23 are amplifiers.
次に、本実施例の動作を説明する。まず半導体
レーザ1を或る所望の発振周波数に同期させ、安
定な発振周波数を得るためには、粗い周波数選択
が必要である。そのために、オーブン2によつて
レーザ1の温度制御を行ない、所望の発振周波数
を選択する。次に、半導体レーザ1の端面と回折
格子5によつて形成される外部共振器によつて発
振周波数を選び、更に微調を同調器4によつて行
なう。このようにして或る周波数幅内に光の周波
数を選択することができる。しかしこれはあくま
で外部条件で共振器のQ値を制御することにあ
り、必ずしも周波数を安定に固定することは容易
でない。そこで、前述したように、或る程度の周
波数幅内に周波数選択した段階で、周波数が非常
に安定なレーザ6からの光を半導体レーザ1に注
入し、半導体レーザ1の発振周波数をレーザ6の
発振周波数に注入同期させる。 Next, the operation of this embodiment will be explained. First, in order to synchronize the semiconductor laser 1 to a certain desired oscillation frequency and obtain a stable oscillation frequency, rough frequency selection is required. For this purpose, the temperature of the laser 1 is controlled by the oven 2, and a desired oscillation frequency is selected. Next, the oscillation frequency is selected by an external resonator formed by the end face of the semiconductor laser 1 and the diffraction grating 5, and further fine tuning is performed by the tuner 4. In this way, the frequency of light can be selected within a certain frequency range. However, this is all about controlling the Q value of the resonator based on external conditions, and it is not always easy to stably fix the frequency. Therefore, as mentioned above, at the stage where the frequency is selected within a certain frequency range, the light from the laser 6, which has a very stable frequency, is injected into the semiconductor laser 1, and the oscillation frequency of the semiconductor laser 1 is changed to the oscillation frequency of the laser 6. Injection locks to the oscillation frequency.
ここで、この注入同期するレーザ1の許容周波
数幅は、(1)式に従うことがAdler(Proc.IEEE、34
pp.351〜357“1946”)によつて明らかにされてい
る。Δωnaxを最大許容注入同期幅とすると、
となる。ここで、ω0は注入周波数、Qは半導体
レーザの構造で決まるクオリテイーフアクタ、
Psourceは注入信号パワー、Poscは半導体レーザ
の発振パワーである。従つて、この(1)式を満足し
ている間は注入同期されているが、発振パワーの
乱れやQ値の変化によつて、Δωnaxの同期周波数
幅が変化し、注入周波数を同期幅内に含むことが
不可能になつた場合、即ち非同期になつた場合に
は、再び周波数幅を注入周波数と同期できる元の
位置に戻してやる必要がある。このために同期制
御ループによつて発振周波数を常に安定に保つこ
とを行なう。この同期制御ループは次のように構
成される。まず、レーザ6から出た光をハーフミ
ラー7で分離し、マイクロ波発振器21、増幅器
22を具備する変調器15を通すことによつて、
レーザ6からの光の周波数を200MHzずらし、そ
の光を受光器18(アバランシユフオトダイオー
ドおよびPINダイオード)へ導く。またレーザ6
の光を注入した時のレーザ1からの出射光をハー
フミラー12で分離し、更にハーフミラー17に
よつて受光器18へ導く。この受光器18の受光
面にはすでに注入周波数より200MHzずれたレー
ザ光が到着しているため、受光器18の出力には
200MHzに相当するビート周波数が出てくる。そ
こで、この出力信号を判別器19へ導く。半導体
レーザ1がレーザ6の周波数に注入同期していれ
ば、ビート周波数は200MHzであるが、もし非同
期であれば、その誤差に相当する信号周波数が加
わつている。そこで、非同期の誤差信号だけを検
出するために、発振器21から200MHzの信号を
増幅器23を通して周波数弁別器19へ送り、こ
の誤差信号を取り出す。非同期の場合に生じた誤
差信号は、増幅器20によつて増幅され、同調器
4へ負帰還される。この同調器4は今まで外部共
振器長を長くする方向へ動作していた場合には、
負の誤差信号によつて共振器長を短かくする方向
へ動作する。 Here, the permissible frequency width of the injection-locked laser 1 follows equation (1) according to Adler (Proc. IEEE, 34
pp. 351-357 “1946”). Letting Δω nax be the maximum allowable injection locking width, becomes. Here, ω 0 is the injection frequency, Q is the quality factor determined by the structure of the semiconductor laser,
Psource is the injection signal power, and Posc is the oscillation power of the semiconductor laser. Therefore, injection locking is achieved while formula (1) is satisfied, but due to disturbances in the oscillation power or changes in the Q value, the locking frequency width of Δω nax changes, causing the injection frequency to change to the locking width. If it becomes impossible to include the injection frequency within the injection frequency, that is, if it becomes asynchronous, it is necessary to return the frequency width to the original position where it can be synchronized with the injection frequency. For this purpose, the oscillation frequency is always kept stable using a synchronous control loop. This synchronous control loop is constructed as follows. First, the light emitted from the laser 6 is separated by a half mirror 7 and passed through a modulator 15 including a microwave oscillator 21 and an amplifier 22.
The frequency of the light from the laser 6 is shifted by 200 MHz, and the light is guided to the light receiver 18 (avalanche photodiode and PIN diode). Also laser 6
When the light is injected, the emitted light from the laser 1 is separated by a half mirror 12 and further guided to a light receiver 18 by a half mirror 17. Since laser light with a deviation of 200 MHz from the injection frequency has already arrived at the light receiving surface of the light receiver 18, the output of the light receiver 18 is
A beat frequency equivalent to 200MHz will appear. Therefore, this output signal is guided to the discriminator 19. If the semiconductor laser 1 is injection-locked to the frequency of the laser 6, the beat frequency is 200 MHz, but if it is asynchronous, a signal frequency corresponding to the error is added. Therefore, in order to detect only the asynchronous error signal, a 200 MHz signal is sent from the oscillator 21 to the frequency discriminator 19 through the amplifier 23, and this error signal is extracted. The error signal generated in the case of non-synchronization is amplified by the amplifier 20 and negatively fed back to the tuner 4. If this tuner 4 has been operating in the direction of increasing the external resonator length,
It operates in the direction of shortening the resonator length by a negative error signal.
以上の操作によつて、半導体レーザ1の発振周
波数は、常に注入同期を満足する周波数幅Δωnax
を注入同期するレーザ6からの周波数に合わせる
ことが可能となり、常に注入同期条件を満たし、
注入周波数で発振する。なお、半導体レーザ1へ
の注入光の集光および発振光の取り出しは、レン
ズ3,13で行ない、変調器15への光の集光、
取り出しはレンズ14,16で行なう。更に、半
導体レーザ1の壁開面での光の反射によるレーザ
6への影響を避けるために、また出力光11が内
部の光学系による反射の影響を受けないように、
各々アイソレータ8,10を具備している。上記
の半導体レーザの光注入同期装置によつて極めて
安定な発振周波数を有するレーザ光がハーフミラ
ー9によつて出力光11となつて外部へ取り出さ
れる。 Through the above operations, the oscillation frequency of the semiconductor laser 1 is set to a frequency width Δω nax that always satisfies injection locking.
It is now possible to match the frequency of the injection-locked laser 6, always satisfying the injection-locking conditions,
Oscillates at the injection frequency. Note that the lenses 3 and 13 are used to condense the light injected into the semiconductor laser 1 and take out the oscillated light, and condense the light to the modulator 15 and take out the oscillated light.
The extraction is performed using lenses 14 and 16. Furthermore, in order to avoid the effect on the laser 6 due to the reflection of light on the wall opening of the semiconductor laser 1, and to prevent the output light 11 from being affected by reflection by the internal optical system,
Each is equipped with isolators 8 and 10. Laser light having an extremely stable oscillation frequency is output by the half mirror 9 to the outside as output light 11 by the optical injection locking device for the semiconductor laser described above.
次に、本発明の他の実施例を説明する。前述の
実施例で説明した外部共振器の中の同調器4は、
注入同期からの周波数ずれを補正するために、
10-3μm程度の精度が要求される。従つて、機械
的操作では精度を保証できないため、本発明では
第2図に示した同調期を用いる。この同調器は、
透明電極(SnO2)24を塗布したガラス窓25
の間に挿入された電気光学結晶26に電界をか
け、電気光学結晶を通過する光の光学長を制御す
る機構を有するものである。このような同調器を
用いることにより、外部共振器長を微細に制御す
ることが可能となり、注入同期が安定に行なわれ
る。なお27は電極、28は絶縁体、矢印は光の
進行方向を示す。 Next, another embodiment of the present invention will be described. The tuner 4 in the external resonator described in the previous embodiment is
To compensate for frequency deviation from injection locking,
Accuracy of about 10 -3 μm is required. Therefore, since accuracy cannot be guaranteed by mechanical operation, the present invention uses the synchronization period shown in FIG. 2. This tuner is
Glass window 25 coated with transparent electrode (SnO 2 ) 24
It has a mechanism for applying an electric field to the electro-optic crystal 26 inserted between the electro-optic crystals and controlling the optical length of light passing through the electro-optic crystal. By using such a tuner, it becomes possible to finely control the external resonator length, and stable injection locking is achieved. Note that 27 is an electrode, 28 is an insulator, and arrows indicate the direction in which light travels.
以上説明したように、本発明によれば、半導体
レーザの周波数を同期制御ループと光注入同期に
よつて非常に安定にすることが可能であるため、
通信用として用いる場合に雑音が極めて少ない光
源が実現できるという利点がある。 As explained above, according to the present invention, it is possible to make the frequency of the semiconductor laser extremely stable using the synchronization control loop and optical injection locking.
When used for communication, there is an advantage that a light source with extremely low noise can be realized.
第1図は、本発明の半導体レーザ同志の光注入
同期装置の実施例の説明図、第2図は、本発明の
同調器の他の実施例の説明図である。
1……半導体レーザ、2……オーブン、3……
レンズ、4……同調器、5……回折格子、6……
レーザ、7……ハーフミラー、8……アイソレー
タ、9……ハーフミラー、10……アイソレー
タ、11……出力光、12……ハーフミラー、1
3,14……レンズ、15……変調器、16……
レンズ、17……ハーフミラー、18……受光
器、19……同調弁別器、20……増幅器、21
……マイクロ波発振器、22,23……増幅器、
24……透明電極、25……ガラス窓、26……
電気光学結晶、27……電極、28……絶縁体。
FIG. 1 is an explanatory diagram of an embodiment of the optical injection locking device for semiconductor lasers of the present invention, and FIG. 2 is an explanatory diagram of another embodiment of the tuner of the present invention. 1... Semiconductor laser, 2... Oven, 3...
Lens, 4... Tuner, 5... Diffraction grating, 6...
Laser, 7...half mirror, 8...isolator, 9...half mirror, 10...isolator, 11...output light, 12...half mirror, 1
3, 14...Lens, 15...Modulator, 16...
Lens, 17... Half mirror, 18... Light receiver, 19... Tuning discriminator, 20... Amplifier, 21
...Microwave oscillator, 22,23...Amplifier,
24...Transparent electrode, 25...Glass window, 26...
Electro-optic crystal, 27... electrode, 28... insulator.
Claims (1)
へ注入し、前記注入された光の周波数と注入され
た半導体レーザの発振出力周波数との差を検出
し、これらの周波数差に相当する出力で、前記半
導体レーザ上に付加した外部共振器の共振器長を
制御するとともに外部光と半導体レーザの間にア
イソレータを配して半導体レーザの注入同期発振
を行い発振出力周波数を常に前記注入光の周波数
と同期させ、安定化させることを特徴とする半導
体レーザの光注入同期装置。1. Inject external light whose frequency is extremely stable into a semiconductor laser, detect the difference between the frequency of the injected light and the oscillation output frequency of the injected semiconductor laser, and use the The resonator length of the external resonator added to the semiconductor laser is controlled, and an isolator is placed between the external light and the semiconductor laser to perform injection-locked oscillation of the semiconductor laser, and the oscillation output frequency is always synchronized with the frequency of the injected light. An optical injection synchronization device for a semiconductor laser, which is characterized by stabilizing the laser beam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13328078A JPS5561082A (en) | 1978-10-31 | 1978-10-31 | Light injection synchronizer for semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13328078A JPS5561082A (en) | 1978-10-31 | 1978-10-31 | Light injection synchronizer for semiconductor laser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5561082A JPS5561082A (en) | 1980-05-08 |
JPS63957B2 true JPS63957B2 (en) | 1988-01-09 |
Family
ID=15100938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13328078A Granted JPS5561082A (en) | 1978-10-31 | 1978-10-31 | Light injection synchronizer for semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5561082A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62155578A (en) * | 1985-12-27 | 1987-07-10 | Yokogawa Electric Corp | Laser generation apparatus |
JPH02250384A (en) * | 1989-03-24 | 1990-10-08 | Nippon Telegr & Teleph Corp <Ntt> | Light source apparatus for variable wavelength semiconductor laser |
GB2381121A (en) * | 2001-06-07 | 2003-04-23 | Univ London | Optical Frequency Synthesizer |
-
1978
- 1978-10-31 JP JP13328078A patent/JPS5561082A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5561082A (en) | 1980-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6333942B1 (en) | Atomic frequency standard laser pulse oscillator | |
KR102243474B1 (en) | Dual-frequency optical source | |
Bordonalli et al. | High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical phase-lock loop | |
Telle et al. | Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements | |
US5590142A (en) | Mode-locked fibre ring laser stabilization | |
US6034976A (en) | Method and apparatus for laser frequency stabilization | |
US5926492A (en) | Laser pulse oscillator | |
GB2161980A (en) | Mode-locked laser light sources | |
Smith | A study of factors affecting the performance of continuously pumped doubly resonant optical parametric oscillator | |
Bluestone et al. | An ultra-low phase-noise 20-GHz PLL utilizing an optoelectronic voltage-controlled oscillator | |
Ohtsu et al. | Electrical feedback and its network analysis for linewidth reduction of a semiconductor laser | |
US20230318253A1 (en) | Ultra-high stability brillouin laser | |
Al-Tahtamouni et al. | Long-term stable operation and absolute frequency stabilization of a doubly resonant parametric oscillator. | |
JP2002033548A (en) | Method and apparatus for driving mode-locked semiconductor laser | |
JP3089253B2 (en) | Regeneration mode-locked laser using Fabry-Perot filter | |
JPH1074996A (en) | Electromagnetic wave resonator having stabilizer and method for stabilizing resonator length | |
US4964132A (en) | Laser arrangement with frequency stabilized and intensity stabilized laser emission | |
JPS63957B2 (en) | ||
US3537027A (en) | Frequency-stabilized single mode ring lasers | |
GB2250394A (en) | Optical frequency synthesis | |
US3484719A (en) | Stabilized single mode laser | |
JP3411832B2 (en) | Optical phase-locked light source and optical frequency-locked light source | |
US20090059980A1 (en) | High-stability frequency reference based on self-locked alkali-vapor laser | |
JP3092757B2 (en) | Optical pulse laser frequency division synchronization signal generator | |
Lin et al. | Chirping in 1.55 μm vapour-phase-transport distributed feedback (VPTDFB) semiconductor lasers under picosecond gain switching and 4 GHz modulation |